
Resource Monitoring and Management with OVIS
to Enable HPC in Cloud Computing Environments

Jim Brandt∗, Ann Gentile◦, Jackson Mayo∗, Philippe Pébay∗,
Diana Roe◦, David Thompson∗, and Matthew Wong◦

Sandia National Laboratories
MS ∗9159 / ◦9152

P.O. Box 969, Livermore, CA 94551 U.S.A.
{brandt,gentile,jmayo,pppebay,dcroe,dcthomp,mhwong}@sandia.gov

Abstract—Using the cloud computing paradigm, a host of
companies promise to make huge compute resources available to
users on a pay-as-you-go basis. These resources can be configured
on the fly to provide the hardware and operating system of
choice to the customer on a large scale. While the current
target market for these resources in the commercial space is
web development/hosting, this model has the lure of savings of
ownership, operation, and maintenance costs, and thus sounds
like an attractive solution for people who currently invest millions
to hundreds of millions of dollars annually on High Performance
Computing (HPC) platforms in order to support large-scale scien-
tific simulation codes. Given the current interconnect bandwidth
and topologies utilized in these commercial offerings, however,
the only current viable market in HPC would be small-memory-
footprint embarrassingly parallel or loosely coupled applications,
which inherently require little to no inter-processor communi-
cation. While providing the appropriate resources (bandwidth,
latency, memory, etc.) for the HPC community would increase
the potential to enable HPC in cloud environments, this would not
address the need for scalability and reliability, crucial to HPC
applications. Providing for these needs is particularly difficult
in commercial cloud offerings where the number of virtual
resources can far outstrip the number of physical resources, the
resources are shared among many users, and the resources may
be heterogeneous. Advanced resource monitoring, analysis, and
configuration tools can help address these issues, since they bring
the ability to dynamically provide and respond to information
about the platform and application state and would enable more
appropriate, efficient, and flexible use of the resources key to
enabling HPC. Additionally such tools could be of benefit to
non-HPC cloud providers, users, and applications by providing
more efficient resource utilization in general.

I. INTRODUCTION

A. Cloud Computing and HPC

Using the cloud computing paradigm [1], a host of com-
panies promise to make huge compute resources available
to users on a pay-as-you-go basis. These resources can be
configured on the fly to provide the hardware and operating
system of choice to the customer on a large scale. A customer
who has finished simply releases the resources back into the
pool from which the next customer draws. Customers avoid

These authors were supported by the United States Department of Energy,
Office of Defense Programs. Sandia is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy under contract DE-AC04-94AL85000.

the up-front cost of designing, procuring, and setting up a
system, which can be considerable even with respect to just
power and cooling systems and facilities. There is no cost of
ownership and no cost of disposal. While the current target
market for these resources in the commercial space is largely
web development/hosting, this model sounds like an attractive
solution for people who currently invest millions to hundreds
of millions of dollars annually on HPC platforms in order to
support large-scale scientific simulation codes.

Given the interconnect speeds and topologies utilized in
current commercial offerings, however, the only viable mar-
ket in HPC would be small-memory-footprint embarrassingly
parallel or loosely coupled applications, which inherently
require little to no inter-processor communication. However,
expanding the applicability of commercial cloud platforms to
HPC applications will require more than just providing the
right resources (bandwidth, latency, memory, etc.).

The needs for scalability and reliability manifest themselves
in HPC applications differently from web or serial software
applications. Current scientific simulation codes typically rely
on MPI as the underlying communication protocol, with Infini-
band or Ten Gigabit Ethernet as the physical transport medium
between processors not residing on the same motherboard, and
shared memory as the physical transport between processors
that do reside on the same motherboard. Though there are
fault-tolerance mechanisms being integrated into some MPI
implementations, this is currently an area of vulnerability
for many of these codes. When some piece of hardware or
software fails, causing failure of one or more MPI processes,
the application will hang indefinitely until it is killed and
restarted with the failed hardware replaced. This behavior has
resulted in the use of checkpointing in order for long-running
applications to make forward progress. In this scenario, the
results of an application are saved periodically; ideally, check-
point frequency should be based on the expected mean time to
failure (MTTF) of components, given a platform’s history and
the number of resources involved in an application run. Since
the MTTF over a group of resources decreases as the number
of resources in the pool increases, the checkpoint frequency
also must increase as the number of resources involved in an
application run is increased. This in turn limits an application’s
scalability, since at some point the smallest quantum of work

necessary to be accomplished in order to checkpoint cannot
be completed before a failure takes place, thus returning
the application to the place it began. Additionally, with the
increase in heterogeneity introduced by multi-core and mixed
CPU architectures and the use of virtualization to provide
the illusion of homogeneity, scaling can be further limited
by decreases in performance due to overhead and resource
contention in an abstracted environment that may appear well
balanced.

