
Combining Virtualization, Resource Characterization, and Resource Management to
Enable Efficient High Performance Compute Platforms Through Intelligent

Dynamic Resource Allocation

J. Brandt∗, F. Chen◦, V. De Sapio∗, A. Gentile◦, J. Mayo∗, P. Pébay∗, D. Roe∗, D. Thompson∗, and M. Wong◦

Sandia National Laboratories MS ∗9159 / ◦9152 P.O. Box 969, Livermore, CA 94551 U.S.A.
{{brandt,fxchen,vdesap,gentile,jmayo,pppebay,dcroe,dcthomp,mhwong}|{ovis}}@sandia.gov

Abstract—Improved resource utilization and fault tolerance
of large-scale HPC systems can be achieved through fine-
grained, intelligent, and dynamic resource (re)allocation. We
explore components and enabling technologies applicable to
creating a system to provide this capability: specifically 1)
Scalable fine-grained monitoring and analysis to inform re-
source allocation decisions, 2) Virtualization to enable dynamic
reconfiguration, 3) Resource management for the combined
physical and virtual resources and 4) Orchestration of the
allocation, evaluation, and balancing of resources in a dynamic
environment. We discuss both general and HPC-centric issues
that impact the design of such a system. Finally, we present
our prototype system, giving both design details and examples
of its application in real-world scenarios.

Keywords-virtualization; migration; resource management;
IaaS; HPC; KVM;

I. INTRODUCTION

As the compute nodes of high performance compute
(HPC) clusters become more complex and powerful, the
required complexity of a system for efficiently managing
these resources increases dramatically. Making resource al-
location decisions in these environments can still be simple
– e.g. allocate a set of nodes to a user application based
on how many of which type of processing unit they ask
for. However, such simple resource allocation decisions are
made at the possible expense of overall platform efficiency
and application performance.

In order to make more intelligent resource allocation
decisions the system would need more insight into how
resources are actually being utilized by the applications
running on them. Additionally, in order to dynamically
correct for contention or underutilization, there should be a
mechanism for migrating processes within a resource pool.

In this paper we explore components and enabling tech-
nologies for such a system, specifically addressing the fol-
lowing: 1) Obtaining meaningful low-level resource utiliza-
tion information through a scalable monitoring and analysis
system designed for real-time fine-grained collection and

These authors were supported by the United States Department of Energy,
Office of Defense Programs. Sandia is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy under contract DE-AC04-94AL85000.

analysis of hardware level information. 2) Utilization of
virtualization technology for process level mobility to enable
resource rebalancing in response to application require-
ments, system state, and/or failure prediction. 3) Utilization
of a resource manager commonly used in HPC environ-
ments, for management and allocation of both physical and
virtual resources. 4) Orchestration of the allocation, evalua-
tion, and balancing of resources with respect to applications
running on a system and their resource requirements.

The paper is organized as follows: In Section II we discuss
some current HPC usage models based on our experience
and discussions with system administrators of our capacity
compute clusters at Sandia National Laboratories. We use
these to motivate applying virtualization and “Cloud”, i.e.
Infrastructure as a Service (IaaS), concepts to HPC platforms
and discuss considerations in such application in Section III.
Section IV gives insight into resource allocation, contention,
and monitoring issues. Our system design including all
of the high level components and how they interact is
covered in Section V. Examples of use of the system for
resource management and dynamic process relocation are
in Section VI. We close with related work and summary.

II. HPC USAGE MODELS

Typical scientific HPC applications consist of many paral-
lel tightly-coupled MPI processes whose resource demands
may change over their potentially long run-times. Modern
HPC platforms generally use a per-node static allocation
scheme when allocating resources to applications. Given the
increasing number of resources available in a compute node
(our nodes have 4 CPUs, 24 cores, and 32 GB of memory)
this can be very wasteful. As nodes grow in computational
resources, allocation will certainly have to be done on a finer
granularity (e.g. per-CPU, per-core) and there is increased
possibility for subsystem contention.

