
Ovis-2: A Robust Distributed Architecture for Scalable RAS

J. M. Brandt, B. J. Debusschere, A. C. Gentile, J. R. Mayo,
P. P. Pébay, D. Thompson, M. H. Wong

Sandia National Laboratories, Livermore CA 94550 U.S.A.
{brandt,bjdebus,gentile,jmayo,pppebay,dcthomp,mhwong}@sandia.gov

Abstract

Resource utilization in High Performance Compute
clusters can be improved by increased awareness of sys-
tem state information. Sophisticated run-time charac-
terization of system state in increasingly large clusters
requires a scalable fault-tolerant RAS framework. In
this paper we describe the architecture of Ovis-2 and
how it meets these requirements. We describe some
of the sophisticated statistical analysis, 3-D visualiza-
tion, and use cases for these. Using this framework
and associated tools allows the engineer to explore the
behaviors and complex interactions of low level system
elements while simultaneously giving the system admin-
istrator their desired level of detail with respect to on-
going system and component health.

keywords: RAS, fault-tolerance, failure pre-
diction, scalable analysis, distributed analysis,
cluster monitoring

1. Introduction

Traditional monitoring systems (e.g., [3, 2, 1, 6]) are
very simplistic in that they periodically receive metric
data from the monitored devices and compare the val-
ues with applicable threshold limits. If the limit is
reached or exceeded the monitoring system may have
the ability to invoke a simple system response, typically
shutdown or reboot of the device. If the limit is not
reached then no action is taken. In other words this
methodology is generally reactive to faults that have
already occurred and hence typically invokes an imme-
diate response with drastic consequences in order to
prevent further failure. While this is effective in terms

These authors were supported by the United States Department
of Energy, Office of Defense Programs. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed-Martin
Company, for the United States Department of Energy under
contract DE-AC04-94-AL85000.

of preventing a cascade of catastrophic device failures
it places the entire burden for fault tolerance on the
application using the devices. This mode of operation
can be very costly in terms of resource utilization as the
most common method of coping with this uncertainty
is for an application to periodically checkpoint its data
so that in the event of underlying hardware failure the
application can restart from the latest checkpoint and
hence make progress.

In contrast, Ovis [4] extends the facility for setting
such failsafe thresholds by providing a variety of an-
alytical tools for the statistical exploration of metric
data taken over large numbers of similar elements or
devices. Using learned statistical distributions, corre-
lations and probabilistic models derived from this data,
the engineer or system administrator can set thresh-
olds in probabilistic terms in order to identify prob-
abilistic outliers which can be indicative of degrada-
tion or impending failure. Additionally these tools al-
low tracking of how the models and distributions drift
over time which can be indicators of environmental
change or component aging. Such outlier identifica-
tion can be used to signal to the operating system,
scheduler/resource manager, application, and system
administrator in advance of failure and thus allow time
for non-catastrophic reaction including but not lim-
ited to checkpointing data that would be affected by
failure of the component(s) identified, removal of the
component(s), allocation of replacement resources, and
restart of the application. This by comparison can be
considered a pro-active system. Note that while some
of the aforementioned systems (e.g., [2] and [1] via [5])
may provide some level of simple statistical calculations
(e.g., max, min, mean) and display of such, these sys-
tems do not provide probabilistic characterizations nor
use such characterizations as the basis of further run-
time monitoring decision support. In section 3 we give
several use cases as motivation for this type of analysis.

We introduced the first version of Ovis at SMTPS



in 2006 [7]†. In that paper we described real-world
applications of the visual display and of the statisti-
cal analysis techniques to abnormality detection, par-
ticularly in non-uniform environments. Ovis-2 is an
entire redesign of the first version of Ovis to enable
scalable, fault-tolerant monitoring and analysis neces-
sary for the real-time management of large clusters.
Ovis-2 has enhanced analytical capabilities, including
increased abilities to compare current metric values to
past statistical calculations, multi-variate correlations,
and bivariate Bayesian modeling. Finally, Ovis-2 has
a more interactive interface supporting multiple simul-
taneous cluster views, including 3-D views, and drag
and drop selection of metrics for display.

