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Abstract—Accurate failure prediction in conjunction with
efficient process migration facilities including some Cloud
constructs can enable failure avoidance in large-scale high
performance computing (HPC) platforms. In this work we
demonstrate a prototype system that incorporates our prob-
abilistic failure prediction system with virtualization mecha-
nisms and techniques to provide a whole system approach to
failure avoidance. This work utilizes a failure scenario based
on a real-world HPC case study.
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I. INTRODUCTION

Commercial cloud offerings rely heavily on virtualization
technologies and redundancy to provide reliable customized
compute environments tailored to a specific customer needs
(e.g., [1]). These environments are well suited to software
development work, web hosting, and even some embarrass-
ingly parallel types of applications that have traditionally
been run on high performance compute (HPC) platforms.
The current interconnects and individual resource reliability
in these environments, however, don’t lend themselves to
the kind of tightly coupled MPI applications that typify
today’s large scale scientific applications being run on HPC
platforms which are specifically designed for these appli-
cation’s requirements (e.g. high reliability, fast processors,
high bandwidth low latency interconnects, etc.).

High performance compute platforms, though they are
tailored to the requirements of large scale scientific ap-
plications, are becoming increasingly less efficient due to
stable failure rates of the large number of components.
The problem is that no matter how reliable an individual
component may be, as long as it is less than 100%, the
reliability of a pool of such resources taken as an aggregate
decreases as the number in the pool becomes large. This
decrease in reliability ultimately implies a required increase
in checkpoint frequency and corresponding decrease in effi-
ciency as time spent in checkpointing doesn’t contribute to
the solution.

It is expected that further scaling of platforms (beyond
peta-scale) will require mechanisms to deal with the pro-

jected short mean time to failures over such large pools of
resources [2]. While there are efforts under way to design
more fault tolerant programming methods [3] there is sig-
nificant investment in current MPI based applications which
will still be required to run at significant scale on platforms
for the foreseeable future and hence be affected by these
issues. To date most application related fault tolerance work
has been in the form of more efficient checkpoint/restart
schemes which has in some cases significantly increased
application throughput [4].

The work presented in this paper is based on the premise
that if failures can be reliably predicted with sufficient
lead time, wasted time spent in speculative checkpointing
could be dispensed with or largely reduced. Instead, affected
resources could be replaced with good ones where possible
and an application would checkpoint only when explicitly
flagged to do so by the predicting system or speculatively
based on a much longer mean time to interrupt driven by
such things as human error and acts of nature. In this work
we explore the use of some Cloud constructs (Infrastructure
as a Service (IaaS) and virtualization) in conjunction with
resource failure prediction to facilitate migration of tradi-
tional MPI based processes from failing to healthy resources
without checkpoint/restart (though this mechanism is not
precluded).

The reasons for utilizing virtualization are twofold: 1) the
virtual machine provides a nice process state container that
can be appropriately placed and dynamically migrated within
the pool of real resources transparently to the application.
2) The computational infrastructure can be configured and
maintained independent of the underlying platform configu-
ration. While there is still overhead associated with the use
of virtualized resources, it has been greatly reduced through
hardware support and there is promise of further reduction
in the future. With sufficiently reliable failure prediction
mechanisms driving migration, the overhead of virtualization
has only to be less than that of the checkpoint/restart
mechanisms for this to be viable as a failure avoidance
mechanism.

In this work we demonstrate use of a prototype system for



migrating running MPI processes from a resource (compute
node in this case) for which failure is predicted to a known
good resource. We include methodologies, constraints, and
scaling concerns. Our failure scenario is based on previous
work in which we identified precursor behavior for one
of our production system’s main failure modes (out of
memory) [5]. In particular we utilize automated detection
of such behavior to trigger the migration, in a way that is
transparent to the application, of all MPI processes off a
resource identified as likely to fail.

This paper is divided as follows: This section gave an
introduction, background, and motivation for this work,
Section II discusses our approaches and methodologies, Sec-
tion III presents results using our prototype system applied to
a failure scenario based on a real-world HPC cluster failure
case study, Section IV discusses related work, and Section V
summarizes.

II. APPROACHES AND METHODOLOGIES

There has been work, as described in Section IV, on many
aspects of resilience (e.g. component failure prediction, re-
source pool mean time to failure prediction, migration based
on failure prediction both with and without virtualization,
etc.). Our work in this area takes a systems approach which
integrates failure prediction, both physical and virtual re-
source management, MPI, and a coordination system. Using
our prototype system we demonstrate allocation of physical
resources, deployment of virtual computational resources to
meet an MPI application’s needs, detection of pre-failure
conditions, and migration of virtual resources to new physi-
cal resources in response. The migration is instigated and
occurs transparently to the running application. To build
this integrated capability we wrote a skeleton Resource
Manager which carries knowledge of both physical and
virtual resources and their relationships to running appli-
cations. We also constructed a Controller to interact with
the Failure Prediction system, the Resource Manager, and
the applications in order to orchestrate migration of virtual
resources based on failure prediction. Additionally we wrote
an MPI Barrier wrapper to interact with the Controller in
order to initiate migration at an appropriate time for an MPI
application so as not to lose in-flight messages.

