
Framework for Enabling System Understanding

J. Brandt1, F. Chen1, A. Gentile1, C. Leangsuksun2, J. Mayo1, P. Pebay1, D.
Roe1, N. Taerat2, D. Thompson1, and M. Wong1

1 Sandia National Laboratories, Livermore CA, USA,
brandt|fxchen|gentile|jmayo|pppebay|dcroe|dcthomp|mhwong@sandia.gov??

2 Louisiana Tech University, Ruston, LA, USA
box|nta008@latech.edu

Abstract. Building the effective HPC resilience mechanisms required
for viability of next generation supercomputers will require in depth un-
derstanding of system and component behaviors. Our goal is to build
an integrated framework for high fidelity long term information storage,
historic and run-time analysis, algorithmic and visual information explo-
ration to enable system understanding, timely failure detection/prediction,
and triggering of appropriate response to failure situations. Since it is un-
known what information is relevant and since potentially relevant data
may be expressed in a variety of forms (e.g., numeric, textual), this frame-
work must provide capabilities to process different forms of data and also
support the integration of new data, data sources, and analysis capabil-
ities. Further, in order to ensure ease of use as capabilities and data
sources expand, it must also provide interactivity between its elements.
This paper describes our integration of the capabilities mentioned above
into our OVIS tool.

Keywords: resilience, HPC, system monitoring

1 Introduction

Resilience has become one of the top concerns as we move to ever larger high
performance computing (HPC) platforms. While traditional checkpoint/restart
mechanisms have served the application community well it is accepted that they
are high overhead solutions that won’t scale much further. Research into alter-
native approaches to resilience include redundant computing, saving checkpoint
state in memory across platform resources, fault tolerant programming models,
calculation of optimal checkpoint frequencies based on measured failure rates,
and failure prediction combined with process migration strategies. In order to
predict the probability of success of these methods on current and future sys-
tems we need to understand the increasingly complex system interactions and
how they relate to failures.
?? These authors were supported by the United States Department of Energy, Office of

Defense Programs. Sandia is a multiprogram laboratory operated by Sandia Corpo-
ration, a Lockheed-Martin Company, for the United States Department of Energy
under contract DE-AC04-94-AL8500.

The OVIS project [13], at Sandia National Laboratories, seeks to develop
failure models that, combined with run-time data collection and analysis, can
be used to predict component failure and trigger failure mitigating responses
such as process migration, checkpointing, etc. OVIS [2, 3] is comprised of five
main components: 1) numeric data collection and storage infrastructure, 2) text
based information collection and storage, 3) numeric analysis and response, 4)
text based analysis, and 5) user interface and visualization. In this paper we
first describe the current OVIS infrastructure with respect to these components
including new capabilities for data/information gathering and interactive explo-
ration that have been recently developed, including integration of the Baler [5]
tool and development of Baler visualizations. Next we provide use case con-
text for its utility in enabling researchers to aggregate available system related
information into a single infrastructure and manipulate it to gain insight into
operational behaviors related both to normal and failure modes. We contrast
this with other currently available tools built for providing similar insight and
discuss their strengths and shortcomings.

2 Approaches

2.1 Numeric Information Collection and Storage

Numeric information is gathered from various sources in different ways as de-
scribed in these subsections. Storage however is all accomplished through inser-
tion into a distributed database where division of storage is done on the basis of
which compute node the information is being collected on behalf of (e.g. Node
A’s numeric information will be stored into the same database whether it is col-
lected raw from the node itself or harvested from log files stored on other servers.
Scalability of the system is accomplished via this distributed storage architecture
in that there is no duplication of raw information across the databases.

User-defined Samplers OVIS provides an interface by which the user can
write information samplers. The OVIS framework handles invocation of the sam-
plers and insertion of the resultant data into the OVIS database. OVIS is released
with samplers that process, for example, /proc, lmsensors [11], and EDAC [8]
data. Recent advancements include flexible regular-expression matching for dy-
namic discovery of data fields within known sources and of relative system com-
ponents to ease user development of samplers.