Intelligent resource utilization is key to enabling efficient
HPC applications. The complexity of efficient resource utiliza-
tion is exacerbated in the commercial cloud paradigm, where
knowledge of the underlying resources is deliberately limited
(particularly in virtualized environments), the resources are
shared among many users, and the physical resources may be
heterogeneous.

B. Our Approach

We propose using advanced resource monitoring tools to
dynamically characterize the resource and application state,
and using the resulting information to optimally assign and
manage resources, given the mix of running applications and
contention for resources. Such a solution would benefit not
only HPC applications, but the full spectrum of applications
and usage models for the overall system.

The degree to which resources must be managed, e.g., mon-
itored, analyzed, and controlled, depends on the usage model
for those resources. At one end of the spectrum, the resources
could be single-CPU servers and the usage as a platform
for serial software development. It would then probably be
sufficient to provide redundant, mirrored storage resources and
a fail-over server. Virtual machines (VMs) created on behalf
of users could then be added and deleted until the monitoring
of utilization of resources, such as CPU, memory, storage,
etc., indicated a resource approaching full utilization. At that
point more resources would have to be brought into play or
customers would have to be turned away. Another extreme
would occur when providing a high performance parallel
computing environment for running large, tightly coupled,
MPI-based scientific simulation codes: such an environment
might consist of hundreds of thousands of multi-core servers
with a high speed interconnect such as Infiniband. In this case,
a simple standby server is not sufficient, and much more work
needs to be put into the monitoring and management system
than in the former case.

A common theme across the whole spectrum of use sce-
narios that the cloud paradigm could address is that the user
ultimately should not have to know the details of the underly-
ing hardware and interconnects, but from an abstract point of
view should be able to configure a virtual system that presents
appropriate physical resources to the application. A facility is
needed in order for the user to know if his application is being
allocated appropriate resources, either as a post-analysis step
to optimize his virtual environment in future runs, or in real
time to dynamically optimize the virtual resources allocated
to a current long-running application. Such a facility should

communicate system attributes to the user, in a way that allows
them to make a judgment and modify the configuration as
necessary. Additionally, the resource allocation system needs
to be aware of the same and possibly additional parameters, in
order to make reasonable initial hardware allocation decisions
and possibly perform dynamic reconfiguration of resources to
adjust to unexpected resource utilization and/or failures.

Figure 1 illustrates an interaction between user, application,
monitoring and analysis system, and hardware that can provide
dynamic, efficient resource utilization. First, resources are
acquired, perhaps upon initial allocation or upon resource or
application state change. The application or user can query the
monitoring and analysis system for system or application state.
The monitoring and analysis system then provides characteri-
zations of the state to be used for resource utilization decisions.
In response, the application, user, or resource manager can
reconfigure the resources or application to best utilize the
resources in light of this state information. An example of
alternate utilization strategies is shown in the lower right of
the figure. Here each of the blue server blocks consists of
multiple cores. In the case on the left, the application needs
may be such that it is advantageous for application tasks to
be put on different cores, whereas on the right it may be
advantageous for tasks to share cores. These scenarios may be
as a result of benefits/disadvantages to state information such
as shared memory size/bandwidth, internal bus bandwidth,
network bandwidth, etc. Each of these hardware resources
might be further subdivided into a number of virtual resources,
each in turn needing the appropriate level of monitoring
and analysis. Hence the system responsible for collecting,
analyzing, and reporting this type of information needs to scale
to millions of such resources, each having possibly hundreds
of associated metrics for evaluation, while being responsive to
thousands of users at whatever their expected request rate is.