A. Prototype System

Our prototype system in Figure 1 is comprised of 1) a
testbed of compute nodes identical to those used in our
production systems, 2) a skeleton Resource Manager which
manages both physical and virtual resources, 3) our OVIS
data collection, analysis, visualization, and response tool [6],
[7], and 4) a Controller responsible for orchestrating the
migration of virtual machines (VMs) and their processes
from one location to another on the basis of input from
the OVIS monitoring system. In the next subsections we

Figure 1. Components in a system to enable pre-failure process migration.

discuss in detail each of these blocks’ functionality and
known limitations.

B. Base Testbed Components

Our testbed consists of ten diskless quad CPU 2.2Ghz
AMD Istanbul (6 core) nodes. The interconnects are 4x
DDR Infiniband (IB) and Gigabit Ethernet. In this prototype
deployment we utilize the Gigabit Ethernet interconnect as
we don’t currently have the virtio drivers working for the
IB network. This would be a limitation with respect to the
performance of the MPI code but since this particular work
is focused on a system to facilitate failure avoidance through
migration and not performance (which we will address in the
future) it is immaterial. On all hosts we run a Redhat linux
2.6.27.21 distribution.

With respect to the virtualized environment we are using
Kernel Virtual Machines (KVM) [8] KVM-86, qemu-0.10.5,
and libvirt-0.7.0. We boot the KVMs using a OneSis image
(currently same as the host image) that resides on an NFS
server. When launching or migrating the KVMs, numactl [9]
is used to bind the processes associated with a KVM to a
specific core and the memory region associated with that
core’s CPU for both performance and stability reasons. We
have written a custom piece of code for launching, live
migrating, and removing KVMs that also takes care of
virtual network interface setup and teardown on the hosts
as well as maintaining current state on all KVMs.

C. Software Components

The Resource Manager maintains a “free” resource pool,
a mapping among {job, virtual resource allocation, and
physical resources hosting the virtual resources}, and a
“defunct” resource pool. It also performs initial launch of
VMs onto physical resources on behalf of an application,
starts an mpd ring [10] on the VMs, and launches an MPI
application on the VMs. Details of management of the vir-
tual resources are explicitly handled by the Virtual Resource



Manager which is a part of the Resource Manager. The
Virtual Resource Manager, using the custom code mentioned
above, performs the per-KVM launch, migrate, and tear-
down on the specified resources, sets up and tears down
the network environment, and maintains a state directory
for each VM. The Virtual Resource Manager is used by the
Resource Manager to launch or tear down a pool of KVMs
and by the Controller to perform live KVM migration.

OVIS, originally built as a research tool for large scale
computer system data collection and analysis, is able to
scalably collect metric data, such as memory statistics,
voltages, and resource utilizations and perform various types
of analyses on this data in order to develop characteristic
probabilistic models. Real-time data can then be compared
against applicable models to drive inference about compo-
nent health and failure prediction. When the OVIS analyses
indicate impending failure for a particular component or ag-
gregation of components, OVIS sends a notification message
to the Controller. Additionally OVIS is informed (currently
a manual operation) of the change in the resource pool
membership being monitored on behalf of the application as
soon as the migration to a new resource has been completed.

The function of the Controller is to coordinate migration
of processes among physical resources (in this case from
failing resources to a healthy ones). Once the Controller has
been notified by OVIS of an impending resource failure it
initiates migration of the affected MPI processes. In order
to preclude loss of packets in flight this is done in several
steps as described in Section II-D.

D. Migration Process

1) The Controller writes flag files on a per job id basis to
a known location in the Controller’s file system that
will inform MPI processes (when checked at a barrier),
which, if any, processes in a given job will need to be
migrated.

2) The Controller contacts the Resource Manager to
acquire new physical resources to host the affected
MPI processes.

3) An MPI Barrier wrapper directs each rank, upon
passing a barrier for the nth time (n settable by the
user and set to 1 for the purpose of this work), to
check for notification of the need for a migration of
any associated MPI process. The flag files written by
the Controller are read by Rank0 at the barrier and
shared with all processes in MPI COMM WORLD.
For a given process, if no migration of any process
in its job group is required, the process continues to
its barrier. If migration of a process in a job group is
required but the affected processes do not include the
reading rank, then the process continues to its barrier.
If migration of a process in a job group is required
and the affected processes do include the reading rank,
then the process notifies the Controller that the KVM

hosting that process is ready to be migrated (this is a
blocking call). Upon return the reading rank continues
to its barrier.