In this paper, we describe the new Ovis-2 frame-
work, with emphasis on the advances that address scal-
ability and fault-tolerance; the new analytical capabil-
ities and interface; and give examples of the use of the
new features. We conclude with plans for future work.

2. Architecture

This section describes the Ovis-2 architecture. This
includes the cluster specification, the framework archi-
tecture, the analysis architecture, and the user inter-
face. A diagram of the architecture is shown in Fig-
ure 1 and the components of the architecture will be
described in more detail below.

2.1. Cluster Specification

Ovis-2 is easily configurable to support new clus-
ters. The cluster is specified via an XML description
of the types of components in the cluster, metric data
about the cluster that can and should be collected, the
number of components of each given type, and the as-
sociations between components. Associations are used
to specify

• containment information, such as the location of
nodes within racks and the placement of racks
within the room,

• network layout with a mapping of switch ports to
networked components,

• power management information with a mapping
of outlets to the components they power,

• serial console information with a mapping of com-
pute node serial ports to ports on serial consoles,
and

†Our pre-Ovis consideration of statistical analysis for cluster
monitoring can be found in [8].

Figure 1. Block diagram of the Ovis-2 ar-
chitecture. Sheep are responsible for col-
lecting and inserting metric values. Shep-
herds maintain the database and perform the
analyses. The diagram also shows exam-
ple non-Ovis-2 components that are relied
upon for operation, such as a MySQLCluster
database.

• metric collection information, which specifies
which components collect metric information re-
motely for other components in the cluster (e.g.,
by SNMP).

The XML description is used to create and populate
database tables that are used to store a chronology of
the cluster’s state for later analysis and visual exami-
nation.

2.2 Data Collection and Storage

Ovis-2 currently stores metric data in a replicated
database in order to provide fault-tolerance should a
database node fail. In the longer term, only meta-
data – such as the component types, numbers, and
associations – will be replicated so that data collec-



tion can be scaled further. Processes called “sheep”
run on components or on behalf of a set of components
and collect metric data for those components. “Shep-
herd” processes run on machines hosting the database.
Shepherd processes advertise themselves using mDNS
so that sheep need not store any configuration infor-
mation themselves. Sheep then contact a shepherd
(chosen at random to balance load) in order to find
a database in which to insert their data. When con-
tacted by a sheep, a shepherd may accept it or redirect
it to another shepherd in order to balance load while
maintaining some coherence (spatially, so that nearby
sheep are usually attached to a particular shepherd, or
temporally, so that a sheep tends to be given the same
shepherd whenever that shepherd is available). When
a sheep is accepted by a shepherd it then inserts data
into the database on that shepherd’s machine directly.
If a shepherd node goes down, sheep will detect this
via mDNS notification of a change in the advertised
service and will contact a new shepherd from the list
of those still advertising.

Currently, the metrics to be collected and their ini-
tial collection rate are stored in the database, having
been specified in the cluster specification XML file.
The framework provides a well-defined API for met-
ric collectors, which include methods for instantiat-
ing collectors, invoking them at the correct rate, and
for inserting data into the database. Ovis-2 provides
collectors for metrics in well-known locations such as
within the /proc hierarchy in UNIX. Readers also ex-
ist for accessing data via IPMI, Infiniband, smartctl,
SNMP, and Ganglia/RRDTool interfaces, among oth-
ers. Readers are supplied with Ovis-2 where allowed
by the licensing constraints of the data interfaces. In
future releases we will support dynamic discovery of
metrics by searching for metric data files in well-known
locations. In addition to sampling at regular intervals,
metric collectors may push data into the database at
any time so that changes in conditions that should in-
voke an immediate response are not delayed.