Fig. 1. Illustration of the types of interaction of the user, application,
resource monitoring and analysis system, and platform resources in order
to dynamically provide and respond to state information. The system seeks to
provide efficient resource utilization. The exploded blocks in the lower right
illustrate alternative resource utilization in response to differing application
needs.

Whatever the mix of scenarios, a monitoring scalability

issue arises because the proliferation of hardware resources is
compounded by the number of virtual resources per hardware
resource that will be supported. We are currently extending
our work in the OVIS project [2]–[6] to encompass not only
enterprise computing on traditional HPC clusters but also
the cloud paradigm utilized across all scenarios. The OVIS
project seeks to provide real-time statistical analysis of large,
dynamically evolving data sets. In support of HPC platforms,
we continue to investigate the detection of abnormal state
behavior and its use as an indicator of potential failure. The
reason we believe OVIS is well suited to more general issues
in resource monitoring, analysis, and allocation in cloud com-
puting environments is that we have already addressed many
of the scalability issues with collection and analysis. We have
recently incorporated a multivariate correlation engine into
the OVIS tool, described in section III B, designed to assist
resource managers with allocation based on a probabilistic
assessment of the health of a resource relative to a large
aggregation of similar resources.

As an example of the monitoring scalability issue, OVIS
collects ∼ 10 GB of data per day when monitoring just the
hardware of Sandia’s Whitney cluster of 288 servers with 16
cores each (4600 cores total), and data taken on 10 second
intervals. Though not all of the same metric data would need
to be replicated on a per-VM basis (for instance, power-
supply voltages, component temperatures, and fan speeds),
there are many, such as CPU utilization, network counters,
memory access and error counters, performance counters,
etc., that would; we estimate that roughly 80 percent of the
base information applies on a per-VM basis. For this case,
if we were running two VMs per core, this would translate
into 2.6× 10 GB/day = 26 GB/day of information that the
monitoring and analysis system would have to process on this
modest-sized system. However, this assumes that little to no
correlation exists between all of these components. Further
analysis may show that due to strong correlations between
behaviors of component metrics, many would not need to be
collected or analyzed – though scalability would still remain
an area of concern.

For cloud computing to mature, we believe it must incor-
porate evaluation of the underlying resources for application-
appropriate use, and expose the evaluation parameters to the
user and the application as well. Further, an ongoing evaluation
of appropriate resource parameters, both real and virtual, will
need to be performed and the results stored for retrospective
or real-time analysis and optimization with respect to check-
pointing and resource allocation. This type of analysis would
also give providers better insight into what knobs they need to
expose to users and applications in order to optimize utilization
of their resources and hence their revenue.

C. Outline

In this paper, we first review and discuss related work. We
then describe our work in scalable resource characterization
and show how it can be used to choose resources appropriate
to the expected run-time profile of an application, as well as to

provide either run-time feedback to the application or post-run
feedback to the user. We present some preliminary findings
based on proof-of-concept deployments. Finally, we present
planned extensions of our approach to additional aspects of
using cloud resources for HPC.

II. RELATED WORK

One of the biggest impediments to scalability of applications
in the HPC environment is failure in either hardware or
software before an application has time to run to completion;
as the application occupies more components, the probability
of failure occurring on at least one of these over a fixed time
period goes up. The first-order solution has been to implement
checkpointing to ensure that forward progress can be made in
the face of failures. The main issue with this solution is that
writing out the checkpoint data can take significant time and
resources and does not scale well. An optimization strategy is
then to choose the checkpoint frequency that will maximize
net forward progress, given a platform’s expected failure rate
for the number of resources being used and the expected time
it will take to write out checkpoint data given the available
storage bandwidth. The goal is to minimize overall run time.