A barrier to higher-granularity resource allocation is lack
of insight into the run-time resource demands of applica-
tions. Typically, how the allocated resources are utilized by
an application is not monitored or, if it is, the information
is only used for gross machine utilization statistics.

Major factors in allocation requests include memory re-
quirements, CPU utilization, memory bandwidth, and node



interconnect bandwidth. While memory footprint presents a
hard limit on how many processes can be hosted on a disk-
less node, we see many application runs on our production
systems that utilize less than 20% of the 32GB available.
In discussions, some users revealed that they prefer to run a
single process per CPU, even when each CPU has multiple
cores available, in order to avoid possible contention for L3
cache and main memory. Further, users would like to obtain
feedback on the actual utilization of the resources so that
they could take better advantage of resources.

Our goal is to enable intelligent and dynamic placement
of tasks on resources to minimize single job run-time and
maximize system throughput. Information obtained from
lightweight, fine-grained, run-time monitoring and analysis
of resource utilization can not only provide feedback to the
users and their applications but can also inform a resource al-
location system to orchestrate dynamic intelligent allocation
and placement. The resultant capability, then, in addition
to providing the obvious benefits of improved resource
utilization, could facilitate the quick turnaround of large
short-lived jobs, e.g., those of parallel application developers
needing to test at scale to verify that the application runs
for a few time steps. Processes for such tests could be
placed wherever they would fit (memory footprint) within
the resource pool alongside running applications with other
resource contention ignored for the short run period.

III. VIRTUALIZATION AND IAAS

Even with understanding of resource usage provided by an
appropriate monitoring system, unless there is a mechanism
to provide process mobility within the pool of platform
resources, users would ultimately be responsible at launch
time for appropriate use of resources based on feedback
from previous application runs. Virtualization seems a likely
candidate mechanism for process mobility provided that the
overhead doesn’t surpass the gains. Though there are other
MPI-based process migration mechanisms (e.g., LAM/MPI
integrated with BLKR [10] and CHARM++ [16]), virtual
machine technologies such as Xen [7] and KVM [3] provide
containers that can be migrated within a pool of inter-
connected resources transparently to an MPI application
process running within, though there are transport related
dependencies that must be accommodated for technologies
other than Ethernet (which is used in this work), i.e. In-
finiband and Myrinet, but these are beyond the scope of
this paper. Use of such virtualization technologies allows
the infrastructure presented to the user application to be
tailored to the application’s needs and to be dynamically
located within the pool of physical resources as necessary
to maximize performance and resource utilization (IaaS).

A. Overhead

Substantial work (see e.g., [11], [12], [14], [15] and
references therein) has been done to quantify and identify

sources of overhead associated with running HPC applica-
tions in virtualized environments. While we have seen from
20% to over 100% overhead in running a particular HPC
application in a Kernel Virtual Machine (KVM) environment
on our testbed system when scaling from 1 to 240 processes,
there are claims [12] of actual speedups running certain
NAS Parallel Benchmarks in a Xen environment. Hardware
vendors have built more support into chip sets to maximize
performance in these environments. Thus we are taking the
approach of building, in anticipation of decreased overhead,
the infrastructure for facilitating the efficient application
of these mechanisms to traditional HPC platform resource
management. Additionally there are potential gains to be had
in the area of resiliency by incorporating viable resource
health monitoring facilities.

B. Considerations in Provisioning and Mobility for MPI
Applications

In this section we discuss the process of launching,
running, and migrating an MPI application in a virtualized
environment. We address KVM environments as this is what
we currently use in our testbed environment. We use numactl
to bind each instance to a particular core and the memory
region associated with its CPU. Once a KVM is launched
and booted, it is a fully functional linux host and can
support an application with a memory footprint equal to the
container size less the operating system and container.

