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Abstract

Effective failure prediction and mitigation strategies in
high-performance computing systems could provide huge
gains in resilience of tightly coupled large-scale scientific
codes. These gains would come from prediction-directed
process migration and resource servicing, intelligent re-
source allocation, and checkpointing driven by failure pre-
dictors rather than at regular intervals based on nominal
mean time to failure. Given probabilistic associations of
outlier behavior in hardware-related metrics with eventual
failure in hardware, system software, and/or applications,
this paper explores approaches for quantifying the effects of
prediction and mitigation strategies and demonstrates these
using actual production system data. We describe context-
relevant methodologies for determining the accuracy and
cost-benefit of predictors.

1 Introduction

While many research studies have quantified the ex-
pected impact of growing system size, and the associ-
ated shortened mean time to failure (MTTF), on applica-
tion performance in large-scale high-performance comput-
ing (HPC) platforms, there has been little if any work to
quantify the possible gains from predicting system resource
failures with significant but imperfect accuracy. This possi-
bly stems from HPC system complexity and the fact that, to
date, no one has established any good predictors of failure
in these systems. Our work in the OVIS project [2–7] aims
to discover these predictors via a variety of data collection
techniques and statistical analysis methods that yield prob-
abilistic predictions. The question then is, “How good or
useful are these predictions?” We investigate methods for

answering this question in a general setting, and illustrate
them using a specific failure predictor discovered on a pro-
duction system at Sandia.

2 Related work

Current MPI-based tightly coupled scientific simulation
codes are inherently susceptible to process failure, particu-
larly at large (tera-, peta-, exa-) scales with relatively short
mean time to failure (MTTF). While checkpointing was a
viable solution at smaller scale, it has become a significant
bottleneck at larger scale. Research to date in this area has
focused on optimizing checkpoint frequency using learned
statistical distributions of failures within a system. This has
been done at a system level using the learned MTTF to cal-
culate an expected MTTF for a given fractional pool of re-
sources [9]. There has also been work to determine MTTF
on a per-node granularity, which can then be used to calcu-
late a resource pool’s MTTF or to allocate resources based
on minimizing expected run time [15]. Work has also been
done with the goal of predictive failure analysis on a per-
resource basis using log-file analysis [16] as well as anal-
ysis of hardware-related metrics [4]. The utility of success
in such work would lie in using this information to inform
the system and application of impending failure, and to im-
plement mechanisms in both enabling preemptive action to
mitigate the consequences of the failure.

Work has also been done to investigate response method-
ologies without including an actual predictor. Scott et
al. [13] have quantified response times where failure re-
sponse consists of process-level virtual machine migra-
tion. Kalé et al. [8] have quantified the time savings of
their Charm++ fast restart protocol over traditional check-
point/restart. In general, such work does not include discov-
ery of a failure predictor and hence cannot include quantifi-



cation of prediction accuracy and cost.
Since to date there has been little success at identifying

plausible failure predictors in HPC systems, little has been
published on validation techniques for particular prediction
methodologies. Some work [11], with respect to hard drive
failures, uses receiver operating characteristic (ROC) curves
to display true vs. false positive prediction rates. Inclusion
of the cost of action/inaction is called out as what would be
used for decision-making, though no specifics are given as it
would vary depending on the actual installation. Vieira [17]
discusses the need for validation of failure prediction meth-
ods and posits that this could be accomplished by compar-
ing the precision and recall of various prediction algorithms.

Our preliminary formulation of failure prediction as a
binary-classification problem takes advantage of much pre-
vious work on the general question of evaluating classifier
performance. Originating in radar signal-detection theory,
the concepts of confusion matrices and ROC curves are
widely used in medical diagnostics, psychology, informa-
tion retrieval, and machine learning [10, 12, 14]. A form of
this approach has been pursued for HPC monitoring based
on log files [16], but that work poses the primary task of
failure detection (not necessarily before-the-fact prediction)
and also does not attempt to directly quantify the costs and
benefits of using a given classifier.

