
Memory reliability and performance degradation
Hunting rabbits with an elephant gun?

Benjamn A. Allan
Scalable and Secure Computing Research Department

Sandia National Laboratories
Livermore, CA USA
baallan@sandia.gov

Abstract— We 1 review several approaches to identifying
silent memory error events needed to estimate rates at scale, and
conclude that the easy approaches are all apparently blocked by
pragmatic concerns. We aim to provoke a discussion on what
other approaches we may have overlooked and on what could be
done to shift the pragmatic barriers. This particular question fits
into the larger category of continual monitoring at scale for
hardware performance changes, but is unique in that the
benchmarking process necessarily consumes much wall time but
little in the way of processor cycles, bandwidth, storage space, or
energy.

Keywords—Linux; fault detection; high performance
computing; memory management

I. INTRODUCTION
On the journey to extreme scale the threat of transient bit flips
(soft errors) corrupting simulation data spread across millions
of electronic components forces us to better quantify the risk
of this corruption. Network and storage engineers have long
dealt with data corruption, but for most of the software
community the issue is new. Numerous papers on fault
tolerant algorithms to handle explicit hardware failure have
been published and also on the need for fault oblivious
algorithms [1]. Tools that estimate the impact of single errors
on specific code have been produced [2]. Assuming no game-
changing memory technology will appear at commodity scale,
processor designers have proposed using radiation-hardened
cores including a small amount of highly reliable memory to
protect operating systems from errors, explicitly leaving
application developers to protect their bulk data.

Unfortunately, short of triple-redundant computation (and
memory) schemes, no general solution has been proposed to
the silent corruption of address (pointer) data. While a
corrupted pointer will often cause a crash in a small-memory
program (by violating address protection rules or pointing to

1 Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy under Contract DE-AC04-
94AL85000. Report SAND2014-18202 C

evidently nonsensical data), the odds are very good that a
corrupted pointer in a large-memory program will still point to
program-owned memory and to data of the same type and
even similar values.

II. SOFTWARE APPROACHES
If we cannot afford high levels of hardware redundancy, we
must have a software tool set for measuring the real rates of
silent errors at scale so we can appropriately calibrate the level
of effort spent on developing software-level data redundancy.
Laboratory (neutron bombardment) models of failure rates
may not adequately characterize large, aging machines as
fielded. To quantify the risk of independent events creating an
undetectable multi-bit flip, we need to quantify the frequency
of single events on the deployed platform. Counts of
corrections and notifications of uncorrectable multi-bit errors
may be difficult or impossible to obtain, depending on the
architecture and software stack.

Silent errors (three-bits or more on today's ECC SRAM or
DRAM) can only be detected at the software level (if we
assume the double error correction schemes will remain
confined to RAM on the processor dies). When an
inconsistency is found, attribution of the cause is still difficult.
Was the error in bulk RAM, address or cache logic, or
processor arithmetic (assuming correct software)? Separate
quantification of error rates in each subsystem must be
considered, but from the application view point, the overall
rate may be sufficient for budgeting software development
work or for selecting among more and less reliable nodes
within a cluster of nodes having known component silent error
rates.

Let us consider the ways software could be deployed to
quantify the location and rates of these rare events and
characterize the nodes (or memory-heavy cores) of an aging
future machine. These methods have similarities to work by
others on continually characterizing the performance of
deployed co-processors, with the key difference that most
performance benchmarks can measure the needed rates
quickly (in just a few seconds to a few minutes).

A. Dedicated (burn-in) Benchmarking
Correctible soft errors may appear as performance degradation
(extra ECC operations) only. Benchmarking done before a
machine is put into production may identify defective parts,
but such benchmarks are rarely repeated during production to
detect aging parts with increased soft error rates. Even when
performed, the results are generally reported as pass/fail; this
obscures the detailed data needed to form statistical models of
the soft errors seen in each hardware piece.

B. User-level scanning application
We can easily write an HPC-cluster application which
populates all available RAM with data and then periodically
scans it for apparent undetected bit flips. This software needs
to be aware of any hardware-based memory scrubbing and
capture the address of any ECC events. Ideally, the bulk data
created should be such that any corruption of the address data
or handling will easily be detected as numerous words being
corrupted. This approach may be applied to both bulk memory
and caches, provided suitable cache management can be
arranged from user-space software.

The obvious pragmatic barrier to this approach is explaining
to machine owners and users why “real work” is idling in the
queue system while the scanning application is seen.

C. Idle memory scanning daemon
We can easily convert the user application just outlined into a
permanent daemon job which spawns processes that consume
and periodically check memory chunks. For DRAMs, the
Linux kernel out-of-memory (OOM) killer [3] is easily
configured to kill off these spawned processes before killing
“real work”. On HPC systems without swap, this allows us to
regularly scan all memory not in use for productive work. The
CPU (and energy) usage of these checks is easily bounded and
controlled so as to be a known, small tax on real work.

There are three pragmatic barriers to this approach. First, job
management systems are sometimes configured to kill an
entire parallel job if any node reports an OOM condition, on
the assumption that the “real work” is the only possible source
of such events; changing these configurations to be more
selective is socially nontrivial. Second, the stock Linux
memory manager may allocate pages (if any are available)
across remote memory connections in preference to invoking
the OOM killer on a checker process that has consumed the
physically nearest memory. This leads to large performance
degradation in a large fraction of HPC applications that are
memory bandwidth sensitive. If we are to use the OOM killer,
we must patch the kernel to make it smarter. Third, the fine-
grained control of cache behavior needed may require kernel
modification to prevent scheduling other tasks on the core(s)
nearest the cache being tested.