4) When a Controller receives notification that a process
is ready to be migrated, the Controller initiates migra-
tion of the KVM hosting the process that has notified
it.

5) Upon successful migration of all affected KVMs in
a job group, the Controller returns notification of
completion to each affected MPI process (at which
time the affected process continues to its barrier).

6) Upon successful migration of all KVMs from the af-
fected resource(s) the Controller notifies the Resource
Manager to remove the resource(s) from the “free”
pool for inspection and repair.

E. Known Limitations and Issues

Scalability: In this deployment every MPI Barrier call
results in the rank0 process setting a semaphore, moving
a file, releasing a semaphore and making two MPI Bcast
calls in order for each rank to determine if a migration
is required. This can be made lower impact by increasing
the ratio of barriers to checks (application dependent) as
well as by having the Controller push the flag information
to the appropriate KVM. Rank0’s location would have to
be sent to the Controller perhaps by an MPI Init wrapper.
Using semaphores around flag writes and reads generates
extra overhead but is required in our prototype system
to guarantee data corruption doesn’t occur due to race
conditions which we experienced before implementing the
locks. In our prototype in-flight barrier messages could still
occur during migration on large scale deployments due to
propagation delays and barrier messages getting misrouted
during the final phase of migration.

Other: The KVM images used in this deployment take 90
seconds to boot. Because we build the virtual infrastructure
for an application at the time it is to be launched, each
application must wait an initial 90 seconds, independent of
the number of resources required or the time it will be run,
to start. For small, short lived applications this is too much
overhead and could be mitigated by maintaining a pool of
VM’s to be allocated as real resources currently are.

III. PROOF OF CONCEPT DEMONSTRATION

To demonstrate the utility of our prototype system, we
emulate, on our testbed, a precursor symptom to a major
failure mode which occurs on one of our production sys-
tems. The failure scenario [5] is summarized below and is
used here for illustrative purposes as it represents a real-
world problem that can be detected and mitigated using the
functionality of our prototype system.

In this scenario, active memory usage on a compute node
becomes abnormally high, independent of memory being
used by an application, resulting in less available memory



for future processes that are allocated this resource. When
the memory usage on the node finally exceeds a threshold,
the linux OOM Killer is invoked which may kill a user’s
application or system process(es) and cause the premature
termination of a user’s application. This can occur even when
the application’s memory usage is only a small fraction of
the total memory on a host compute node.

In our emulation, we ran a background process that tied
up half of the memory on one of the eight compute nodes
used to host a 64 process MPI application. We choose not
to detect this condition during idle time, as suggested in [5],
as the threat it poses is application dependent. Within our
system, OVIS continuously monitors memory utilization on
the compute nodes in order to detect a plausible threat of
application failure. We used a two factor analysis in OVIS to
discriminate between this failure scenario and one in which a
(well-balanced) application naturally requires a lot of mem-
ory: 1) Any single node with less than 75% Active memory
utilization is not further evaluated for potential failure. This
number was arbitrarily chosen for demonstration purposes;
in an actual system such a threshold would most likely be
determined empirically. 2) Nodes exceeding the threshold
are further examined to determine if they are anomalous with
respect to other compute nodes running the same application.
For illustrative purposes we call anomalous anything ex-
ceeding a probabilistic threshold of two standard deviations
above the mean for the group of nodes participating in the
application run. This threshold is again a parameter that
would in practice be set based on empirical measurements.
Note that this assumes the application spans enough compute
nodes that such a statistical evaluation is possible. This is
a realistic assumption for many jobs on a reasonably large
capacity HPC system.

Figure 2 is composed of the visual output of OVIS
showing our testbed before, during, and after the migration
process from top to bottom respectively. There are three
types of components shown: nodes (the largest components
in the rack), CPUs (4 per node), and cores (6 per CPU). Here
only the nodes and cores are colored by a display attribute.
For the nodes this attribute is Active memory scaled from
0GB at the red end to 32GB at the blue end (32GB is the
total for a compute node). The cores are colored by CPU
utilization with 0 again being red and full utilization being
blue.