3 Our approach

The specific validation results reported here are based on
an observed out-of-memory (OOM) failure mode in an HPC
system, attributable to residual unreleased memory from
completed jobs, as described further in Section 4.1. Before
giving a more detailed account of the observations and re-
sults for this case study, we offer some general remarks on
the validation of HPC failure prediction to provide a frame-
work for present and future analyses.

3.1 Overview

Validation metrics should be guided by the intended
applications of failure prediction and the objectives of
decision-makers. The costs of action or inaction by an HPC
prediction-response mechanism appear in various forms:
waste of computing time, hardware, and labor. Because
such costs are difficult to determine, it is appropriate to con-
sider more general metrics, such as ROC curves, that reflect
multiple objectives to be given specific weights later.

The simulated performance of various failure-prediction
approaches can provide guidance on the implementation
tradeoffs among data dimensionality, collection frequency,
computational cost, and storage cost.

It is beneficial to have metrics that can confirm progress
in modeling even before the results reach the stage of prac-

tical usefulness. A statistical model may have some predic-
tive ability, but not enough for cost optimization to justify
taking action based on it. Such a model is still a candidate
for further development to enhance its performance.

3.2 Methodologies

The setting of HPC failure prediction poses intricate
problems for validation. Tractable validation requires cap-
turing a meaningful approximation of costs and benefits in
a representation simple enough to treat with established sta-
tistical methods. A plausible representation, particularly for
the example HPC failure mode we consider, is a binary-
classification problem with variable misclassification costs.
Based on some measurable properties of a system compo-
nent, a classifier predicts either failure or non-failure. That
is, we collapse what might well be a complicated probabilis-
tic projection of failure, and a complicated decision pro-
cess for taking action based on this projection, into an ef-
fective binary prediction representing the ultimate decision:
Should action be taken in the expectation of a failure of this
component? Whether this process is effective can then be
assessed by attempting to estimate, from historical data, the
costs incurred by following the predictions of a given clas-
sifier. These costs generally vary from one historical event
to another (e.g., based on job scheduling), and can be quite
difficult to estimate because of the complex temporal fea-
tures of failure prediction and response.

A more reliably definable but somewhat less realistic
measure of the effectiveness of failure prediction is based on
conventional classifier metrics such as the confusion matrix
and ROC curve. These involve the assignment of “actual”
binary values to prediction test events, to represent the cor-
responding historical outcome (“failure” or “non-failure”),
and the counting of true and false positives and negatives.
The confusion matrix is simply a table of these counts for
a particular instance of a classifier. Because failures can
generally occur at any time, it is not obvious under what
conditions to declare a binary prediction successful.

The conventional classification framework assumes a se-
ries of discrete and independent prediction tasks, each of
which has an objective “actual” value that determines the
cost of making each possible prediction. In the special case
of fixed costs (a constant cost per false positive and another
constant cost per false negative), the ROC curve translates
directly into cost information. This curve summarizes the
performance of a family of classifiers that are optimized for
a range of possible cost tradeoffs by adjusting a threshold.

3.3 Challenges

A general complication lies in the assignment of useful
“actual” values and misclassification costs for failure pre-



diction. One simple approach would be to treat an alarm
issued within a specific time window before a correspond-
ing failure as a true positive and any other alarm as a false
positive; the absence of an alarm in the window before a
recorded failure would be a false negative. This provides
at best a rough approximation to the dependence of cost on
timing of alarms.

It may be more appropriate to consider the last relevant
alarm (if any) issued before a failure as a true positive, and
to assign it a cost proportional to the time interval between
the alarm and the failure (in addition to any intrinsic cost
of the response action itself). For example, if the response
to the alarm is checkpointing of a program to guard against
a possible upcoming failure, the interval between the alarm
and the failure represents the computing time lost due to the
true-positive event (in addition to the time spent in check-
pointing). This checkpointing example has the simplifica-
tion that the responses can be assumed not to affect the oc-
currence of failures, only their cost. Optimization of cost
will lead to the standard strategy of checkpointing at regu-
lar intervals based on the currently estimated MTTF.

