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Abstract

Traditional cluster monitoring approaches consider
nodes in singleton, using manufacturer-specified ex-
treme limits as thresholds for failure “prediction”. We
have developed a tool, OVIS, for monitoring and anal-
ysis of large computational platforms which, instead,
uses a statistical approach to characterize single device
behaviors from those of a large number of statistically
similar devices.

Baseline capabilities of OVIS include the visual dis-
play of deterministic information about state variables
( e.g., temperature, CPU utilization, fan speed) and
their aggregate statistics. Visual consideration of the
cluster as a comparative ensemble, rather than as sin-
gleton nodes, is an easy and useful method for tuning
cluster configuration and determining effects of real-
time changes.

Additionally, OVIS incorporates a novel Bayesian
inference scheme to dynamically infer models for the
normal behavior of a system and to determine bounds
on the probability of values evinced in the system. In-
dividual node values that are unlikely given the current
applicable model are flagged as aberrant. This can be a
much earlier indicator of problems than waiting for the
crossing of some threshold that is necessarily set high
to preclude too many false alarms.

We present OVIS and discuss its applications in
cluster configuration and environmental tuning and to
abnormality and problem discovery in our production
clusters.
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1. Introduction

Current monitoring of computational clusters of
sizes ranging from tens to tens of thousands of nodes
is typically performed in a simple fashion. First, get
data via a push or pull mechanism from each node at
an interval that allows new data to be available and the
monitoring station to keep up. Second, apply a prede-
fined rule set to the data collected on a node by node
basis: if a threshold is crossed, apply the appropriate
rule (e.g., shut down a compute node).

Tools such as Ganglia [1] and Supermon [4] do the
first efficiently, but they do not provide automated
analysis and mainly present administrators with the
ability to view the primitive data on a per-node basis.
Typical management tools, such as those from IBM [3]
and HP [2], compare these instantaneous data values on
a per-machine basis to predefined thresholds and either
send notification to the system administrator or auto-
matically shut down or reboot the system in response.
These thresholds reflect extreme cases for which nodal
failure is expected to be imminent. Therefore, prob-
lems detected in this fashion are detected only when
they have finally become severe.

While this basic methodology of considering single-
ton node values in light of gross rule sets is well suited
to smaller clusters, we have found that a statistical
approach to cluster monitoring and analysis can pro-
vide more meaningful information and enable earlier
detection of problems. We have built a tool, OVIS,
which uses simple statistical methods in order to fa-
cilitate gross fault detection and configuration analysis
by visual inspection. More advanced methods, such
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as modeling via Bayesian inference, add a great deal
of intelligence to the process, thus facilitating auto-
mated discovery of problems sooner than is possible
using static thresholds.

Our statistical approach to cluster analysis capital-
izes on the fact that clusters are typically comprised of
many identical server-class multi-processor machines.
This homogeneity lends itself nicely to statistical anal-
ysis as it is expected that, given the same environment
(e.g., air temperature, computational load) the behav-
iors of the machines’ physical parameters (e.g., tem-
peratures, fan speed, voltages) should follow a normal
distribution (while heterogeneity does exist in grids [5]
they are comprised of federations of clusters which are
often locally-managed homogeneous resources). Al-
though the concept of taking advantage of the number
and similarity of nodes in a cluster has been previously
recognized [6], we know of no tool in practice that uti-
lizes this for its fundamental methodology.

The baseline capabilities of OVIS include the visual
display of raw data and their aggregate statistics. This
method capitalizes on a human’s ability to efficiently
spot patterns and abnormalities. It is a quick-and-easy,
non-computationally intensive way to gain the benefits
of considering the cluster as a comparative ensemble,
rather than as singleton nodes.

The Bayesian module increases capabilities, allow-
ing the system to model out environmental effects that
can’t be changed, and subsequently enabling auto-
matic detection of nodal aberration from normal be-
havior, where normal is defined as being within some
administrator-defined probability bounds (e.g., 95%)
conditioned on the model inferred from the behaviors
of a large number of statistically similar devices (peers).

We present an introduction to OVIS in Section 2.
We discuss issues in the statistical approach due to
non-uniform environments in Section 3. Methodologies
and examples of problem discoveries in our production
clusters are discussed for the visual and Bayesian ap-
proaches in Sections 4 and 5, respectively. We con-
centrate on temperature analyses in this work, as tem-
perature is a well-known factor in equipment failure
and airflow and cooling issues in machine rooms are
a common problem. However, the techniques involved
should be generally applicable to other variables such
as voltages, memory error rates, etc. We conclude in
Section 6.

2. Overview of OVIS

The centerpiece of the OVIS GUI is a physically rep-
resentative display of node and cluster configuration, as
illustrated in Figure 1. OVIS reads from an XML spec-

ified geometry file to build the display for a particular
cluster’s configuration.

Figure 1. OVIS display showing run-time con-
ditions and configuration of our Shasta clus-
ter. Nodes are depicted in the physical lay-
out of the cluster racks. Values of raw and
derived quantities are displayed by color-
coding of the nodes. Patterns and outliers
are easily spotted by the eye.