Live migration is accomplished by first setting up a
container on a computational resource to receive the vir-
tual machine and then transferring the KVM state to the
container. The resulting KVM has the same identity as
the original and processes running inside don’t undergo
any change (the migration is transparent). Though static
migration is an option, an advantage of live migration is
minimal downtime as most state is transferred while the
machine is still running and only when there is a minimal
amount left is operation frozen and the remainder trans-
ferred. Our container setup takes about 0.8 seconds and is
independent of specified container size. The migration phase
takes substantially longer (10 - 13 seconds in our testbed for
a 500MB KVM) but can vary depending on memory page
activity during the migration process. Another factor in the
migration phase is interconnect speed. We currently use a
gigabit Ethernet interconnect and expect the migration to be
faster with a higher speed interconnect.

For single process applications, migration can be per-
formed at any time but additional consideration needs to be
given when migrating an MPI application as it is possible
for in-flight messages to be lost that are destined for a
process residing on a migrating KVM while its state is
frozen. In order to preclude such loss we have written a
MPI_Barrier wrapper that performs checks and cooper-
ates with our migration coordination entity (Section V-D) in
order to perform the migration at a barrier in such a way



that no messages will be lost. This results in some additional
overhead and the necessity to re-link an application in order
to use this facility. Without this mechanism, however, there
is the possibility for an application to hang indefinitely due
to lost messages.

IV. RESOURCE CONSIDERATIONS

When making decisions on process placement, it is im-
portant to take into consideration the utilization/state of as
many resources as possible. For instance, if one were only
to consider memory footprint and ignore the CPU load of an
application it would not matter on which processing element
any VM landed. In this case one might co-locate many VMs
on the same core of the same CPU. Though this may be
fine from a system memory perspective, it would clearly
impact the performance of the VMs as the one processing
element would have to time slice between all VMs, each
of which could only achieve a fraction of the performance
possible were it to reside alone on a processing element.
Likewise consideration of memory activity and the load that
will be put on the memory bus, network activity and both
the internal and external network loads, and all other shared
resources will be required in order to make sound decisions
about which resources should host which processes.

A. Utilization & Viewpoint

The information source also has a bearing on the validity
of the information and how it should be interpreted. The
effect of viewpoint on resource utilization measurements is
illustrated in Figure 1. CPU loads were generated for pro-
cesses running in KVM’s with single and multiple KVM’s
per core. The realized utilization obtained from calculations
using /proc/stat information from the KVM and the
Host are principally in agreement for 1KVM/core, however
the processes running in the virtualized environment with
multiple KVMs per core (VM view plotted as an average)
not only do not achieve their requested utilization levels
(except at levels below 25% in this case) but their sums
don’t equal the utilization reported by the host for the core
on which they are running. Our work load generator spends
a user specified fraction of a time interval in computation
after which a usleep is performed for the duration of the
interval. We performed this test using another generator [4]
as well with similar results.

In our prototype work (Section VI) we use the host
resource view of CPU and memory utilization (metrics
our fine-grained resource monitoring and characterization
system already collects) to inform placement decisions.

B. Scheduling and Resource Management Issues

In this section we discuss some issues in managing both
physical and virtual resources in a HPC environment with a
variety of workloads and how we address them.

Figure 1. Percent CPU utilization requested in a KVM vs. measured as
viewed on the host machine and within the VM. Requested utilization may
not be realized due to contention. Host and VM views may be inconsistent.

Resources would initially be allocated according to the
users’ specifications with the application run in a VM as op-
posed to directly on the hardware. Utilization measurements
could be provided to the user to inform future allocation
and also be used to trigger migration during run-time of
processes to more appropriately utilize resources especially
in the case of contention.

Where contention is observed, processes could be dynam-
ically spread out over more physical resources. Alternatively,
if resources were being lightly used, processes could be
consolidated onto fewer physical resources. As mentioned
previously, there are many factors to be taken into account
when calculating resource utilization and decisions to mi-
grate running processes should not be made too frequently or
with too little information. For instance, since the operational
characteristics of an application may vary dramatically over
phases of execution, making a decision to perform a con-
solidation too soon in an application’s execution sequence
may just result in having to make the decision to spread
it back out later on. Given the relatively high cost of
performing a migration, it should be done as infrequently
as possible. Communication of pertinent information from
the application to the system could enhance this process but
is not addressed in this work.