Our OOM study manifests another example of temporal
and causal relations in failure prediction, with the property
that the response (rebooting) is believed to alter the occur-
rence of failures. The simplifying features of this exam-
ple allow a reasonable initial evaluation of predictivity and
costs for the failure mode of interest, but various assump-
tions are still necessary, as will be discussed. The concrete
application of our concepts to this example will offer guid-
ance for further studies of other failure predictors.

4 Example of methodology

4.1 Failure mode

In previous work [5], we discovered a detectable pre-
cursor of a major failure mode on Sandia’s Glory cluster,
a 288-node, 4068-core Opteron cluster with an Infiniband
interconnect. This precursor can be detected by automated
means on timescales that can enable meaningful response.
Here we summarize the relevant features of that work.

It was known that one of the major causes of application
failure was the system running out of memory. We discov-
ered that not only were some users’ processes and/or al-
located memory sometimes not being properly cleaned up
upon job completion/exit, but that even in the absence of
user processes the operating system would sometimes re-
port abnormally high amounts of active memory. Active
memory utilization during subsequent jobs is then that of
the current job any lingering processes, memory used by
the operating system, and memory the operating system be-
lieves is allocated. This combination can result in insuf-
ficient free memory available on the system and, conse-

quently, system invocation of the OOM killer [1]. Job fail-
ure can then ultimately occur, either through direct killing
of the job’s processes or through killing of significant sys-
tem processes.

This situation is shown in Fig. 1. Active memory
(scaled to the total system memory) versus time for a par-
ticular node of the Glory cluster is shown in blue. No
COMPLETED jobs occur in Fig. 1; CANCELLED or
TIME(d)OUT jobs are shaded in alternating tones of yel-
low; jobs ending in the FAILED or NODE FAIL state are
shaded in red; idle times are unshaded (white). Out-of-
memory events are marked with red x’s. Note that the
vertical coordinates of the red x’s are immaterial; the x’s
are placed on the active memory curve to facilitate relat-
ing events in time. OOM events occur during the idle times
(unshaded times) and include the killing of user processes
related to previous jobs.

Figure 1. Active memory (scaled to the total
system memory) vs. time for a particular node
of the Glory cluster is shown in blue. Shaded
times reflect job state as described in the text.
Red x’s indicate the times of OOM events.

We determined that nodes with anomalous values of ac-
tive memory during idle time could be correlated with even-
tual OOM conditions resulting in failure scenarios. We pro-
posed that such analysis, performed after job completion,
could be used for determining subsequent job allocations
and for invoking methods to resolve the problem.

4.2 Failure definition and attribution

As described in Section 3, the definition of failure and
the attribution of the cause of failure are non-trivial. In this
subsection, we discuss the availability of data and how it
motivated the definitions and attributions used in this case
study—illustrating an approach to such necessary tasks in



the general attempt to quantify the effectiveness of failure
prediction and response.

In this study, we collected data during a 16-day period
between Feb. 12 and Feb. 28, 2009. We took data values
for active memory at 60-second intervals continuously dur-
ing this time period, except when it was rendered impos-
sible by events such as the killing of our data-collection
process by the OOM killer. Data were collected for 4178
jobs, including an ending state for each as reported by the
scheduler. FAILED (562 jobs) and NODE FAIL (18 jobs),
while clearly indicative of failure, are not necessarily ac-
companied by sufficient information from the scheduler or
the logs to determine the cause of failure. Jobs intention-
ally cancelled result in the CANCELLED state (154 jobs).
Jobs can be submitted with an estimated run time which,
when exceeded, results in the TIMEOUT state (177 jobs).
Finally, COMPLETED (3267 jobs) indicates that the termi-
nation was not otherwise abnormal.

Several effects are observed in our data that illustrate
complexities of definition and attribution. First, high values
of active memory during an idle time are often followed by
high values into subsequent jobs. As a result, clearing the
active memory condition before one job may improve the
performance or even enable the completion of subsequent
jobs. This is further understood in the context of Fig. 1,
where lingering user processes from previous jobs claim
memory on subsequent jobs and, most drastically, may re-
sult in invocation of the OOM killer, which may choose to
kill a subsequent job or required system process outright.
Moreover, possibly relatedly, after the onset of a high active
memory condition, subsequent jobs may not end in FAILED
or NODE FAIL conditions, but they frequently end up with
CANCELLED or TIMEOUT states. Such terminations may
be due to lack of sufficient progress on the job.