Each metric collector class is built into every sheep
process. Sheep attempt to instantiate every metric col-
lector at startup and only retain those which have a
database table present. The sheep signal the remaining
collectors to collect data at regular intervals specified in
the database. In the event of the database being unable
to handle the frequency of transactions, shepherds can
notify the sheep to change their metric insertion rate
or redirect sheep to other shepherds. Because the ini-
tial choice of shepherd is made randomly by sheep it
is expected that the load, in terms of sheep per shep-
herd, will be well balanced. A shepherd, knowing both
its current load and those of the other shepherds, can

make the decision to redirect a sheep requesting service
to another shepherd process. Significant load imbal-
ance, in terms of processor and/or storage subsystem,
can still occur in the system due to several factors:

1. changes in shepherd population due to failure or
startup of shepherds;

2. sheep processes that act on behalf of many remote
components insert data for all of those components
via a database connection to a single shepherd and
can thus account for several times the traffic of
other sheep;

3. variable frequency of insertions, depending on the
component and the type of data being saved;

4. other processes running on a shepherd (such as
analysis requests that read from the database)
may place differential load on particular shep-
herds.

Thus it may be insufficient to just address gross im-
balance in the number of sheep and indeed such an
imbalance may be needed in order to balance the ac-
tual loads on the shepherd in terms of CPU utilization
and/or database transactions. Although Ovis-2 pro-
vides a framework for redirecting sheep and throttling
metric collection rates, different ways to measure and
classify load imbalance are still being explored.

2.3 Analysis Architecture

As mentioned in the introduction, Ovis-2 provides
ways to Learn descriptive statistics (minimum, maxi-
mum, mean, variance, skewness, and kurtosis of a met-
ric), correlative statistics (mean, variance, covariance,
linear correlation coefficient, and linear regression lines
calculated on pairs of metrics), and bivariate Bayesian
parametric models (fits of a normal, log-normal, or ex-
ponential distribution whose parameter(s) is/are func-
tion(s) of two metrics). Therefore, Learn can either
mean that the calculation is done analytically (e.g., de-
scriptive and correlative statistics), or is based on ap-
proximations such as quadratures (bivariate Bayesian
modeling). Generically speaking, the output of a Learn
analysis is a model, which may be used in several ways.

First, a model may be taken as ground truth and
used to find outliers in a given dataset – which may,
but does not have to, be acquired at times subsequent
to the dataset used in computing the model. This mode
of execution is called Monitor. For instance, in the case
of descriptive statistics, Monitor evinces outliers based
on prescribed extremal bounds and/or nominal value
and acceptable deviation; these values may be obtained



from a previous execution of a descriptive statistics
analysis in Learn mode using training data – but they
can also come from any other origin such as manufac-
turer specification, expert knowledge, or simply be a
desired range of operation. On the other hand, for bi-
variate Bayesian statistics, the Monitor mode identifies
events whose probability of occurrence is calculated as
being low with respect to a given probabilistic thresh-
old. This threshold provides the user with means to
steer the sensitivity of the Monitor.

Conversely, the validity of a model may be tested
by assuming a dataset – which again may, but does
not have to, use a different set than what was used
initially – should have the same characteristic as the
model and assessing how well the model matches the
dataset. This mode of execution is thus called Vali-
date and is currently implemented only for Bayesian
calculations, but will soon be extended to all types of
analysis. The main use of this mode of execution is
to inform the user as to the applicability of a model
to a particular dataset. Note that it can be utilized,
by repeatedly running Validate analyses using the same
model, but with successive datasets, to assess the pro-
gressive “drift” of baseline behavior with respect to an
initial model. Depending on the use case, such a drift
may be entirely normal – and even expected – or in-
dicate that something is deteriorating. Therefore the
Validate mode of execution can serve as a diagnostics
tool as well as Monitor mode.

To summarize, these 3 modes of execution are in-
tended to cover in particular the following use cases:

1. There is no existing model, or an existing model
has been found to not fit current data and so a
new model is being calculated.

2. A specified window of time has passed and a model
is being validated against the incoming data.

3. Incoming data is being compared for classification
against a valid model. Note that several of these
use cases rely on the tasks above being performed
at regular intervals.