The dynamic nature of migration complicates resource
monitoring and management. The continuous evaluation of
resources of both physical and virtual entities with respect
to their job state means that dynamic tracking of the job-to-
resource mapping is required. Traditional schedulers do not
have the facility for adjusting job allocations at run-time. We
have implemented these features in our system (Section V).

V. SYSTEM DESIGN

In this section we discuss the component parts of our IaaS
enabled HPC system shown in Figure 2.



Figure 2. High level view of our prototype IaaS enabled HPC system.

A. Compute Resources

As important as the support systems is the hardware of
which the compute resources are comprised. In order for
virtualization to be viable in a HPC setting there must be
hardware support. Older systems lacking such support could
still take advantage of mobility but the lack of performance
due to computational overhead and lack of hardware I/O sup-
port for advanced networking technologies, i.e. Infiniband,
would render such systems ineffective for HPC applications.
Our particular testbed environment is comprised of ten nodes
each with 4 AMD 2.2 Ghz Istanbul processors with 32GB
of memory. In the examples shown we use our 1 gigabit
Ethernet interconnect.

B. Fine-Grained Scalable Monitoring and Analysis

Understanding how system resources are being utilized
both individually and collectively is of paramount impor-
tance when making resource allocation decisions. In a real
system this may mean real-time monitoring of tens to
hundreds of thousands of computational units and their as-
sociated computational load, memory usage and bandwidth,
network utilization, etc. as well as similar metrics for the
virtual machines running on them. Such monitoring must be
of high enough fidelity to allow timely decisions to be made
when resources are being severely oversubscribed or failure
is predicted but at the same time be lightweight enough to
not be a significant contributor to resource utilization.

In order to accomplish this we use OVIS [5], our mon-
itoring and analysis system which has been principally
developed to scalably collect and analyze just such data for
the purpose of failure prediction. OVIS utilizes a distributed
database for data storage and a lightweight daemon running
on, or on behalf of, each device for which data is to be
collected (compute node and VM in this case but can include
any devices of interest) which directly inserts information
at regular time intervals into the database. Parallel analysis
engines are used to compute models against which individual

or ensembles of measurements are compared for detection
of either anomalous behavior or signatures indicative of
problems. In this study, OVIS utilized data already being
collected for the purpose of failure prediction (memory and
CPU utilization) in order to compute resource utilization in-
formation and inform our Controller subsystem of both non-
failure related resource contention and impending failure.

C. Virtual and Physical Resource Management

We leverage the SLURM (Simple Linux Utility for Re-
source Management) [6] resource manager which is com-
monly used in HPC systems. SLURM provides facilities for
maintaining separate resource partitions; allocating resources
to jobs and launching batch jobs; running predefined prolog
and epilog scripts for setting up and cleaning resources; and
storing pertinent information about allocations and the jobs
running on them. SLURM can manage resources on a per-
node, per-CPU, and per-core granularity. We are currently
utilizing it in a per-node management mode to preclude an
application from obtaining resources within our managed
resource pool which would not be taken into account in the
resource utilization calculations.

As of this writing, however, SLURM (v2.0) does not
provide the ability for determining and tracking the dynamic
virtual to physical resource mapping we require. In our
prototype system, then, we maintain separate virtual and
physical partitions using SLURM, with virtual to physical
mappings maintained by our Controller. Since SLURM
does not allow revision of allocations after job launch the
Controller also tracks associations of new allocations with
existing allocations. Relatedly, though release of partial allo-
cations (e.g., those vacated post-migration) is not supported
by SLURM, such retained resources can be used by the
Controller for future allocations as appropriate.

D. Orchestration by the Controller

Figure 3. Interactions of the Controller.