Data, raw or derived, from either a saved data file
or a direct data feed is overlaid, according to a user
definable color scheme, onto the display. Encoding
data values as colors which are mapped onto node po-
sitions on the display gives the user a very intuitive
view of the data and how it relates to geography and
node state. The color mappings can be customized but
in general low values are mapped to bluer colors and
higher values move toward the red end of the spectrum.
There are options to map binned values to particular
colors thus allowing easy discrimination between val-
ues falling near boundaries (e.g. 2 standard deviations
from the mean boundary) or to produce a gradient dis-
play which facilitates better understanding of the dis-
tribution of values especially where spatial and tem-
poral gradients are present. The gradient view can
be put to good use in optimizing cold air distribution
and choosing node groups and axis for application of
Bayesian modeling techniques. The color scheme can
be adjusted in real time to allow the user to get as
fine-grained as the data will allow.

Though the preferred method of data capture is out-
of-band, OVIS provides a daemon-based in-band collec-
tion code that can be modified to suit any system and
writes out data files in OVIS’s native format. A trans-
lator from the Ganglia data format is also available.

Play, pause, fast-forward/reverse and go-to-end of
file are available, allowing the user to review history or
to go over an area with an adjusted color scheme or



different variable display. A mouse-over feature allows
immediate simultaneous viewing of concurrent variable
values enabling the user to look for correlations among
variables.

Modules available for doing statistical processing
are (1) the baseline statistical module, which com-
putes means and standard deviations across user de-
fined groupings of nodes, and (2) the Bayesian mod-
ule, which facilitates more advanced techniques such as
modeling arbitrarily complex dependencies and com-
putes probability bounds for variable values for each
node given the model which applies to it.

3. Non-uniform Environments

Recognition of thermal outliers is difficult if not im-
possible in an environment where the computational
loads and fan speeds of the nodes may vary greatly.
Unfortunately, it is rare for uniformity to exist, so that,
to first order, we can only consider statistics of ensem-
bles of nodes in similar states, such as groups of nodes
running the same job. These constraints can, however,
be loosened somewhat if we can normalize tempera-
tures, during stable periods, to effects such as CPU
utilization and fan speed.

Normalization of temperature to account for such
effects allows the user to visualize the cluster as a large
set of statistically similar randomly placed devices, in-
dependent of what application may be running where.
Departure from uniformity is then due either to single
node anomalies or environmental effects. Environmen-
tal cases are distinguished by the extent and placement
of the non-uniform regions. The OVIS visual display
is useful for discovery of these regions and tuning the
cluster configuration and environment, as discussed in
Section 4.

At this point, if the physical environment were uni-
form, we could just calculate the mean and standard
deviation over all nodes and flag as aberrant all nodes
whose temperatures fall outside of some probability
bounds. A uniform cooling environment, however, is
rarely achieved due to physical constraints of air trans-
port. The more typical non-uniform cooling environ-
ment presents a challenge to cluster analysis, whether
visual or automated, as it is manifest in sometimes non-
intuitive ways. This problem is further exacerbated by
an environment that can change in unforeseen ways
with changes in heat load, supply and return air ad-
justments, etc. Our solution to this last problem, then,
is to create representative environmental models using
Bayesian inference. Using these models we can globally
normalize node temperature values thus finally allow-
ing us to view them as a large group of statistically

similar devices. This type of modeling also allows di-
rect comparison of node temperature with the model as
it yields not only a model of the mean distribution but
also the associated probability distribution about that
mean. Model generation and associated abnormality
detection is discussed in Section 5.

4. Visual Abnormality Detection

In order for the GUI display to be most meaning-
ful, either the section of the cluster being viewed must
be uniform in factors affecting the quantity of interest
(e.g., temperature of CPU 0) or OVIS must normal-
ize the display variable to these factors. For instance,
the internal factors affecting the temperature of CPU 0
would be the utilization of CPU 0 and its cooling fan’s
speed. The result of either method is a display that
is ideally uniform other than the statistical variation
of values across the cluster. Thus any non-uniformity
seen is due to anomalous node behavior or environmen-
tal effects. The former is seen as a single node outlier
whereas the latter typically has more spatial extent
evidenced by a color gradient extending over multiple
nodes.

We have used the baseline version of OVIS to exam-
ine both raw and statistical behaviors of temperatures
in our clusters in order to gain a better understanding
of physical cluster configuration effects. We describe
two cases in this section involving our commercially
obtained Shasta cluster, whose configuration is shown
in the OVIS display in Figure 1. The cluster consists
of 10 racks depicted as columns in the figure, where
blank rows in the center of racks 1-3, and 5 represent
empty gaps in the cluster due to networking equipment
being mounted on the back side of the racks. Racks 4,
6, and 7, also shown as blank in the figure, contain
non-compute equipment.

In the first case, we found that fan speeds for nodes
bordering the gaps in the center of racks 1, 2, 3, and 5
were seen running markedly faster than those of their
peers as depicted by their fan speed color being much
more red shifted. Investigation showed that the ba-
sic physical cluster design was flawed as hot exhaust
air from the backs of the racks was being recirculated
through the gaps into the air intakes of these nodes.
Blocking these gaps caused the errant fan speeds to
fall in line with the values of the rest of the cluster.
The change in fan speed values was immediately ap-
parent by inspection of the OVIS GUI which became
uniform in color.