The tasks involved in these use cases must run to com-
pletion within that interval in order to be of use. Ovis-
2 parallelizes these analyses so that appropriate selec-
tion of the ratio of sheep to shepherds will allow the
tasks to complete in time.

Since MPI was not designed for fault tolerant op-
eration, we use a different scheme to perform parallel
calculations. Each calculation task is queued by insert-
ing a row into a database table – the requests table.
Each shepherd available at the time of the insertion

performs a portion of the calculation and inserts its re-
sults into a second database table – the intermediate
results table. Each time new results are placed into the
intermediate results table a database trigger updates a
row in a third database table – the final results table
– by updating new values with any existing interme-
diate results – these updates may take the form of a
sum, or of taking the minimum (or maximum) between
the existing intermediate result and the new result. At
any point in the calculation, any subset of the shep-
herds may fail and yet the calculation will complete. If
shepherd(s) fail during a calculation, the results will be
degraded. However, the severity of the degradation will
vary with: 1) the relative size of the data lost as com-
pared to the entire dataset, 2) the statistical variations
within the dataset, and 3) the way with which compu-
tational work has been distributed amongst shepherds.

Values in the intermediate results table are simple
sums over portions of the data along with the num-
ber of samples summed. The quantities being summed
depend on the task. As an example, these sums are
the raw statistical moments of metric data when learn-
ing descriptive statistics parameters. Each shepherd is
assigned a portion of the components in the request
and computes sums of statistical moments of the met-
ric of interest over the time interval specified in the
request for those components. The user interface is
responsible for converting the raw moments into the
mean, variance, skewness, and kurtosis. Because the
intermediate results are independent of one another,
no communication between shepherds is required and
the speedup is linear in the number of shepherds. Only
the final sum is performed in series. Ideally, all of the
shepherds would perform some part of the work com-
bining intermediate results to obtain the final result
but in practice – since the combination is a simple sum
of 5-10 numbers from each shepherd – no need for this
has arisen and so a database trigger (run on a single
shepherd) does this work.

2.4. Graphical User Interface

Ovis-2 provides a user interface targeted at both
system administrators and engineers/analysts. The
goal is to provide both high-level visual and statisti-
cal information about the state of the cluster as well as
precise information about the state of individual com-
ponents in the system. While system administrators
may be largely concerned with addressing system fail-
ures, other users are expected to be interested in in-
formation that will help tune application performance.
The user interface allows the user to interact with the
environment in passive monitoring mode as well as ac-



tive data exploration.

Figure 2. A screenshot of Ovis-2 with sev-
eral views active (left to right: metric list, see
§2.4.3; 3-D physical, see §2.4.1; correlative
statistics, see §2.4.2). Views will be split out
for clarity in the figures that follow.

Information for a particular cluster is provided in a
single window split into panes as shown in Figure 2.
Each pane provides an independent view of the same
cluster and may be moved, resized, and split by the
user. When a pane is split, its contents are kept in
one of the two new panes that replace the old pane.
The other pane shows a list of view types so that the
user can choose what type of information should be
displayed. Panes may be split vertically or horizontally.

2.4.1 3-D Physical View

The physical view shows a graphical 3-D representation
of the cluster, as in Figure 3. All information in the
rendering, including the shape and texture data, is re-
trieved from the database. The purpose of this display
is to aid users in developing models of performance or
reliability which can then be tested using the statistical
tools Ovis-2 provides.

Each component in the cluster can be colored indi-
vidually, with its hue based on metric values describing
its state at some point in time and its saturation based
on the amount of time elapsed since the last measure-
ment, allowing temporal behavior to be explored in
the face of missing data. The spatial effects of the en-
vironment on the cluster are often easier to see when
the cluster is presented in its actual physical configura-
tion. The temporal behavior of metrics can be explored
using a time widget associated with each display; by
dragging a clock widget’s second, minute, hour, day, or
year hands (see the bottom left of Figure 2), the varia-
tion of values over time can be explored. Each display

Figure 3. A screenshot of Ovis-2 with a phys-
ical view containing nodes colored by a met-
ric value of a contained component (in this
case, a microcontroller temperature) Note the
strong dependence on height within the rack.

can also be set to automatically advance through time
at some fixed rate so that system administrators can
view the cluster state changing in real time and appli-
cation engineers can play back historical data at a pace
that is useful in diagnosing problems with application
performance. A list of components may be selected by
name or number in a physical view; any component in
the list is drawn pushed out along an axis normal to
its front face – so that selected nodes appear to “pop
out” from the rack they inhabit.