At the heart of our system is our Controller whose
interactions with the monitoring and analysis system and the
resource management system are diagrammed in Figure 3. In
this diagram it is understood that OVIS is continuously mon-
itoring all pertinent hardware related measurable attributes
on each compute node of the system with some specified
periodicity and so has current information with respect to the
utilization of resources that can be returned to the Controller
upon request, or pushed to the Controller for predefined
conditions (e.g. resource contention, impending failure).

An allocation cycle begins with a user request which
is sent to the Controller rather than SLURM but using
generally the same syntax. Additional optional arguments
allow the user to specify how much memory he/she expects
each process to consume, a maximum packing density
(cores/CPU), and expected process to process bandwidth.
These arguments can be used by the Controller to make
the physical allocation request based on its evaluation of
the resources required to satisfy the request. For example,
if, in our system, the user requests 16 processors and has
specified an upper bound on memory of 1.8GB per process,
the Controller would request, based on how the physical re-
sources are interconnected within the actual compute nodes,
an allocation from SLURM that would allow placement of
4 processes per CPU (one per core) thus allowing it to
satisfy the user request while utilizing at most 8 GB per
CPU including host OS overhead.

Resource allocations from SLURM are issued to the
Controller and not to the user application. The Controller
maintains context on how the pool of resources under its
control are being utilized by user applications and makes
requests of SLURM on a compute node granularity though it
will allocate to user applications on a per processing element
granularity. This enables the higher-granularity allocation
that we seek while still enabling control over shared node-
level resources. It also enables the Controller to potentially
fulfill full or partial resource requests from the pool of
resources under its control rather than requiring a full new
allocation from SLURM. For instance, in the previous exam-
ple, if the Controller had 4 free CPUs on separate nodes in
its resource pool it would allocate these to satisfy the request
unless there were further constraints on this or previous
allocations, such as inter process bandwidth, that could not
be met under such an allocation. Under such circumstances
a new node would be requested from SLURM.

As part of the allocation step the Controller also contacts
OVIS with a request for actual resource utilization informa-
tion on the potential target resources in its pool. This informs
the Controller about resource usage not bounded by alloca-
tions, such as network traffic and memory bus utilization
(not currently being collected) as this could have significant
bearing on what additional resources may or may not be
effectively utilized if allocated. As previously mentioned,
there are many factors to be taken into account when making

resource utilization decisions, thus in our prototype extreme
generality of all requests and (re-)allocation scenarios is not
supported, but rather, a few common rulesets are applied.

After determining which physical resources will be al-
located to an application, the virtual environment is set
up. This is initiated by the Controller at which time the
maximum memory occupancy must be specified. Once the
KVM is launched the size cannot be changed without
destroying and rebooting it. That would require checkpoint-
ing the application and restarting it in the new containers
which is a very costly operation. The boot time of our
image is approximately 90 seconds, which is significant
overhead for short-lived applications. Fortunately migration
only takes approximately 10 to 20 seconds which provides
the opportunity to maintain a pool of idle VMs that can
be migrated to appropriate resources when needed. The
only issue is that of memory size which we expect can be
anticipated over a training period. In order to discover what
the true footprint of an application is, however, one must
query /proc/meminfo from inside the VMs as this is
opaque to the host. With KVM in particular we found that
upon initial launch the host reports relatively little memory
usage with respect to the maximum container size. Upon
live migration, however, the host reports the total KVM
container size as being used and migration will fail if the
maximum size exceeds available resources on the receiving
host even though the memory utilization on the original host
may have been relatively small (Section VI-A). For example,
upon launch using our OS and specifying a memory size of
2.0GB the original host sees about 250MB being used by
the KVM process. Upon migration the receiving host sees
the whole 2.0GB being used.

Once the VMs have been booted and are recognized by
SLURM the Controller submits the original job request to
SLURM for those virtual resources on behalf of the original
user and maintains the virtual-physical mapping.