In support of the simplifying features discussed in Sec-
tion 3, we chose to make the following definitions and at-
tributions for this work: (1) Jobs that end in the COM-
PLETED state will be taken as successful; all others will
be characterized as failed. (2) If a job fails, the node in
that job that has the highest active memory during the pre-
ceding idle time will get full attribution for the failure of
the job. (3) If there is no active memory data for the idle
time immediately preceding the job on a given node, then
data during the nearest preceding idle time with data will
be used. (4) We treat all failures as OOM failures. That is,
any failed job can be saved by intervention on the node to
which the failure is attributed based on the memory condi-
tion as described in the above items.

The final item is not established by the data as presented.
Failure modes other than OOM failures can of course occur.
Some of the impact of this choice will be manifested in the
results discussed in Section 4.4.

4.3 Applying prediction and response

In applying and evaluating prediction and response, we
must consider all periods during which a response could be
invoked and the potential costs and benefits of invoking that
response during that period. Thus, rather than approaching
the problem from a per-job standpoint, we must approach
it from a per-actionable-period standpoint. In our example,
given our attributions in Subsection 4.2, an actionable pe-
riod is any idle time on a per-node basis preceding a job or
jobs for which we have data. For simplicity, we will refer
to these as idle periods, since idle periods during which we
have no data are no longer in consideration. Invoking a re-
sponse due to high active memory during an idle time on
a given node can potentially result in a benefit only if that
idle time on that node has been assigned responsibility for
the fate of a subsequent job (had the highest active memory
preceding the job) and if the job failed.

This has the result of transforming job-centric data into
three cases of idle periods: (I) idle periods that have been as-
signed responsibility for the fate of a job that failed (479 pe-
riods in our 16-day sample); (II) idle periods that have been
assigned responsibility for the fate of a job but for which no
job has failed (540 periods); and (III) idle periods that have
not been assigned responsibility for a job (2036 periods).
Only for Case I would taking action result in a benefit.

4.4 Quantification

In Section 4.1, we proposed that statistical outliers in ac-
tive memory can be used as predictors of potential failure.
The observed distribution of active memory values during
idle times is skewed and sharply peaked around low values
of active memory. The mean is 0.06 and the standard devi-
ation is 0.10.

The general OVIS approach to failure prediction [2–7] is
based on detecting outliers (uncommon values) in observed
data, with respect to a learned statistical distribution. The
standard OVIS univariate analysis generates alarms for val-
ues that are either unusually low or unusually high. But our
understanding of the HPC system indicates that only high,
not low, values of active memory are OOM predictors.

For this work, we are choosing rebooting as the hypo-
thetical response to a prediction. Rebooting a node success-
fully clears the memory and takes approximately 90 sec-
onds. For the cost tradeoff in this work, then, if we choose
to reboot during an idle time based upon the value of active
memory, we consider that there is no cost if the duration of
that idle period is greater than 90 seconds. If the duration of
the idle period is less than 90 seconds, then the cost is the
additional time that would have been lost in the reboot.

Figure 2 measures the accuracy of failure prediction via
the tradeoff between never predicting failure (very high



threshold, lower-left) and always predicting failure (very
low threshold, upper-right). Such a ROC curve is generated
by plotting the true positive rate (vertical axis: fraction of
failure-attributable idle periods, Case I in Section 4.3, that
were correctly alarmed) versus the false positive rate (hor-
izontal axis: fraction of non-failure-attributable idle peri-
ods, Case II, that were incorrectly alarmed) as the classifier
threshold (active memory threshold) is varied. If this anal-
ysis were done for all idle periods on all nodes (Cases I, II,
and III), there would be a bias due to the attribution of job
failure responsibility to highest-usage nodes. Thus the plot
is limited to the 1019 idle periods in Cases I and II.