There has been significant work done by a number of
researchers to address this problem. Daly has done work in
the area of optimizing checkpoint intervals based on the mean
time to failure (MTTF) for a system [7]. Additional work has
been done by Leangsuksun, Scott and collaborators [8] on
making finer-granularity time-to-failure calculations on a per-
node basis and using this information to calculate a time-to-
failure distribution for an aggregation of such nodes. The goal
for both these bodies of work is to minimize the amount of
time the application spends writing checkpoints, given that the
statistical distribution of failures on a particular platform can
be learned and is relatively static. Using these techniques saves
time relative to the case of over-aggressive checkpointing and
still ensures progress. Work has also been done in the area of
predictive analysis by Stearley and Oliner [9] on the Sisyphus
project, which seeks to discover correlations of log-file events
with both software- and hardware-related failures, and by the
OVIS project [3], which looks for correlations of multi-variate
hardware state behaviors with failures. The motivation for the
latter work was that targeted checkpointing, based upon failure
prediction, could dramatically increase the scalability of HPC
applications and platforms, since checkpointing all state for
the application would no longer be necessary and additionally
state would only have to be saved for affected processes when
they were deemed destined to fail.

Production-level use of sophisticated resource-state infor-
mation for robust and dynamic resource utilization is limited.
Tools such as Ganglia [10] inspect and maintain state data, but
for limited times and on a per-metric basis. Ganglia does not
innately provide scalable mechanisms for data fusion of these
metrics. Moab [11] supports some level of resource informa-
tion for use in scheduling, but this is generally unsophisticated
state information and not predictive.

III. TECHNICAL APPROACH

In this section, we describe in brief the OVIS collection
and analysis architecture as it applies to the near-real-time
monitoring and analysis of large amounts of data, both in and
out of band, as well as the initial configuration required to
display the physical representation of a cluster in the UI. Next
we describe our methodology for characterizing resources
described by multiple metrics. Finally we describe how these
characterizations can assist in resource allocation decisions.

A. Scalable Data Collection, Analysis, and Configuration

OVIS works in conjunction with existing low-level data
collection mechanisms for capturing information about various
aspects of monitored resources in a scalable fashion. For exam-
ple, data collectors have been written that retrieve information
from IPMI, SNMP, LM Sensors, RRD tool, job schedulers,
and the proc file system. OVIS uses AVAHI as a discovery
mechanism, allowing the data collection entities (sheep) to
locate analysis and database entities (shepherds). Through
random choice from among a set of advertising shepherds,
a sheep will establish a connection with one shepherd, obtain
a reference to that shepherd’s database node, and insert data
directly to that database node. At any point, the shepherd
has the ability to reassign the sheep to another shepherd if,
for example, the shepherd is over-tasked. If the connection
between the sheep and the database node is disrupted for
any reason (including failure of the database node), the sheep
can connect to an alternate shepherd and to the alternate
corresponding database node. Note that getting VM-state-
related information from a host operating system would fall to
a data collection entity for that host. Thus the data collection
scales as the distributed data base grows in membership.

The statistical analyses, including the multi-correlative en-
gine used to perform multivariate probabilistic analysis (de-
scribed in the following subsection), are designed to scale with
database node growth. Scalability is achieved by performing
analyses in parallel over all database nodes that contain the
corresponding data. Furthermore, analyses used to determine
global models, including the multivariate characterization anal-
ysis, are robust to failure of shepherd/database nodes, as
these analyses are performed within the context of the entire
database system (without MPI) consisting of multiple database
nodes. In a distributed database system setup, failure of an
individual database node will result only in decreased fidelity
of the resulting model. Individual comparisons against the
global characterizations can be performed only if the data for
the particular resource exist; this comparison is not possible
with a disrupted connection between the sheep and its corre-
sponding database node. However, once a sheep detects this
disrupted connection, the sheep will select another shepherd
from the remaining pool. That new shepherd will then perform
comparisons on behalf of that resource component.

The configuration for a particular cluster is described by
an XML file, including cluster component (e.g., node, rack)
specifics such as physical size, relative physical placement,
connectivity, labels, functionality, and texture. Details about

the metrics being collected for the components are also pro-
vided in this XML file. The associations in the XML file define
which elements in the pictorial representation can be colored
by a given metric.

B. Resource characterization methodology

In order to characterize resources, OVIS makes use of
a multivariate correlative statistics methodology. In this ap-
proach, anomalous behaviors are sought by

1) calculating (with “training data”) or devising (with “ex-
pert knowledge”) mean vectors and covariance matrices
– and thus, implicitly, a multiple linear regression model
– for a set of tuples of variables of interest, and

2) examining how individual observations of these tuples
of variables of interest deviate from the aforementioned
model; such deviations are characterized in terms of
the significance level to which they correspond when
the mean vector and covariance matrix are made those
of a multivariate Gaussian model. Note that this is
directly related to the multivariate Mahalanobis distance
computed with the mean vector and covariance matrix.