Periodic data collection is used during run-time in as-
sessment of the state of actual resource utilization and, in
particular, contention. We plan such automated assessment
in order to minimize wall clock completion time for each job
and to maximize resource utilization and system throughput.
Currently this is in the experimental phase and is performed
for a subset of the potential resources as described in
Section VI-A. The detection by OVIS of failure indicators is
communicated to the Controller without request and is acted
upon as described in Section VI-B.

If, upon resource analysis, dynamic re-configuration of
resources is required, the Controller is responsible for ar-
ranging resources with the Resource Manager, launching
new containers, and performing the migration. For the case
of MPI-based applications, orchestration of the migration
is performed in concert with the MPI_Barrier wrapper
(Section III-B). New virtual-to-physical mappings are main-
tained by the Controller both for its resource tracking and



to enable continuous application-centric monitoring of the
dynamic environment.

Once a job completes or the time expires SLURM writes
out results as normal and informs the Controller which then
removes the virtual resources. At this point the Controller,
can return completely unused resources to the physical
resource pool or allocate them to some other application.

VI. EXAMPLES

We demonstrate our system in two scenarios. The first
is a case in which an application’s memory consumption
grows over time. Currently an application must wait in
the queue until resources are available to satisfy the total
required allocation. We demonstrate how our system can
utilize some aspects of KVM virtualization and migration to
give such an application earlier access to compute resources
than would currently be possible. The second uses OVIS’s
failure prediction based on a known failure mechanism to
migrate processes from an unhealthy to a healthy resource.

A. Speculative Oversubscription

In this example we describe the use of a characteristic
of the KVMs previously mentioned, i.e., that upon initial
launch they can present a smaller footprint to the host node
than their maximum allocated size. We use this feature
to speculatively launch a job that will oversubscribe the
physical resources if the processes running in the KVMs
utilize all allocated memory. This provides the application
with resources on which to run until either additional re-
sources come available or it requires additional resources
to continue. We demonstrate this by launching a sixteen
process job with each process requiring a maximum of 2GB
but with the known characteristic of needing that over time
and not requiring it all up front. Numa-maps output showing
the per-process memory in use is shown in Figure 4.

KVM’s are initially placed on 4 of the 6 available cores
for each CPU on a single node. OVIS continuously mon-
itors Active memory usage. The application continues to
consume memory as it progresses until OVIS detects that a
dangerously high Active memory level for a node is reached
(Figure 5(t)) and notifies the Controller. The Controller then
obtains free resources satisfying the application’s require-
ments, launches containers there, and informs the MPI-based
application of the need to migrate when a barrier is reached.
When the application informs the Controller via the barrier
wrapper that it is ready, the Controller migrates a single
KVM from each CPU to the new host leaving each CPU
hosting 3 KVMs (Figure 5(m and b)) with a maximum size
of 2GB which will fit within the directly connected memory
for each CPU. This is necessary because for performance
reasons we use numactl to bind each KVM to the memory
directly associated with the CPU on which it resides.

Time traces of the memory utilization for both KVMs
and nodes during this process are shown in Figure 6. In the

Figure 4. Numa-maps output of KVM size and location at allocation (t)
and after migration (b). Size at allocation is less than the max allowable.

Figure 5. Speculative oversubscription of resources is adjusted by
migration when contention is detected as the application progresses. OVIS
screenshot of nodes and cores showing memory utilization on the nodes
and of the KVMs. Triggering (t), during (m), and after (b) migration.

top plot the memory size of the KVMs obtained by OVIS
is plotted for 2 representative KVMs: one not migrated and
one before and after its migration. During the migration, size
is reported on both the initial and final resources, with the
final value reported that of the max container size, regardless
of the amount in use prior to migration. The bottom plot
shows the Active memory utilization for both the node being



migrated from and the node being migrated to. (Triggering
of the migration was set to occur when the Active memory
on the node exceeded 75% of its total). The migration time
can be seen to be about 50 seconds which corresponds to
the time it takes to transfer the 6GB (4 x 1.5GB) of state
from the first host to the second over a one gigabit/sec
interconnect. This would be about 5 sec using 10 GigE.