D. Idle memory scanning kernel thread
If patching the kernel is required, we can do better than
modifying the OOM killer target selection process. With
significant effort, we can have a kernel thread scan idle

memory for silent errors. This thread has the side effect of
emulating hardware-based memory scrubbing. As with the
scanning daemon, costs can be bounded. This approach would
provide the highest quality and largest possible amount of
information without interfering with “real work”. There are
two pragmatic barriers here. First, such a patch is highly likely
to be rejected by the main line Linux kernel developers as
being of interest to only a very small HPC community.
Second, using such a patch will require, in most cases,
acceptance and deployment by the platform vendor into a
supported kernel.

III. TESTING THE SOFTWARE APPROACHES
We have implemented approaches B and C. While the codes
work and the OOM-killer run flawlessly on desktop machines,
we run into the pragmatic barriers discussed when attempting
deployment in NUMA-based production environments.

If a silent error is a rare talking rabbit to be hunted, even more
rare than the black swan, then augmenting the Linux virtual
memory subsystem with an advanced memory scrubbing
scheme to locate and count them amounts to using an elephant
gun [4] (by the time the social issues of such a kernel
modification are negotiated). Before risking such a pinch, let
us consider the behaviors a silent error scrubbing modification
of the Linux virtual memory manager and task scheduler
might have.

1. It should appear to the user as an obvious part of the
kernel services, perhaps listed as [kscrubd] in the
process table.

2. It should be enabled or disabled with a switch under
/proc.

3. It should fill unused memory pages with data that can
be checked with minimal computation to reveal bit
errors or addressing faults. Perhaps each 64 bit word
should hold its own physical address, though this may
have security implications unless pages are zeroed
before being handed to user processes.

4. It may scan for errors periodically, but preferably not
when the processors or memory bus are near
saturation. The period should be adjustable via a /proc
parameter.

5. It may scan for errors as part of the page allocation
process and fill as part of the deallocation process.
This adds one-time per page allocation process
overheads, which in bulk synchronous applications is
unlikely to be noticeable compared to page use
lifetime.

6. The choice or hybridization of the work strategies
listed in points 4 and 5 must be controllable via /proc.

7. In NUMA environments, the processor nearest a
memory should be responsible for scanning that
memory, or performance impacts may be substantial.

8. If the system has provision for down-clocking
memory or shutting it off entirely when usage is low,
then the scrubbing scheme must be made aware of
these to the degree needed to avoid false positives
caused by changes in operating condition.

9. For cache scanning, we must be able to assign a core
exclusively to the scanning process.

IV. LIMITATIONS AND IMPLICATIONS
It is quite likely that in virtual machine environments, the
patterns of memory usage are sufficiently different from those
of HPC systems that the most accurate approach, (D), would
not be acceptable or possibly even not feasible. However, for
the same models of hardware components applied in similar
manners and locations we can expect the silent fault rates seen
in general purpose (cloud) servers would be the same.

Neutron beam testing of ECC SRAM suggests that undetected
faults may be at rates as high as 10% of the rate of detected
and corrected faults [5]. Current architectures are such that 5-
10% of the CPU may not be practical to protect, ensuring a
source of silent errors even as ECC schemes become more
sophisticated. At cloud and data center scales (hundreds of
thousands of servers), this implies that there may be thousands
of such errors daily across the world. While a resulting bit
error in streaming video may be insignificant, silent errors in
processing large memory-resident data could easily become
very significant. Similarly, a silent error in the security data
cache could easily change an access policy; while perhaps
harder to locate than a new piece of a digital currency, a
motivated and capable attacker might still succeed in
breaching a server in a large and otherwise secure system by
knocking often enough and getting lucky.

V. CONCLUSION
To better understand and work around silent errors during the
life of a production system, we must first quantify the rate of

their appearance reliably and continually. We propose that
such continual quantification may be accomplished
opportunistically (checking idle RAM during idle cycles)
without substantially affecting the power consumption or
performance of a production machine. We report on early
attempts to formulate a low-cost detection method at scale and
solicit input on one proposed but potentially difficult to
implement alternative.

REFERENCES

[1] F. Capello, A. Geist, B. Gropp, L. Kale, B. Kramer and M.
Snir, "Toward Exascale Resilience," International Journal
of High-Performance Computing Applications, vol. 23, no.
4, pp. 374-388, 2009.

[2] D. Li, J. S. Vetter and W. Yu, "Classifying Soft Error
Vulnerabilities in Extreme-Scale Scientific Applications
Using a Binary Instrumentation Tool," in Supercomputing
Conference, Salt Lake City, 2012.

[3] R. Chase, "How to configure the Linux out-of-memory
killer," Oracle, February 2013. [Online]. Available:
http://www.oracle.com/technetwork/articles/servers-
storage-dev/oom-killer-1911807.html. [Accessed 1 June
2014].

[4] C. Jones, Director, Rabbit Fire. [Film]. USA: Warner
Brothers, 1951.

[5] J. Loncaric, Interviewee, Personal communication.
[Interview]. 3 June 2014.

	I. Introduction
	II. Software Approaches
	A. Dedicated (burn-in) Benchmarking
	B. User-level scanning application
	C. Idle memory scanning daemon
	D. Idle memory scanning kernel thread

	III. Testing the software approaches
	IV. Limitations and Implications
	V. Conclusion
	References