Fig. 2. Actual rendering of the Red Storm platform zoomed in on the partition
on which data were taken. The nodes are colored red if below the user-defined
probabilistic threshold for being too unreliable and green otherwise. Note that
the metrics used in this example are the same two described by Figures 4
and 5. Grey indicates there was no data in the display time window for that
resource for the metric being displayed.

For instance, Figure 2 displays a simple use case where
only one pair of variables is of interest to the analyst, namely
PROCPIC_0_CORE and PROCPIC_0_Proc_Int, which
we will respectively denote A and B.

When the first phase of the process described above is meant
to be calculated (as opposed to devised, e.g., using expert
knowledge), then the “Learn” mode of the statistical engine
(called haruspex, pl. haruspices, in OVIS parlance) is turned
on prior to the execution of the haruspex on a set of training
data. This is the case in the example of Figure 2: specifically,
all observations (a,b) of (A,B) between the specified start
and end times (respectively 10:52:02 a.m. and 4:45:02 p.m.
on November 8, 2007) on all components called rsnoden,
where n varies between 1 and 3000, are used to “Learn” a
model. As a result, a mean vector and a covariance matrix are

calculated, and are available to the user in the “Learn” tab (not
selected in the figure).

Fig. 3. The interface in Figure 2, zoomed in on the analysis output.

Note that the second phase of the analysis process, called
“Monitor”, can be performed on either the same data set used
to infer a model, or on a different data set. For simplicity, the
former option is the case in our running example. Therefore,
as illustrated again in Figure 2 and Figure 3, under the
“Monitor” tab, one can see the mean vector and Cholesky-
decomposed covariance matrix that have been calculated by
the haruspex during the “Learn” phase. In particular, the means
µA = 1364.15 and µB = 32.4116 as well as the covariance
matrix

Σ := cov(A,B) = U tU,

where

U =

(
5.07163 −0.407603

0 8.21949

)
,

are those of the underlying (bivariate, in this case) linear
regression model.

It is beyond the scope of this article to delve into too
many details about multiple linear regression models and their
relationships to multivariate Gaussian distributions; one only
has to know that the underlying linear model is mapped into an
N-variate (bivariate in our running example) Gaussian model,
whose probability density function (PDF) is, by definition,

fX (x) :=
1

(2π)N/2|Σ|1/2 exp
(
−1

2
(x−µ)t

Σ
−1(x−µ)

)
,

where xt := (x1, . . . ,xN) is the observation of an N-tuple of
interest. In our bivariate example, this simplifies into

f(A,B)(x) =
1

2π|Σ|1/2 exp
(
−1

2
(x−µ)t

Σ
−1(x−µ)

)
,

where xt := (a,b) and thus (x−µ)t = (a−µa,b−µb). (Note
that the inverse covariance matrix Σ−1 is computed only once,
by means of the Cholesky decomposition.) The argument of
the exponential is − 1

2 times the squared Mahalanobis distance,
which is the natural metric associated with the multivariate
distribution. The significance level of observation x is defined
as the probability (in the Gaussian model) of observing a
Mahalanobis distance greater than that of x. This significance
level is a natural choice of cumulative distribution function
(CDF) for the multivariate Gaussian distribution; it ranges
from 1 for a central (mean) observation to 0 for observations
infinitely far from the mean vector.

With this in mind, we define an outlier as any observation
x of X whose significance level is less than a user-specified
threshold τ (typically τ� 1). If observations accurately follow
the multivariate Gaussian model, then a fraction τ of observa-
tions should meet this criterion. Observations may not follow
the inferred model, however, either because the data are non-
Gaussian or because the data being monitored have a different
distribution from the training data. Nevertheless, the computed
significance level is useful in assessing the deviance of an
observation.

A simpler description of the significance level is possible
in the bivariate case. There, the significance level happens to
equal the exponential factor in the Gaussian PDF. This factor
can then be described as the relative probability (normalized
to the maximum of the PDF), and an outlier can alternatively
be defined as an observation x with

fX (x)
maxIR2 fX

< τ.