Samplers can collect data at regular intervals or be prodded to sample on
demand. Examples, motivated by a previous work where a system was insuffi-
ciently releasing claimed memory [1] include prodding a sampler to collect Active
Memory utilization during the epilog script of a job (to determine if memory was
released) or before the resource manager places a new job on a node (to deter-
mine if that node should be allocated or instead placed offline). An additional
sampler exists that can record a string into the database on demand. While the
current OVIS analyses operate on numeric data, this timestamped text data can
be used as a marker by which to guide analyses. For example, one could insert

markers for the entry and exit of a particular part of a code and then use that
information to determine the times for an analysis.

While these samplers currently run a database client on the nodes, we have
recently implemented a distributed metric service which propagates information
to the database nodes itself for insertion.

Metric Generator OVIS provides a utility called the Metric Generator
that enables a user to dynamically create new data tables and insert data. The
interface allows the user to specify optional input data, a user-defined script to
generate the additional data, and a new output data table. The script can operate
on both metrics in the database and on external sources. Examples include
a) scripts that grep for error messages in log files and insert that occurrence
into the database, thus converting text to numeric representations and b) more
sophisticated analyses, such as gradients of CPU temperature. This enables rapid
development of prototype analyses. These scripts can be run at run-time or after-
the fact still with the ability to inject data timestamped to be concurrent with
earlier data in the system.

Resource Manager Resource Manager (RM) data includes information
about job start and end times, job success/failure, user names, job names etc.
OVIS does not collect RM data, but rather intends to natively interface to a
variety of RMs’ native representations. Currently, OVIS natively interfaces to
databases produced by SLURM [15] (and associated tools) and enables search
capabilities upon that data as described in Section 2.4.

2.2 Text Based Information Collection and Storage

Text based information is currently collected from three sources: resource man-
ager logs, syslogs, and console logs.

As OVIS is intended to natively interface with system resource managers
(Section 2.1), the only reason storage would be needed is if, for performance
reasons, the system administrators would prefer the RM’s database to be repli-
cated. Replication can be accomplished either to a separate RM database node
or to one of the database nodes being used for numeric storage depending on
the relative amount of activity in each.

OVIS uses LATech’s Baler [5] log file analysis engine as well as custom metric
generator scripts to interact with both syslog and console log files. Thus collec-
tion and storage of this information is performed in two ways and incurs the
cost of some redundancy for performance purposes. These log files are typically
stored in flat file format on a server associated with a particular HPC system.
Thus we periodically copy these files from the server to one of the database nodes
in our system as flat files.

2.3 Numeric Analysis

In order to provide a standard interface for development of new analysis engines
for manipulating numeric information and to leverage existing high performance

parallel analysis engines we adopted the visualization tool kit (VTK) statistical
analysis interface. Current analysis engines available in OVIS are: descriptive
statistics, multi-variate correlation, contingency statistics, principal component
analysis, k-means, and wear rate analysis. These analyses allow the user to un-
derstand statistical properties and relative behaviors of collected and derived
numeric information which can in turn provide insight into normal vs. abnormal
interactions between applications and hardware/OS. These analysis engines can
be accessed via a python script interface, or a high performance C++ interface
either directly or through OVIS’s GUI. Additionally the user can write scripts,
described in Section 2.1, that manipulate numeric information from any source.

2.4 Text Based Analysis

Resource Manager RM information analysis capabilities include the ability
to search on various quantities such as user name, job end state, resources par-
ticipating in a job etc; and drill-down graphical capabilities for displaying the
distribution of users, end states, etc. for a set of jobs; and some basic statistics
for a set of jobs such as size and duration for a set of jobs. In general, such infor-
mation is insufficient as a sole source of exploratory information. For example,
in the out-of-memory analysis [1], the on-set of the problem condition actually
occurs during jobs that successfully complete, with job failure as a longer-term
effect. The Resource Manager analysis capability rather is intended to provide
information that can be used to guide analysis. For example, an analysis of CPU
Utilization may be relevant only over the processors of a given job and for the
duration of that job; job failure information can be used to narrow down times
and nodes of interest in which to search.