Multiple panes containing different 3-D physical
views can be displayed at the same time. This allows
for simultaneous differing perspectives of the cluster,
differing metrics being visualized, and the comparison
of the same metric at different points in time.

2.4.2 Analysis Views

Though a user can examine the behavior of a cluster
using the interface described above, it is also possible to
drill down and retrieve specific quantifiable information
by requesting a statistical analysis be performed. To
request an analysis, the user splits an existing pane and
chooses an analysis input view for the newly-created
space in the cluster window.

If descriptive or correlative statistics are requested
(Figure 4), the user must specify a range of time, a
set of components, and the metric(s) of interest before



Figure 4. The descriptive statistics view
panel where parameters are specified and re-
sults are displayed.

submitting the request. Once submitted, the analysis
is performed in parallel on the nodes which contain
the metric database. There is space below the input
parameters where results are displayed.

Bayesian analysis currently has a dedicated view for
specifying input parameters since they differ signifi-
cantly from the simpler types of analysis. However,
the mechanics of selecting an analysis are much the
same.

It is also possible to browse previous analysis results
via a third type of view. Both the input parameters
and the results of the analysis are displayed. Finally,
any analysis request may be set to repeat at regular
intervals. In this way, if a model is developed that
predicts node failure, the forecast can be kept up to
date with new measurements as time goes on. When
an analysis is repeated, the user may select the number
of repetitions, or for analyses which should be repeated

ad infinitum, the number of results to keep.

2.4.3 Descriptive Views

The list of available metrics for each type of component
appear in a tree view, which along with a 3-D view form
the initial two panes in any cluster’s window. These
metrics not only provide a reference for the analyst,
but they can be dragged and dropped onto the 3-D
physical view and the analysis input views to specify
how nodes should be colored or which values should be
considered in an analysis, respectively.

3 Use Cases

In this section we discuss applications of the
methodologies of the Ovis project as applied in Ovis-2
to cluster state situations where traditional threshold-
based monitoring methods would be inadequate. We
consider not only abnormality detection to be used for
early indication of potential failure but also possibili-
ties for statistical consideration of system state to be
applied to more efficient use of system resources.

3.1 Spatial Dependencies as Root Cause
Indicators

In Figure 3 we show a particular cluster, where the
nodes are colored by the temperature of a microcon-
troller contained within each node. From the figure,
one can see that the temperatures of the considered
component increase over 10 degrees as one moves up
in height from one chassis to the next. This relation-
ship can also be discovered by the correlation analysis
of this value with component height. Knowledge of the
spatial dependency is critical in indicating that this
may be an effect of the airflow due to the cluster de-
sign. This is further indicated by consideration of the
two outer racks in each row, where the middle chassis
does not contain compute nodes and hence the upper
chassis’ values are less than those in other racks where
the middle chassis is populated.

Since it is well known that temperature can have
strong effect on electronics components’ longevity and
performance, we are in the process of checking for fail-
ures and/or abnormalities in the current and historical
operating behaviors of the upper nodes as compared
to those of the lower ones. Note that since the values
are within the traditional threshold limits, the vendor
supplied monitoring system does not give indication of
this condition. Further, simple min/max/mean consid-
eration is insufficient to pick up the spatial dependency
which could be crucial to root cause analysis.