As shown in the “Monitor” tab of Figure 3, a threshold
value of τ = 0.005 was chosen, resulting in 85 outliers being
reported by the haruspex, and listed in the lower right text
window of the user interface. For example, the first of these
outliers corresponds to an observed value of (1492,38), which,
in the context of the underlying model, has a significance
level (or relative probability) of ≈ 1.574 ·10−139 < τ = 0.005,
making it an outlier according to our definition. (Such a van-
ishingly small value indicates that the data are non-Gaussian,
since an event with actual probability of order 10−139 would
not realistically occur.) In turn, in the cluster view of Figure 2,

all components evincing outlier behavior at the time shown
in the view are colored in red, whereas other components
appear in green (data were not collected on the grayed-out
components during the time interval of interest).

C. Utilizing Statistical Characterizations for Resource Allo-
cation

Our hypothesis is that the relative health of an underlying
hardware component can be described in a probabilistic fash-
ion, based on a behavioral characterization of the component’s
measurable attributes in comparison with with a sufficiently
large aggregation of similar components’ characterizations.
The motivation for this approach can be seen in Section IV. We
seek to utilize such probabilistic characterizations in order to
tailor resource allocation decisions to the application request-
ing them, assuming the user or application can communicate
the application’s needs. For example, a multi-week 10,000
processor MPI job may require significant checkpoint/restart
time, and therefore this job may require the healthiest and
hence most reliable resources; however a multi-minute single-
processor job being run to test an application bug fix could
utilize any available resource, regardless of resource health,
and be trivially re-run if the resource happened to fail during
the test.

IV. PRELIMINARY FINDINGS

In this section, we present actual data to motivate our
approach in characterizing the relative health of resources
(physical servers in this case) using a combination of metrics
relating to various attributes of that type of resource. We then
show how the OVIS tool presents this information and discuss
how it could be used by a resource manager to make more
intelligent resource provisioning decisions. Additionally, we
briefly discuss the utility of such a visual presentation for
system administrators and how, if extended to a web interface,
it could give users insight into critical information about their
virtual resources as well.

Figure 4 is a histogram of power-supply voltage measure-
ments obtained over a week’s period of time on a partition of
Sandia’s Red Storm platform. This figure is plotted on a log
scale to enable viewing of the distributions of these voltages
for individual components in comparison with that of the entire
set. The histogram of the entire set is shown in green and
and is generally distributed in a well-behaved fashion; the
magenta measurements are those representative of an actual
component that is typical based on the measured mean and
variance of the aggregate distribution. We see immediately
that the components whose distributions are shown in blue and
teal have anomalous behaviors with respect to this aggregate
distribution, though in different ways. The blue has a mean
roughly 7 standard deviations away from the group mean,
whereas the teal has a variance roughly 13 times that of the
group. For reference, then, these nodes have been designated in
the figure with a shorthand to indicate the type of abnormality
– OV (Outlier Voltage) and SV (Standard deviation Voltage),
respectively.

Fig. 4. Histogram (log scale) of a particular power-supply voltage over all
nodes in a partition of Red Storm (Cray XT4) for a one-week period. Two
nodes whose power supplies exhibit particular abnormal behaviors are called
out in the figure.

Fig. 5. Histogram (log scale) of a particular component temperature over all
nodes in one partition of Red Storm for a one-week period. Nodes exhibiting
abnormal behavior in the voltage measurement in the previous figure are
relatively well behaved in this temperature metric.

Figure 5 is again a log-scale histogram, but of a processor
temperature internal to each server. These data were taken
from the same set of components as in Figure 4 and over
the same time period. The resources identified in the previous
figure as having anomalous voltage values are shown in this
figure, with OV now colored in blue and SV now colored in
magenta. Note that though these resources were outliers in the
voltage metric, they are near the group mean with respect to
this temperature metric, with other components lying in the
tails of this distribution.