Baler Log File Analysis Textual analysis is provided within OVIS via in-
tegration of the Baler [5], a tool for log file analysis. Baler discovers and extracts
patterns from log messages with the goal of reducing large log data sources into
a reasonable number of searchable patterns. Its algorithm is efficient compared
to existing log analysis tools in that it requires only one pass as opposed to con-
tingency statistics algorithms which require several passes over the data. Baler
generates patterns based on message context resulting in deterministic output
patterns irrespective of input data variance, unlike contingency statistics algo-
rithms which depend upon the variance. This results in a consistent pattern rep-
resentation for a given message over time, facilitating consistent understanding
over long-term data exploration. Baler stores pattern representations as unique
numbers; such time-pattern-number tuples are consistent with the OVIS metric
data storage. Thus complete integration of OVIS and Baler will enable the same
statistical analysis and visualization capabilities for log file analysis as OVIS
currently supports for its numerical data.

3 Applications

This section describes use of OVIS integrated, interactive capabilities to enable
system understanding.

Fig. 1: OVIS-Baler integration user interface. The OVIS-Baler integration pro-
vides interacting capabilities for log pattern analysis and visualization, numer-
ical data analysis and visualization, and job log search.

System diagnosis of precursor to failure In previous work [1], we demon-
strated a statistically discoverable precursor to failure exists for one of our clus-
ters. Proof of that the discoverable condition was related to failure required cross
reference with job and log data. At the time, this cross referencing was a manual
process, not integrated within OVIS. We have developed the additional capabil-
ities within the OVIS framework to enable the required cross referencing with
job and log data.

This is illustrated in Figure 1 which is the screenshot of the integrated ca-
pabilities addressing system data exploration. Zoom-ins on various sections are
presented in the subsequent figures. In the lower right and in Figure 2, the log
search is used to investigate the status of jobs. Note that while the highlighted
job completes, subsequent jobs on Glory 234 fail. In the upper left and in Figure 3
(top), the Baler patterns are displayed. Results for both the oom-killer and the
out of memory patterns are displayed. In previous work [5], the Baler pattern
for oom-killer was presented, contrasting with other tools where the pattern
was either missed or presented in a redundant fashion so that it was difficult
to determine the number of oom killer events. The ability of Baler to discover
patterns, as opposed to merely enabling filtering on pre-defined patterns makes
it possible to obtain understanding for this problem that might have otherwise
been missed. The occurrences of the patterns with node and time information are
displayed in the upper right and in Figure 3 (bottom). No error messages with
these patterns occur during the completed job, however the error messages occur
during the subsequent failed job, as is explicitly presented in the mouse over.
The lower left and in Figure 4 includes the OVIS display where system data can

Fig. 2: OVIS Resource Manager (RM) view. Job information is search-
able and is shown. Selecting a job automatically populates an analysis
pane and the 3D view with job-relevant data (Figure 4).

be displayed on a physically accurate representation of the cluster. Job-centric
views are supported as in this figure where the highlighted (completed) job in
the job-search display is dropped upon the physical display, limiting the col-
ored nodes to only those participating in the job. It is seen that one of the nodes
(Glory 234, colored red and circled) has significantly higher Active Memory than
any of the other nodes participating in the job. Scrolling through time indicates
that the node has high Active Memory, even during idle times on the node, and
during the subsequent failed job.

Note that any one data source is insufficient to understand the entire situa-
tion. The Resource Manager data shows that there may be a problem on Glory
234, but it does not elucidate the cause of the problem. The log data shows that
a possible cause of job failure is an out of memory condition on Glory 234, but it
does not indicate the onset of the problem, nor if this is this due to a naturally
occurring large demand for memory. The physical visualization with outlier in-
dication shows the onset and duration of the abnormal behavior on the node,
but does not directly tie it to a failure condition. The combination of all three
pieces, each providing a different perspective and each working upon a different
data source is necessary for overall system understanding. (this is in contrast to
the condition detection itself, which can be done purely by statistical means).