At the beginning of the scenario compute nodes cn[1-8]
are being used to host 2 KVMs per CPU which each hosts
one MPI process of a 64 process job. We use numactl [9] to
tie each KVM to a particular core and the memory region
associated with its core’s CPU. This association can be seen
in the figure where each CPU block shows 2 cores with
relatively high utilization. The second node from the bottom
(cn2) has the additional background process running that
ties up memory and can be seen as a third active core
in a CPU block in the top and bottom screen shots. This

Figure 2. OVIS display showing Active Memory values on the nodes
and CPU Utilization (scaled) on the cores. (t) OVIS discovery of abnormal
memory utilization on a node (2nd from bottom) relative to the job group
triggers OVIS to send a message to the Controller of impending node failure
which in turn (m) instigates migration of the endangered resources to a new
node (2nd from top). During live migration, both the original and the new
cores are in use. Migration is complete (b).



process ran on the host and was not tied to a particular
core. The blue color of cn2 (t) shows that it has passed
the 75% threshold. It can be seen from the screen shots
that cn2 is additionally using a good deal more memory
than the other nodes in the job group. When OVIS deter-
mines that both of the aforementioned criteria have been
met it informs the Controller which informs the affected
processes, initiates new resource allocation and KVM setup
and, when informed of readiness, coordinates migration on a
per process granularity. The middle figure shows the system
in transition with KVMs being migrated from cn2 to cn9.
Finally all KVMs are successfully migrated to cn9 (b) and
the affected MPI processes are allowed to drop through to
their barriers at which time the barrier is complete across all
MPI processes and the application continues. Note that the
Active memory of cn9 is higher than for the others. This
is due to how the live migration was carried out and that
the migrated KVMs now occupy their maximum memory
footprint. Though this could, under the right circumstances,
trigger subsequent migrations without further checks, these
are simple checks to implement and are not addressed here.

IV. RELATED WORK

In this section we discuss both work related to specific
components of our prototype system and other system ap-
proaches.

A. Failure Prediction

While there have been many papers about how reliable
failure predictors could enhance the resilience of large scale
HPC platforms, most of this work has been in the area
of trying to model failure trends for use in checkpoint
frequency calculations (e.g., [2], [11], [12]). Schroeder has
done significant work on looking at disk failure trends and
predictors [13] as well as those for DRAM [14]. There
are also several bodies of work on using system log files
(e.g., [15], [16]) to find predictors though these have been
more successful in helping to identify the causes of failures
than in discovering actionable precursor behaviors.

B. Checkpoint Restart Strategies

Though the work in this area may not be directly applica-
ble to any of the system components discussed in this paper
this is certainly complementary work and, until such time as
accurate and effective prediction strategies are discovered,
this will probably continue to be the main fault tolerance
mechanism for some time. There are numerous methods
(e.g. [4], [17]) for more efficient checkpointing using system
memory to store the checkpoint state. Though this is fine
for some applications, it requires the running application
to have a substantially smaller footprint as checkpoint state
can require significant memory resources. Oliner et. al. [18]
take an interesting and related approach as they allow
the system to work in cooperation with the application

to take checkpoints at convenient places in the execution
and dependent on the systems view of the likelihood of
failure. This methodology would derive maximum benefit
from good resource health metrics but in their absence
degrades to checkpointing at places of convenience for the
application. This has similarity to our system in that both
provide mechanisms for cooperation between the system and
application in taking action.

C. Virtualization Overhead and Migration Strategies in
HPC Applications

There are a host of papers on this subject (e.g., [19],
[20], [21]) as transparent targeted process migration is
very appealing given the alternative of saving all state and
performing application restarts. The overhead numbers seem
to range from 60% [22] to actually achieving a speedup [23].
Consensus seems to be, however, that virtualization technol-
ogy and the process mobility it provides is, or will be, viable
for HPC applications in the near future. The component that
is lacking in this work is an accurate and effective prediction
component.

D. Complete System
Nagarajan et. al. [23] take a systems approach to this and

even incorporate a “proactive fault tolerance daemon” which
does health monitoring, load balancing, and decision making
for virtual machine (VM) migration. What is missing in this
work are viable health metrics beyond the known thresholds
which suffer from the problem of typically having to be set
so high that by the time they are crossed it is too late to
react and if they are set low enough to allow reaction time
there can be significant numbers of false positives which
can result in unnecessary moves and associated overhead.
The significant differences between this work and our own
are our probabilistic approach to health monitoring and
our system for notifying a MPI process of the desirability
for migration but then allowing it to request a migration
when it reaches an MPI barrier. The latter requires re-
linking of the application code with our wrapper code. The
Charm++ project [3] is a programming language approach
that supports object migration for both load balancing and
fault tolerance.

V. SUMMARY

In this work, we have demonstrated a prototype system
that utilizes some Cloud constructs (IaaS and virtualization)
in conjunction with failure prediction to facilitate MPI-based
application failure avoidance in a manner that is transpar-
ent to the application. Specifically, our system performs
prediction-driven live migration of MPI processes running
in virtual machines to healthy resources obtained from the
resource manager. Our proof of concept work presented
here used emulation of a real life failure scenario found in
production systems in order to illustrate the utility of such
a system for failure avoidance.
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