The OVIS multi-correlative analysis engine then “Learns”
(as discussed in section III B) a model based upon this data,
from which a probabilistic value of any given observation of
metrics can be determined. This is illustrated in Figure 6 for
a two-metric case using the data plotted in Figures 4 and 5.
In this figure, a learned model’s surface of relative probability
for a two-metric case is overlaid with raw metric observations.
The contours of equal relative probability enclose all possible
points for which the relative probability is greater than or equal

Fig. 6. Three-dimensional plot that illustrates our methodology for assigning
relative health to components. Note that these are the same data displayed in
the previous histograms, now showing how the values and distributions of
two different metrics may be evaluated in this fashion.

to a given value. For instance, in this figure, the points in
the outer red zone all lie outside the 5 percent contour. If a
system administrator decided that any resource with these two
metrics having less than 5 percent relative probability should
be considered too unreliable, then any components with metric
values lying in this zone could be removed from the resource
pool either automatically or manually.

We only use two metrics, in Figure 6 and in our actual
example above, to illustrate the basis for our methodology,
though it has been extended to arbitrary numbers of metrics
as described in Section III.

OVIS’s multi-correlative analysis engine, described in Sec-
tion III, allows the user to choose arbitrary metrics from the
metric list for a resource, learn the distribution over a user-
specified time interval and for a specified list of resources,
define a significance-level threshold, and then (using the
learned model and threshold) display probabilistic outliers
both visually as a red-colored resource and via text output.
Figure 2 is a screen shot of OVIS using its multi-correlative
analysis engine to characterize the same set of resources
whose metrics for voltage and temperature were displayed in
Figures 4 and 5. The blades shown as popped out are those
seen to be outliers in each of the histogram plots (blue and
teal in voltage and green in temperature). While their data in
a single metric do not guarantee that they will be outliers in
the multi-correlative case, in this instance the abnormal nodes
were sufficiently abnormal even in the single metric to ensure
their abnormality in the two-metric correlation. Note, however,
that there are other red-colored instances in the figure for
which a combination of both metrics led to outliers in the
multi-correlative case.

The “Repeat Analysis” mode allows all new data coming
in to be compared against a learned model, the significance-
level calculation performed, and the results displayed both
visually and as text. It would be trivial to share information
about the existence of outliers with a resource manager and/or
application. Using this same engine, a user could model the

behavior of an application in some collectible metrics and
look for anomalous behavior that might occur, for instance,
if a small subset of resources had other users contending
for them. This could in turn drive the user to revise his
service-level agreement with the provider, for instance. The
kind of web-based interfaces being provided to cloud users
for configuration of their virtual resources could present a
virtualized representation of the configured resources with
colors based on output from such an engine. Whereas the
OVIS display uses information about each resource element
at every time step in order to color it correctly, a web-based
interface might color all virtual elements green except when a
threshold crossing triggers a virtual element to update. Even
though this would be low-bandwidth to the user, the underlying
collection and analysis mechanisms would still have to collect
and process the data from the platform and thus must be
scalable.

Fig. 7. A rendering of Sandia’s Whitney cluster using 6 variables to describe
the relative health of a node. The coloring of the node resources in the
top representation is by significance level where blue is highest and red is
lowest. In the lower pane resources are colored red if below the user defined
significance level cutoff threshold.

Figure 7 is OVIS’s realistic rendering of Sandia’s Whit-
ney cluster, referenced in Section I as an example of the
necessity of monitoring scalability. This figure shows the
multi-correlative analysis being applied to the cluster for a
set of 6 metrics. The top view of the split-screen shows
the raw significance level (SL) values associated with each
node resource based on the output of the multi-correlative
analysis described in section III. The color scheme shows
server resources with higher SLs, and hence better health
according to our hypothesis, as bluer and those with lower SLs
as redder. Using a text output from the tool these resources
can be ordered and hence intentionally chosen according to
their relative health characteristics for a particular application
as discussed in section III C. In this view one can see
that there is no real clumping of resources with respect to
SL and so we infer no significant environmental effects (at
least with respect to the variables chosen). The bottom view
shows the output of the monitor mode after a user threshold

has been chosen (in this case 0.005 SL) to demark healthy
from unhealthy resources. In this mode OVIS both colors the
pictured resources as green to denote healthy and red to denote
unhealthy resources and outputs text describing resources lying
below the threshold in terms of resource, SL quantities, and
time.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

