
Memory Reliability and
Performance Degradation

Hunting rabbits with an elephant gun?

Benjamin Allan
HPCMASPA Mini-talk 9/26/2014

Cluster 2014, Madrid, Spain

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy under Contract DE-C04-94AL85000. Report number SAND2014-18204 PE

Outline

Why?
Quantifying silent memory errors in the
wild is really hard

– Bulk RAM is a necessary target
– How HPC makes it even harder
– Current approaches and limitations

Possible new approach?
Discussion

Why RAM silent error rates?

• Fault tolerant numerical algorithms do
not account for errors in pointers.
– Quantify the hardware risk as built
– Mitigate if necessary and possible
– Identify and remove marginal RAM (ECC

recovery delays computations) to improve
performance

• Silent fault rate may be as much as
10% of corrected fault rate

• 5-10% of CPU logic is not protectable

Why HPC is harder

Odds of a corrupt but plausible pointer:
– 24% chance a 3-bit error in a pointer is confined

to significant bits (40/64)3
• Therefore untrapped.
• Compare this to embedded computing with tiny

address spaces.
• Certain VMM approaches may increase this chance.

– Many applications fill RAM with similar object
instances (bad pointer to a good object)

– 5-15% of application RAM is pointers
– Unknown odds of a 3-bit error happening

Why not other subsystems?

• Lack of access to measure or change
– Buy built-in reliability if we can.

• If we can trust everything in the CPU-to-
RAM path, we can use software to work
around less reliable components.

Detection methods

A. Burn-in testing
– Does not account for lifetime effects

B. User-level mem-check application
– No time available

C. Persistent mem-check daemon
– Interference with job memory placement
– Difficulty scheduling checks on caches

D. Kernel thread
– Unlikely uptake by a latency sensitive kernel community.
– Insufficient kernel data to co-schedule idle CPUs and

buses?

Do and I’ll give you such
a pinch!

For shame, Doc! Hunting rabbits with an elephant gun!
- B. Bunny

An Unusual Co-scheduling

Have the kernel scrub idle RAM
– Fill RAM, then idle almost until allocated.
– Predict CPU load, cache and RAM

bandwidths to avoid interference.
– Create application hooks allowing users

to hint about short idle periods or RAM
usage planned to avoid interference.

– See what can be learned from kernel’s
page zero-on-allocation code.

Co-scheduling difficulties

• Must be controlled by user opt-in
• Choose data values carefully for

memory testing
• NUMA locality issues
• Down-clocking awareness

Discussion

• Other continual benchmarks of
interest if we have an idle-component
scavenging framework?

• Other examples of large-memory, low-
cpu, long-term task co-scheduling?
– GPU characterization?
– Burst buffer drain?

• Other approaches to quantifying silent
errors?

Partial audience responses

• Cray: interested in independent
measurement of silent errors: included in
contracts, but no metrics.

• Use queue drain times/idle times.
• Most GPU idle states are generally

expected to preserve memory:
opportunity?

• Modified kernel for experiments (not
production: overheads) could chksum RO
pages like zfs does disk

	Memory Reliability and Performance Degradation
	Outline
	Why RAM silent error rates?
	Why HPC is harder
	Why not other subsystems?
	Detection methods
	An Unusual Co-scheduling
	Co-scheduling difficulties
	Discussion
	Partial audience responses