Figure 6. Memory utilization during a live migration triggered by excessive
memory consumption on the node. Utilization of KVM (t) node (b) (An
error in the y-axis label has been corrected in this version after publication).

B. Health Degradation

One of the common failures in one of Sandia’s production
HPC capacity clusters is a user application having an MPI
process on a compute node killed by the Linux “OOM killer”
process due to memory utilization being too high. In the case
that the user application consumes too much memory this
would be expected, but typically this happens on a compute
node that has been left in a state with high Active memory
from a previous job [8] and the rest of the process group on
other resources are well behaved. Killing of one MPI process
on one such ill-behaved resource kills the whole job.

In this example, we have simulated the failure precur-
sor condition by running an additional process on one of
the nodes. Our system continuously monitors the memory
utilization not only on a per-node basis, as above, but also
analyzes it with respect to all nodes involved in the job. Upon
detection of this pre-failure condition OVIS sends a message
to the Controller which then flags the affected processes (in

this case all processes on the node with the problem) to
notify them to let the Controller know when they are at
their next barrier so that the Controller can migrate their
host KVMs to a free node.

Figure 7 shows OVIS screenshots of our testbed running a
64 process MPI job during this example. Prior to migration
(l) the 2nd node from the bottom has much higher Active
memory (blue is higher, red lower) than those hosting the
peer processes (green). After migration (r) the amount of
active memory is a little higher in the new host (2nd from
top) as migration causes the total memory allocated to a
KVM to be used on the new host node (as in VI-A) while
the other nodes have not used memory up to their limit.

Figure 7. Detection of impending failure condition triggers migration
of the endangered processes (l). Migration is complete (r). Host memory
utilization and core CPU utilization shown in OVIS display.

VII. RELATED WORK

There has been substantial work in the area of virtual
resource management by cloud providers and others with
respect to relatively low performance usage models or where
a user is expected to set up and own an environment in
which they develop. Amazon’s EC2 [1] and Eucalyptus’s
open source version of EC2 [2] seem more targeted at
setting up virtual systems for developers with security,
service level agreements, and ease of custom configuration
by the user being priorities. The use cases for these sys-
tems, though they don’t preclude such use, don’t appear
to lend themselves well to the fluid, high throughput, and
relatively open environments typically being used for high
performance computing applications. The HPC users’ needs
may be different for each request and a lightweight virtual
infrastructure needs to be set up, used for the duration of an
application run that may last from seconds to months, and
then torn down. SLAs in commercial systems do not address
low level issues such as L3 cache contention, memory bus
contention, or any other of the data transport and storage
mechanisms internal to a compute node that must be shared
by co-located processes and can have a dramatic affect on
HPC application performance.

There has been work done in the area of process migration
both with [12] and without [16] the assistance of virtual



machines. The case for doing process level migration is that
it can be done by transferring much less state and hence
the time involved can be substantially less (sub-second vs.
seconds to tens of seconds). Additionally the impact to the
running application is much less as overhead associated with
such migration is typically only incurred at the time of
migration whereas the overhead of running in a virtualized
environment is incurred over the lifetime of the application.
The downside is that the application wishing to use it
must build with a particular MPI implementation. In recent
years, the overhead being reported (see [11], [12], [14],
[15] and references therein) for running HPC applications
in virtualized environments has substantially decreased to
the point where it is beginning to look attractive as an
environment for these applications. The main benefits would
be transparency with respect to physical location and the
ability to run in an environment quite disjoint from that
of the underlying physical resources. Nagarajan et. al. [12]
have done proof of concept work with respect to using a
virtualized environment to enhance fault tolerance through
proactive migration from unhealthy to healthy resources. In
this work they also investigate the overhead of running the
NAS parallel benchmarks in a virtualized environment using
Xen. The results of this study are that the average case
overhead is 4.4%. In the best case they actually see a slight
speedup which, pending further investigation, they attribute
to “memory allocation policies and related activities of the
Xen Hypervisor”.

