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Outline 

Why? 
Quantifying silent memory errors in the 
wild is really hard 

– Bulk RAM is a necessary target  
– How HPC makes it even harder 
– Current approaches and limitations 

Possible new approach? 
Discussion 
 



Why RAM silent error rates? 

• Fault tolerant numerical algorithms do 
not account for errors in pointers. 
– Quantify the hardware risk as built 
– Mitigate if necessary and possible 
– Identify and remove marginal RAM (ECC 

recovery delays computations) to improve 
performance 

• Silent fault rate may be as much as 
10% of corrected fault rate 

• 5-10% of CPU logic is not protectable 
 



Why HPC is harder 

Odds of a corrupt but plausible pointer: 
– 24% chance a 3-bit error in a pointer is confined 

to significant bits (40/64)3   
• Therefore untrapped. 
• Compare this to embedded computing with tiny 

address spaces. 
• Certain VMM approaches may increase this chance. 

– Many applications fill RAM with similar object 
instances (bad pointer to a good object) 

– 5-15% of application RAM is pointers 
– Unknown odds of a 3-bit error happening 



Why not other subsystems? 

• Lack of access to measure or change 
– Buy built-in reliability if we can. 

• If we can trust everything in the CPU-to-
RAM path, we can use software to work 
around less reliable components. 



Detection methods 

A. Burn-in testing 
– Does not account for lifetime effects 

B. User-level mem-check application 
– No time available  

C. Persistent mem-check daemon 
– Interference with job memory placement 
– Difficulty scheduling checks on caches 

D. Kernel thread 
– Unlikely uptake by a latency sensitive kernel community. 
– Insufficient kernel data to co-schedule idle CPUs and 

buses? 

 
 

 

Do and I’ll give you such 
a pinch! 

For shame, Doc! Hunting rabbits with an elephant gun! 
- B. Bunny 



An Unusual Co-scheduling  

Have the kernel scrub idle RAM 
– Fill RAM, then idle almost until allocated. 
– Predict CPU load, cache and RAM 

bandwidths to avoid interference. 
– Create application hooks allowing users 

to hint about short idle periods or RAM 
usage planned to avoid interference. 

– See what can be learned from kernel’s 
page zero-on-allocation code. 

 



Co-scheduling difficulties 

• Must be controlled by user opt-in 
• Choose data values carefully for 

memory testing 
• NUMA locality issues 
• Down-clocking awareness 



Discussion 

• Other continual benchmarks of 
interest if we have an idle-component 
scavenging framework? 

• Other examples of large-memory, low-
cpu, long-term task co-scheduling? 
– GPU characterization? 
– Burst buffer drain? 

• Other approaches to quantifying silent 
errors? 



Partial audience responses 

• Cray: interested in independent 
measurement of silent errors: included in 
contracts, but no metrics. 

• Use queue drain times/idle times. 
• Most GPU idle states are generally 

expected to preserve memory: 
opportunity? 

• Modified kernel for experiments (not 
production: overheads) could chksum RO 
pages like zfs does disk 
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