Figure 2. ROC curve (green) for failure predic-
tion based on active memory during respon-
sible idle periods (Cases I and II), compared
to expected chance performance (black). The
area under the green ROC curve is 0.562.

If there were no relation between usage and failure, we
would obtain (on average) a straight diagonal line on the
plot, because alarms would occur equally often for failures
and non-failures. Our curve shows better-than-chance per-
formance. Statistical significance was checked by creating
3000 randomly generated ROC curves from synthetic data
with randomly distributed active memory values. The area
under the ROC curve, a common summary measure of clas-
sifier performance, averages 0.5 for chance performance,
and in only 2 of the 3000 synthetic cases did it exceed the
value found for our data, 0.562. This indicates that our re-
sult would have about 1 chance in 1000 of occurring spu-
riously if there were no predictivity. For this case study,

we have thus obtained clear validation that we can predict
failure at a better-than-chance level using a single predic-
tor. The modest level of accuracy is expected because many
failures may be occurring for reasons unrelated to OOM.

Figure 3 measures the consequences of acting on the fail-
ure predictions by rebooting during idle periods. Here it is
appropriate to include all idle periods with data (Cases I, II,
and III), because it would not be known in advance which
nodes have highest usage among the groups destined to re-
ceive certain jobs. Much as in the ROC curve, the threshold
is swept to identify the tradeoff between no rebooting (left
side) and routine rebooting (right side). The plot is made
under the nominal assumption that every job failure could
have been prevented by rebooting the node with highest us-
age during the preceding idle period, and that each failed
job was a total loss, with all associated CPU-hours wasted.
More realistic estimates could be approximated by scaling
the vertical axis down by a suitable factor.

Figure 3. Net CPU time benefit from rebooting
during idle times exceeding an active memory
threshold, under assumptions in the text.

The monotonically rising green curve in Fig. 3 appears
to indicate that routine rebooting (i.e., a very low threshold
that effectively makes no use of the predictor) is optimal.
But this does not negate the value of the predictive method,
which is shown by the strong bend of the green curve (sub-
ject to the caveats of our assumptions). A threshold that
results in rebooting 20% of the time would achieve about
80% of the potential benefits; this occurs for a scaled active
memory threshold of 0.09. The addition of significant costs
of rebooting not captured in our estimates would effectively



shear the right-hand part of the plot downward. In that case,
it can be seen that a portion of the green curve might well
remain positive (a moderate amount of intelligent reboot-
ing providing a net benefit) even if the black line (random
rebooting) did not.

5 Conclusions

We have presented general methodologies for evaluating
the effectiveness of failure prediction, and illustrated them
with an example of an actual failure predictor (abnormally
high active memory on a compute node) in a production sys-
tem. We have shown evidence of its validity using a ROC
curve. Additionally, we have quantified the cost savings
(in CPU-hours) of using this information to take a particu-
lar action (rebooting the node during idle time), where we
assigned negligible cost to the action but discussed how a
known cost would affect the decision whether to take that
action.

6 Future work

Our present initial quantification of HPC failure predic-
tion is based on binary-classification theory. Although this
framework relates failure prediction to a well-studied the-
oretical setting, further development of effectiveness met-
rics will benefit from a more complex and realistic picture
of failure prediction. In particular, in contrast to the inde-
pendent samples assumed in the classification setting, fail-
ure prediction is a process unfolding in time, where actions
taken in response to an alarm can alter subsequent events.
This raises the fundamental difficulty that the results of
using a prediction-response mechanism cannot be directly
evaluated from historical data in which the mechanism was
not in use. To move beyond the simplifying assumptions in
this work, such an evaluation could be based on real-world
trials or on detailed models of system dynamics.
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OVIS: A tool for intelligent, real-time monitoring of com-
putational clusters. In Proc. 20th IEEE Int’l Parallel & Dis-
tributed Processing Symposium (2nd Workshop on System
Management Techniques, Processes, and Services), 2006.

[7] J. M. Brandt, A. C. Gentile, Y. M. Marzouk, and P. P. Pébay.
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