Shainer et. al. [13] showed that proper relative placement
of application processes on shared hardware can decrease
wall time to completion for a set of applications on a given
hardware platform compared to running them disjointly due
to the difference in required resources of the applications.
With proper resource requirement analysis and placement,
contention for resources is minimized, as is wall time.

We rely on this disparate, but complimentary, background
work in our prototype system for enabling intelligent, dy-
namic resource utilization. Further, our own work in the area
of failure prediction in large scale HPC platforms [5] has
provided us with the monitoring and analysis component for
our system. We had previously proposed such a system for
enabling HPC in Cloud Computing Environments [9] and
now demonstrate a prototype with this work.

VIII. SUMMARY

We have described why we believe managing resources
in large scale HPC clusters can be made more efficient by
the use of the concept of IaaS together with mechanisms
for providing it such as virtualization technologies, scalable
monitoring and analysis, generalized resource management,
and a coordination mechanism to make them all work
together. We have described why systems such as Eucalyptus
and EC2 aren’t just drop in technologies for this job. We
have noted that typical HPC production system management

models do not provide the continuous fine-grained run-time
resource characterizations, nor the ability to dynamically
respond to them, that efficient management would require.
We have designed and implemented a prototype system
which we believe is a good basis for such functionality
and have applied our prototype system to some real world
scenarios (resource degradation and load balancing) using
an MPI application to demonstrate its applicability to the
HPC domain.

REFERENCES

[1] “EC2,” http://aws.amazon.com/ec2/.

[2] “EUCALYPTUS,” http://www.eucalyptus.com.

[3] “KVM,” http://www.linux-kvm.org.

[4] “LOOKBUSY,” http://www.devin.com/lookbusy/.

[5] “OVIS,” http://ovis.ca.sandia.gov.

[6] “SLURM,” https://computing.llnl.gov/linux/slurm.

[7] “XEN,” http://www.xen.org/.

[8] Brandt, Gentile, Mayo, Pébay, Roe, Thompson, and Wong,
“Methodologies for advance warning of compute cluster
problems via statistical analysis: A case study,” in Proc. 18th
ACM Int’l. Symp. on High Performance Dist. Comp. (2009
Workshop on Resiliency in HPC), 2009.

[9] ——, “Resource monitoring and management with OVIS to
enable HPC in cloud computing,” in Proc. 23rd IEEE Int’l
Parallel & Dist. Processing Symp. (5th Workshop on System
Management Techniques, Processes, and Services), 2009.

[10] Cao, Li, and Guo, “Process migration for MPI applications
based on coordinated checkpoint,” in Proc. 11th IEEE Int’l
Conf. on Parallel and Distributed Systems, 2005.

[11] Fenn, Murphy, and Goasguen, “A study of a KVM-based
cluster for grid computing,” in Proc. 47th Annual Southeast
Regional Conf. (ACM-SE 47), 2009.

[12] Nagarajan, Mueller, Engelmann, and Scott, “Proactive fault
tolerance for HPC with XEN virtualization,” in Proc. ACM
Int’l Conf. on Supercomputing, 2007.

[13] Shainer, Liu, Layton, and Mora, “Scheduling strategies for
HPC as a service (HPCAAS),” in Proc. IEEE Int’l Conf. on
Cluster Computing and Workshops, 2009.

[14] Tikotekar, Vallée, Naughton, Ong, Engelmann, Scott, and
Filippi, “Effects of virtualization on a scientific application
running a hyperspectral radiative transfer code on virtual ma-
chines,” in Proc. 2nd Workshop on System-level Virtualization
for High Performance Computing, 2008.

[15] Wang, Mueller, Engelmann, and Scott, “Proactive process-
level live migration in HPC environments,” in Proc. 2008
ACM/IEEE Conf. on Supercomputing, 2008.

[16] Zheng, Shi, and Kale, “FTC-CHARM++: An in-memory
checkpoint-based fault tolerant runtime for CHARM++ and
MPI,” IEEE Int’l Conf. on Cluster Computing, 2004.