3.2 Extreme Statistical Abnormalities in
a Large System

In this case, we explored the voltage distributions
of various elements in a cluster consisting of 920 nodes
and 3680 processors. For one of the core voltages we
discovered that over the 920 similar elements there were
two significant outliers. In this case the voltage distri-
bution over a range of time was seen to be a reasonable
fit to a normal distribution (see Figure 4 for statis-
tics over a more limited range of time) with a mean
of 1364mV and a standard deviation of approximately
3mV. One outlier was approximately ten standard de-
viations off the mean on the high side with a maximum
voltage of 1393mV and another approximately 6 stan-
dard deviations off the mean on the low side with a
voltage of 1342mV. We then looked at the distribu-
tions of voltage values of these two outlier elements
alone over time and found that the mean for the high
outlier element was 1387mV with a standard deviation
of 2mV and the mean for the low outlier element was
1347mV with a standard deviation of 1.7mV. Thus the
means of these outlier elements are 7.7 and 5.7 stan-
dard deviations outside of the mean of the entire set
respectively.

While these voltages are not out of bounds as far as
the absolute thresholds are concerned, as evidenced by
the nodes still being in service, they should certainly be
classified as anomalous because they contain elements
whose values lie very far out in the tails of the distribu-
tion for that metric. In this particular case we only had
a week’s worth of data at the time of this writing, but
the voltages looked stable over that time independent
of what was running on the nodes. Also their distribu-
tions appeared to be in line with other single element
distributions of this metric over the same time period.
It will be interesting to follow this and see if further
degradation occurs or if errors are eventually reported
for these nodes. Here the high voltage is of concern as
it may lead to premature component failure and the
low voltage is of concern as it could cause timing issues
though we have not yet discussed this with the vendor
and do not know what the design tolerances are.

3.3 Model Change Implications and Ag-
ing

One of the components Ovis-2 can monitor is hard
disk drive parameters via SMART data (if imple-
mented). Using this mechanism we are collecting data
in order to model Reallocated Sector Count vs.
Power On Hours and additionally the rate of change
per unit time. In one system, we are currently moni-

toring 160 500GB hard drives. Initially there is some
count which represents fabrication defects which were
remapped at the factory. Since we are looking for sur-
face degradation we subtract the initial count as an
offset which then yields a count of zero when we start.
Thus the initial model will be simple, zero in this case,
and exhibit no temporal dependency. The need for
automatically checking the model against the data and
building a new model when the current one doesn’t fit is
very evident in this type of scenario where it is expected
that as the component ages the applicable model will
change. As we start to experience read/write errors
(which we have not so far) sector reallocations will start
to occur in order to map them out. Though SMART
data has a threshold to compare against for when to
signal the need to replace the disk it gives no warning
until that threshold is crossed and no hint as to how
fast the degradation is progressing. Ovis-2 can build
applicable models in near real time as data is collected.
Using these models as the basis for comparison quanti-
tative predictions can be made as to the relative health
and rate of degradation of individual drives long before
the ”replace” threshold is reached.

Such data monitoring and analysis can also be used
for making run-time decisions for resource allocation.
Based on this type of data Ovis-2 could give hints
as to which disks are more reliable in order to allow
applications to make choices based on the importance
and expected longevity of their data being stored.

3.4 Job-Centric Information

Job-centric information and statistics display is cur-
rently under development, but is a high-value target
for the Ovis project’s methodologies as statistical con-
sideration of such information can be used not only
for enabling preemptive failure mechanisms but also
for providing statistical insight into non-failure related
application behavior and cluster utilization.

To first order, Ovis-2 will read job data from sched-
uler log files; later Ovis-2 will provide an API by which
the scheduler can provide that information to Ovis-2.
In the latter case, the interaction can be invoked, for
example, in the job prologue and epilogue scripts.

Ovis-2 will provide different types of job-centric in-
formation to satisfy the needs of a variety of users. Vi-
sual monitoring of global cluster utilization would be
of interest to cluster administrators, while, for a cluster
user, visual monitoring of the communications amongst
the nodes using a logical connectivity display of the
nodes can give important information about the opti-
mal job placement. Ovis-2 will also support statistics
by job group, including both metric statistics pertain-



ing to components comprising a job as well as statistics
of job-related data, such as queue time and run time.
Such job-related information is of value to cluster ad-
ministrators in the establishment of queuing policies.