Alternative views of similar information In some cases the same or similar
information is available, but through different sources or in different formats.
For instance the Error Detection and Correction (EDAC) [8] Memory Controller
(MC) driver module provides an interface to DIMM error information. This in-

Fig. 3: Baler Pattern view (top) provides search capabilities and drill
down viewing of wild card values. Out of Memory related meta-
patterns, determined by Baler are shown. Baler Event view (bottom)
shows color coded events in time and space. Mouseover highlights
and displays message patterns. Some messages for the out of memory
condition on a node are shown.

Fig. 4: OVIS physical cluster display. An outlier in Active Memory
is seen (red, circled) across nodes in this job (colored nodes). Job
selection in the RM view (Figure 2) automatically populates a) the
analysis pane with relevant nodes and time and b) the 3D view with
nodes.

formation is made available through system files, command line interface, and
in the syslog files. In the system file representation a separate file is written for
each row and channel, which can be mapped to slots for DIMMS and/or physi-
cal CPU sockets. Each of these files (e.g., .../edac/mc/mcX/csrowY/ue count)
containers counters of errors that have occurred. This same information can
be extracted via the command line calls. In the syslog output, such errors
are reported as: Feb 20 12:41:22 glory259 EDAC MC1: CE page 0x4340a1,
offset 0x270, grain 8, syndrome 0x44, row 1, channel 0, label DIMMB
2A: amd64 edac. Thus presenting the row, channel, DIMM, and error catego-
rization, but in a different format.

In OVIS the same innate information is harvested from the two different
sources, and it is processed in complimentary and different fashion. Baler reduces
specific occurrences of this pattern to: EDAC *: CE page * offset * grain *,
syndrome * row * channel * label * *: amd64 edac with the * indicating
wild card entries. This enables the user to get the number and, in the display,
the node-level placement of the memory errors with respect to time. However,
it hides the exact mapping to the hardware. While that information could be
extracted, such a procedure would be antithetical to the goal of Baler, which
seeks to provide pattern information to the user without requiring input on the
message format. In contrast, OVIS samplers collect the EDAC information via
the file sources inherently with the hardware associations. OVIS is capable of
presenting this information at the socket of DIMM level. In general OVIS will
collect and enable investigation at as high a fidelity representation of the display
as the user cares to provide.

4 Related Work

There has been much work done and various tools built within the HPC com-
munity with respect to information collection, analysis, and visualization some
of which we describe here. In each case, however, only a portion of the wealth of
information available has been harvested and hence the understanding that can
be realized is limited. By contrast we seek through the OVIS project to create an
integration framework for available information and tools to, through knowledge
extraction and system interaction, build more resilient HPC platforms.

Both Ganglia [9] and VMware’s Hyperic [10] provide a scalable solution to
capturing and visualizing numeric data on a per-host basis using processes run-
ning on each host and retrieving information. While Ganglia uses a round robin
database [14] to provide fine grained historic information over a limited time win-
dow and coarser historic information over a longer time Hyperic uses a server
hosted database. Each retains minimal information long term. While Hyperic,
unlike Ganglia, supports job based context in order to present more job centric
analysis or views, neither has support for complex statistical analysis. Ganglia
is released under a BSD license making it an attractive development platform
while Hyperic releases a stripped down GPL licensed version for free and a full
featured version under a commercial license.

Nagios [12] is a monitoring system for monitoring critical components and
their metrics and triggering alerts and actions based on threshold based direc-
tives. It provides no advanced statistical analysis capability nor the infrastruc-
ture for performing detailed analysis of logs, jobs, and host based numeric metrics
in conjunction. Nagios Core is GPL licensed.