Cloud computing promises users a computing environment
that provides simple, intuitive, just-in-time provisioning of
resources (both hardware and software) to meet their appli-
cation needs. However, there is much complexity that will
need to be addressed in the areas of both real and virtual
resource management to make cloud computing truly scalable
and applicable across the whole range of applications that
could potentially benefit from its flexibility and cost sav-
ings. The OVIS project addresses the scalable collection and
analysis of resource metrics from both component-health and
resource utilization perspectives, and hence can contribute to
the application-tailored resource allocation of hardware and
the subsequent allocation and/or migration of virtual resources
on the hardware. Further, metrics describing attributes of
virtual resources can be collected and utilized in the same way
to provide both providers and consumers of these resources
with insight regarding how users/applications are utilizing the
resources and hence the ability to optimize their utilization.

B. Future Work

We plan to build a lightweight web-based application that
can tie into the scalable collection and analysis engines offered
by OVIS, but can be tailored to show the subset of the
environment that the user is interested in, including both
physical and virtual devices. A possibility is a generic cluster
display (racks with servers) where the number of servers is
equal to the number of VMs actually employed; the metrics
associated with each VM would represent those from the
actual hardware but associated with the user’s VMs. Examples
of such metrics that could be displayed on the user’s virtual
cluster include number of VMs currently being hosted by this
host, number of VMs that are mine being hosted by this host,
percent of resources (memory, CPU, network, etc.) utilized
on this host, percent of resources (memory, CPU, network,
etc.) utilized on my behalf on this host, etc. A dynamic
virtual cluster representation is needed because VMs could be
migrated in real time to/from either hardware already in use by
a user or hardware not yet utilized by the user. Additionally,
virtual resources might be dynamically created or destroyed
depending on the nature of the user’s request. Finally, we are
also planning to investigate other multi-correlative statistical
techniques, e.g., multiple non-linear regression.

REFERENCES

[1] “AMAZON WEB SERVICES,” http://aws.amazon.com.
[2] “OVIS,” http://ovis.ca.sandia.gov.

[3] J. Brandt, A. Gentile, B. Debusschere, J. Mayo, P. Pebay, D. Thompson,
and M. Wong, “Using probabilistic characterization to reduce
runtime faults on hpc systems,” in Workshop on Resiliency in High-
Performance Computing, Lyon, France, May 2008. [Online]. Available:
http://xcr.cenit.latech.edu/resilience2008

[4] ——, “OVIS 2: A robust distributed architecture for scalable
RAS,” in Proc. 22nd IEEE International Parallel & Distributed Pro-
cessing Symposium (4th Workshop on System Management Techniques,
Processes, and Services), Miami, FL, Apr. 2008. [Online]. Available:
http://www.ipdps.org

[5] J. M. Brandt, A. C. Gentile, D. J. Hale, and P. P. Pébay, “OVIS: A tool for
intelligent, real-time monitoring of computational clusters,” in Proc. 20th
IEEE International Parallel & Distributed Processing Symposium (2nd
Workshop on System Management Techniques, Processes, and Services),
Rhodes, Greece, Apr. 2006. [Online]. Available: http://www.ipdps.org

[6] J. M. Brandt, A. C. Gentile, Y. M. Marzouk, and P. P. Pébay, “Mean-
ingful automated statistical analysis of large computational clusters,” in
IEEE Cluster 2005, Boston, MA, Sept. 2005, Extended Abstract.

[7] J. T. Daly, “Performance challenges for extreme scale computing,”
http://www.pdsi-scidac.org/publications/, SDI/LCS
Seminar Series, Oct. 2007.

[8] Gottumukkala, Liu, Leangsuksun, Nassar, and Scott, “Reliability anal-
ysis in hpc clusters,” in Proc. of High Availability and Performance
Computing Workshop 2006, Sante Fe, NM, Oct. 2006.

[9] Stearley and Oliner, “Bad words: Finding faults in spirit’s syslogs,” in
Workshop on Resiliency in High-Performance Computing, Lyon, France,
May 2008. [Online]. Available: http://xcr.cenit.latech.edu/resilience2008

[10] “GANGLIA,” http://ganglia.info.
[11] “MOAB,” http://clusterresources.com.