4. Future Work

Though we believe that Ovis-2 addresses a much
needed capability for HPC platforms with its advanced
statistical analysis in a robust scalable framework, we
think that there is still room for advance in terms of
metric data storage and retrieval efficiency, analysis,
visualization techniques, and system response. Addi-
tionally, appropriate APIs allowing better communica-
tion between Ovis-2 the scheduler/resource manager,
and running applications could facilitate a more scal-
able fault tolerant platform in the future. Below we
discuss some of our plans for future work in these ar-
eas.

1. Time series analysis using Bayesian inference to
characterize temporal behavior patterns of ele-
ments and correlations of these behavior patterns
with application and environment. Of particular
interest are network and I/O behavioral patterns
in that knowledge of these for a particular applica-
tion could facilitate more efficient use of platform
resources if it were used at job launch time to op-
timize resource allocation.

2. Root cause analysis using Bayesian networks. Us-
ing these techniques we plan to use historic fail-
ure information coupled with domain knowledge
in order to help the system administrator identify
possible causes of failure and quantify the proba-
bilities of these. As a historic repository of failures
and their causes is built for a particular platform,
this type of analysis should enable efficient target-
ing of root cause mechanisms even as outliers are
detected and save system administrators the time
typically needed to track this down manually.

3. Currently Ovis-2 uses a spatially accurate render-
ing of an HPC platform together with a color map
overlay based on metric or analysis data to allow
the user to visualize spatial and temporal behav-
iors. In the area of networking and storage we are
experimenting with various graph based mecha-
nisms to facilitate similar understanding. Discov-
ery of an application’s dominant communication
patterns coupled with a low level understanding of
how this affects contention in the networks given a
particular topology could facilitate resource allo-
cations that would minimize such contention and
hence improve overall performance.

4. Database optimization. We are investigating per-
formance tradeoffs in the table definitions and in
the data storage methodologies. This involves de-
signing to support both data inserts and analyses’
queries of a variety of complexity, depending on
the analysis type. Further, there is the question
of what to keep in the active searchable database
as opposed to what to store longer term. We will
be investigating options for dynamically dropping
detailed data and keeping only metadata descrip-
tions, including model results, for older data, with
the ability to reload the detailed data and inte-
grate it into the active data for analyses over long
time periods.

5. Conclusion

As cluster size continues to increase, so does the need
for scalable RAS methodologies. Additionally, the in-
creased likelihood for component failure during large,
long-term jobs puts a burden on applications to pro-
vide their own fault-tolerance if none is provided by the
system. In this paper, we have described the new scal-
able and distributed architecture for our Ovis-2 cluster
monitoring and analysis tool. We have given use cases
where the unique statistical characterization approach
used in Ovis-2 can be used not only for anomaly de-
tection as an early indicator of potential performance
degradation and/or failure, but also as a mechanism to
enable more efficient use of system resources.

References

[1] Ganglia. http://ganglia.sourceforge.net.
[2] HP Cluster Management Utility.

http://h20311.www2.hp.com/HPC/cache/

412128-0-0-0-121.html and system documentation

therein.
[3] IBM Cluster Systems Management.

http://www-03.ibm.com/systems/clusters/

software/csm/ and system documentation therein.
[4] OVIS. http://ovis.ca.sandia.gov.
[5] RRDtool. http://www.rrdtool.org.
[6] smartmontools.

http://smartmontools.sourceforge.net.
[7] J. M. Brandt, A. C. Gentile, D. J. Hale, and P. P.

Pébay. Ovis: A tool for intelligent, real-time moni-
toring of computational clusters. In Proc. 20th IEEE
International Parallel & Distributed Processing Sympo-
sium (SMTPS), Rhodes, Greece, Apr. 2006.

[8] J. M. Brandt, A. C. Gentile, Y. M. Marzouk, and P. P.
Pébay. Meaningful automated statistical analysis of
large computational clusters. In IEEE Cluster 2005,
Boston, MA, Sept. 2005. Extended Abstract.