Splunk [16] is an information indexing and analysis system that enables ef-
ficient storage, sorting, correlating, graphing, and plotting of both historic and
real time information in any format. Stearley et al give a variety of examples
of how Splunk can be used to pull information from RM’s, log files, and nu-
meric metrics and present a nice summary including descriptive statistics about
numeric metrics [4]. Some missing elements though are numeric data collection
mechanisms, spatially relevant display, and a user interface that facilitates drag
and drop type exploration. Like Hyperic, Splunk provides a free version with
limited data handling capability and limited features as well as a full featured
commercial version where the cost of the license is tied directly to how much
data is processed.

Analysis capabilities outside of frameworks exist. Related work on algorithms
for log file analysis can be found in [5], as the algorithmic comparison is not
directly relevant to this work. Lan et al have explored use of both principal
component analysis and independent component analysis [7] [6] as methods for
identifying anomalous behaviors of compute nodes in large scale clusters. This
work shows promise and would be more useful if the analyses were incorporated
into a plug and play framework such as OVIS where these and other analysis
methods could be easily compared using the same data.

5 Conclusions

While there are many efforts under way to mitigate the effects of failures in
large scale HPC systems, none have built the infrastructure necessary to explore
and understand the complex interactions of components under both non-failure
and failure scenarios nor to evaluate the effects of new schemes with respect to
these interactions. OVIS provides such an infrastructure with the flexibility to
allow researchers to add in new failure detection/prediction schemes, visualize
interactions and effects of utilizing new schemes in the context of real systems
either from the perspective of finding when prediction/detection would have
happened and validating that it is correct or by comparing operation parameters
both with and without implementation of such mechanism(s).

References

1. Brandt, J., Gentile, A., Mayo, J., Pebay, P., Roe, D., Thompson, D., Wong, M.:
Methodologies for Advance Warning of Compute Cluster Problems via Statistical
Analysis: A Case Study. Proc. 18th ACM Int’l Symp. on High Performance Dis-
tributed Computing, Workshop on Resiliency in HPC, Munich, Germany (2009).

2. Brandt, J., Gentile, A., Houf, C., Mayo, J., Pebay, P., Roe, D., Thompson,
D., Wong, M.: OVIS-3 User’s Guide. Sandia National Laboratories Report,
SAND2010-7109 (2010).

3. Brandt, J., Debusschere, B., Gentile, A., Mayo, J., Pebay, P., Thompson, D., Wong,
M.: OVIS-2 A Robust Distributed Architecture for Scalable RAS. Proc. 22nd IEEE
Int’l Parallel and Distributed Processing Symp., 4th Workshop on System Man-
agement Techniques, Processes, and Services, Miami, FL (2008).

4. Stearley, J., Corwell, S., Lord, K.: Bridging the gaps: joining information sources
with Splunk. Proc. Workshop on Managing Systems Via Log Analysis and Machine
Learning Techniques, Vancouver, BC, Canada (2010).

5. Taerat, N., Brandt, J., Gentile, A., Wong, M., Leangsuksun, C.: Baler: Determin-
istic, Lossless Log Message Clustering Tool. Proc. Int’l Supercomputing Conf.,
Hamburg, Germany (2011).

6. Lan, Z., Zheng, Z., Li, Y.: Toward Automated Anomaly Identification in Large-
Scale Systems. IEEE Trans. on Parallel and Distributed Systems 21 (2010) 174-187.

7. Zheng, Z., Li, Y., Lan, Z.: Anomaly localization in large-scale clusters. Proc. IEEE
Int’l Conf. on Cluster Computing (2007).

8. EDAC. Error Detection and Reporting Tool see, for example, Documentation in the
Linux Kernel [linux/kernel/git/torvalds/linux-2.6.git]/Documentation/edac.txt.

9. Ganglia. http://ganglia.info.
10. Hyperic. VMWare. http://www.hyperic.com.
11. lm-sensors. http://www.lm-sensors.org/.
12. Nagios. http://www.nagios.org.
13. OVIS. Sandia National Laboratories. http://ovis.ca.sandia.gov.
14. RRDtool. http://www.rrdtool.org.
15. SLURM. Simple Linux Utility for Resource Management.

http://www.schedmd.com.
16. Splunk. http://www.splunk.com.

