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Abstract— We 1  review several approaches to identifying 
silent memory error events needed to estimate rates at scale, and 
conclude that the easy approaches are all apparently blocked by 
pragmatic concerns. We aim to provoke a discussion on what 
other approaches we may have overlooked and on what could be 
done to shift the pragmatic barriers. This particular question fits 
into the larger category of continual monitoring at scale for 
hardware performance changes, but is unique in that the 
benchmarking process necessarily consumes much wall time but 
little in the way of processor cycles, bandwidth, storage space, or 
energy.  
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I. INTRODUCTION 
On the journey to extreme scale the threat of transient bit flips 
(soft errors) corrupting simulation data spread across millions 
of electronic components forces us to better quantify the risk 
of this corruption. Network and storage engineers have long 
dealt with data corruption, but for most of the software 
community the issue is new. Numerous papers on fault 
tolerant algorithms to handle explicit hardware failure have 
been published and also on the need for fault oblivious 
algorithms [1]. Tools that estimate the impact of single errors 
on specific code have been produced [2]. Assuming no game-
changing memory technology will appear at commodity scale, 
processor designers have proposed using radiation-hardened 
cores including a small amount of highly reliable memory to 
protect operating systems from errors, explicitly leaving 
application developers to protect their bulk data. 
 
Unfortunately, short of triple-redundant computation (and 
memory) schemes, no general solution has been proposed to 
the silent corruption of address (pointer) data. While a 
corrupted pointer will often cause a crash in a small-memory 
program (by violating address protection rules or pointing to 
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evidently nonsensical data), the odds are very good that a   
corrupted pointer in a large-memory program will still point to 
program-owned memory and to data of the same type and 
even similar values.   

 

II. SOFTWARE APPROACHES 
If we cannot afford high levels of hardware redundancy, we 
must have a software tool set for measuring the real rates of 
silent errors at scale so we can appropriately calibrate the level 
of effort spent on developing software-level data redundancy. 
Laboratory (neutron bombardment) models of failure rates 
may not adequately characterize large, aging machines as 
fielded. To quantify the risk of independent events creating an 
undetectable multi-bit flip, we need to quantify the frequency 
of single events on the deployed platform. Counts of 
corrections and notifications of uncorrectable multi-bit errors 
may be difficult or impossible to obtain, depending on the 
architecture and software stack.  
 
Silent errors (three-bits or more on today's ECC SRAM or 
DRAM) can only be detected at the software level (if we 
assume the double error correction schemes will remain 
confined to RAM on the processor dies). When an 
inconsistency is found, attribution of the cause is still difficult. 
Was the error in bulk RAM, address or cache logic, or 
processor arithmetic (assuming correct software)? Separate 
quantification of error rates in each subsystem must be 
considered, but from the application view point, the overall 
rate may be sufficient for budgeting software development 
work or for selecting among more and less reliable nodes 
within a cluster of nodes having known component silent error 
rates.  
 
Let us consider the ways software could be deployed to 
quantify the location and rates of these rare events and 
characterize the nodes (or memory-heavy cores) of an aging 
future machine. These methods have similarities to work by 
others on continually characterizing the performance of 
deployed co-processors, with the key difference that most 
performance benchmarks can measure the needed rates 
quickly (in just a few seconds to a few minutes). 
 

                                                           



A.  Dedicated (burn-in) Benchmarking 
Correctible soft errors may appear as performance degradation 
(extra ECC operations) only. Benchmarking done before a 
machine is put into production may identify defective parts, 
but such benchmarks are rarely repeated during production to 
detect aging parts with increased soft error rates. Even when 
performed, the results are generally reported as pass/fail; this 
obscures the detailed data needed to form statistical models of 
the soft errors seen in each hardware piece. 

B. User-level scanning application 
We can easily write an HPC-cluster application which 
populates all available RAM with data and then periodically 
scans it for apparent undetected bit flips. This software needs 
to be aware of any hardware-based memory scrubbing and 
capture the address of any ECC events. Ideally, the bulk data 
created should be such that any corruption of the address data 
or handling will easily be detected as numerous words being 
corrupted. This approach may be applied to both bulk memory 
and caches, provided suitable cache management can be 
arranged from user-space software. 
 
The obvious pragmatic barrier to this approach is explaining 
to machine owners and users why “real work” is idling in the 
queue system while the scanning application is seen. 

C. Idle memory scanning daemon 
We can easily convert the user application just outlined into a 
permanent daemon job which spawns processes that consume 
and periodically check memory chunks. For DRAMs, the 
Linux kernel out-of-memory (OOM) killer [3] is easily 
configured to kill off these spawned processes before killing 
“real work”. On HPC systems without swap, this allows us to 
regularly scan all memory not in use for productive work. The 
CPU (and energy) usage of these checks is easily bounded and 
controlled so as to be a known, small tax on real work.  
 
There are three pragmatic barriers to this approach. First, job 
management systems are sometimes configured to kill an 
entire parallel job if any node reports an OOM condition, on 
the assumption that the “real work” is the only possible source 
of such events; changing these configurations to be more 
selective is socially nontrivial. Second, the stock Linux 
memory manager may allocate pages (if any are available) 
across remote memory connections in preference to invoking 
the OOM killer on a checker process that has consumed the 
physically nearest memory. This leads to large performance 
degradation in a large fraction of HPC applications that are 
memory bandwidth sensitive. If we are to use the OOM killer, 
we must patch the kernel to make it smarter. Third, the fine-
grained control of cache behavior needed may require kernel 
modification to prevent scheduling other tasks on the core(s) 
nearest the cache being tested.  

D. Idle memory scanning kernel thread 
If patching the kernel is required, we can do better than 
modifying the OOM killer target selection process. With 
significant effort, we can have a kernel thread scan idle 

memory for silent errors. This thread has the side effect of 
emulating hardware-based memory scrubbing. As with the 
scanning daemon, costs can be bounded. This approach would 
provide the highest quality and largest possible amount of 
information without interfering with “real work”. There are 
two pragmatic barriers here. First, such a patch is highly likely 
to be rejected by the main line Linux kernel developers as 
being of interest to only a very small HPC community. 
Second, using such a patch will require, in most cases, 
acceptance and deployment by the platform vendor into a 
supported kernel. 

III.  TESTING THE SOFTWARE APPROACHES 
We have implemented approaches B and C. While the codes 
work and the OOM-killer run flawlessly on desktop machines, 
we run into the pragmatic barriers discussed when attempting 
deployment in NUMA-based production environments.  
 
If a silent error is a rare talking rabbit to be hunted, even more 
rare than the black swan, then augmenting the Linux virtual 
memory subsystem with an advanced memory scrubbing 
scheme to locate and count them amounts to using an elephant 
gun [4] (by the time the social issues of such a kernel 
modification are negotiated).  Before risking such a pinch, let 
us consider the behaviors a silent error scrubbing modification 
of the Linux virtual memory manager and task scheduler 
might have. 
 

1. It should appear to the user as an obvious part of the 
kernel services, perhaps listed as [kscrubd] in the 
process table. 

2. It should be enabled or disabled with a switch under 
/proc. 

3. It should fill unused memory pages with data that can 
be checked with minimal computation to reveal bit 
errors or addressing faults. Perhaps each 64 bit word 
should hold its own physical address, though this may 
have security implications unless pages are zeroed 
before being handed to user processes. 

4. It may scan for errors periodically, but preferably not 
when the processors or memory bus are near 
saturation. The period should be adjustable via a /proc 
parameter. 

5. It may scan for errors as part of the page allocation 
process and fill as part of the deallocation process. 
This adds one-time per page allocation process 
overheads, which in bulk synchronous applications is 
unlikely to be noticeable compared to page use 
lifetime. 

6. The choice or hybridization of the work strategies 
listed in points 4 and 5 must be controllable via /proc. 

7. In NUMA environments, the processor nearest a 
memory should be responsible for scanning that 
memory, or performance impacts may be substantial. 



8. If the system has provision for down-clocking 
memory or shutting it off entirely when usage is low, 
then the scrubbing scheme must be made aware of 
these to the degree needed to avoid false positives 
caused by changes in operating condition. 

9. For cache scanning, we must be able to assign a core 
exclusively to the scanning process. 

IV. LIMITATIONS AND IMPLICATIONS 
It is quite likely that in virtual machine environments, the 
patterns of memory usage are sufficiently different from those 
of HPC systems that the most accurate approach, (D), would 
not be acceptable or possibly even not feasible. However, for 
the same models of hardware components applied in similar 
manners and locations we can expect the silent fault rates seen 
in general purpose (cloud) servers would be the same.  
 
Neutron beam testing of ECC SRAM suggests that undetected 
faults may be at rates as high as 10% of the rate of detected 
and corrected faults [5]. Current architectures are such that 5-
10% of the CPU may not be practical to protect, ensuring a 
source of silent errors even as ECC schemes become more 
sophisticated. At cloud and data center scales (hundreds of 
thousands of servers), this implies that there may be thousands 
of such errors daily across the world. While a resulting bit 
error in streaming video may be insignificant, silent errors in 
processing large memory-resident data could easily become 
very significant. Similarly, a silent error in the security data 
cache could easily change an access policy; while perhaps 
harder to locate than a new piece of a digital currency, a 
motivated and capable attacker might still succeed in 
breaching a server in a large and otherwise secure system by 
knocking often enough and getting lucky. 

V. CONCLUSION 
To better understand and work around silent errors during the 
life of a production system, we must first quantify the rate of 

their appearance reliably and continually. We propose that 
such continual quantification may be accomplished 
opportunistically (checking idle RAM during idle cycles) 
without substantially affecting the power consumption or 
performance of a production machine. We report on early 
attempts to formulate a low-cost detection method at scale and 
solicit input on one proposed but potentially difficult to 
implement alternative.  
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