Note that each node taken in singleton was operat-
ing well within normal operating parameters. This con-
dition, which could drive these nodes to failure under



greater load and/or warmer room conditions, was not
even hinted at by the traditional per-node threshold-
based monitoring supplied with the cluster.

In another case, we saw that the node temperatures
did not increase monotonically with distance from the
floor. Rather, the first few nodes nearest the floor had
the reverse temperature gradient from what was ex-
pected (note the color map in Figure 1, where there
are red colored nodes near the floor below green and,
hence, cooler nodes). We discovered that the high ve-
locity cooling air from under the floor created a low
pressure region at the base of the racks. This, in turn,
drew the hot exhaust air from the back of the racks
forward, under the racks. In this case, since the fix
to the problem is not so simple and the effect was not
dangerously large, we chose to leave it be. This type
of non-uniform effect, however, makes analysis of the
system more difficult as described in the next section.

5. Bayesian Modeling

As mentioned in Section 3, non-uniform environ-
mental effects present a challenge to cluster analysis. In
order to account for the effects that we cannot change,
we use Bayesian inference to create representative mod-
els of these effects. This is implemented in the Bayesian
module, which uses these models to identify outliers.
Comparison of models is also useful in environmental
tuning, as differences in models are reflective of differ-
ing environments.

5.1. Environmental Modeling Via Bayesian
Inference

It is relatively easy, using the color-coded display,
to observe that in our Shasta cluster (Figure 1) CPU
temperature varies with height off the floor. How it
varies, however, can possibly become very complicated.

As discussed at the end of Section 4, the tempera-
ture distribution in the Shasta cluster is non-linear in
height, as it is hotter on top and bottom than in the
middle. A natural approach thus consists of model-
ing temperature as some function of height, multiplied
by some random ”noise” that is on average equal to
1. The noise factor accounts for the parameters other
than height that have an effect on temperature; there
can be a great many of them, just considering manufac-
turing variations. A grasp at their relative importance
with respect to height can be obtained by looking at
the standard deviation of the noise - a zero standard
deviation would mean an exact fit to the model approx-
imation. We thus fit the observed data to the model

T ∼ N (Q(h), σ),

where h and T denote nodal height and tempera-
ture, respectively, N (Q(h), σ) is the normal distribu-
tion with mean Q(h) and variance σ, and Q is a poly-
nomial.

To apply this to the Shasta cluster, then, since we
know that the dependency of temperature on height
is not linear, we need to use a degree that is at least
quadratic; on the other hand, visual inspection of the
OVIS display of the cluster data values suggests that,
qualitatively, the map from height to temperature has
only one minimum along that curve, and thus that a
quadratic polynomial may be used, at least as a first
estimate. With this assumption, we are therefore left
with 4 unknown parameters in the model: the 3 co-
efficients of Q, and σ. The method we use to esti-
mate these parameters, based on the data at hand, is
Bayesian inference.

The keystone of this approach is Bayes’ Theorem
which can be informally stated as:

P (X|D,M) = P (D|X, M)× P (X|M)/P (D|M)

(or even less formally: posterior = likelihood ×
prior/evidence) where

• M is the probabilistic model (e.g., temperature for
each height is a Gaussian random variable whose
mean is a polynomial function of height in the clus-
ter)

• X is a set of model parameters to be inferred
(e.g., in the model above, polynomial coefficients
of the function and variance of the Gaussian ran-
dom variable)

• D is the data, i.e., actual values (measurements)
of the variables that are present in the model.

Bayesian inference also allows incorporation of ex-
pert knowledge in the model; e.g., the fact that tem-
perature T baseline varies with height h has been noted
on many systems utilizing under floor air cooling. An-
other common example of expert knowledge is that of
bounds: by simple observation using the OVIS visual
display, one can estimate a safe range within which pa-
rameters are almost surely contained.

Starting with a given prior that incorporates expert
knowledge (such as a uniform prior in the case where
only the bounds are known), the Bayesian learning al-
gorithm is iterative, where the posterior becomes the
prior each time new data arrives. Since we are inter-
ested in the most probable parameters to characterize
the model, we discard the evidence and only look at the
following proportionality (instead of equality) relation:

P (X|D,M) ∝ P (D|X, M)× P (X|M).



The selected parameter values viewed are those that
maximize the posterior probability (“maximum a pos-
teriori (MAP) estimator”). This is a good estimator
for a sufficiently peaked probability density distribu-
tion. Convergence on a representative model is as-
sumed when a user-defined ratio between two consec-
utive maximum posterior probabilities is reached, thus
yielding the most probable model parameters, condi-
tioned on the data at hand. Then, and conversely, sin-
gle node comparisons can be made versus the inferred
model. Since the model describes a normal distribution
about a mean described by the inferred polynomial, the
95% probability bounds for the data (conditioned on
the parameters previously inferred and the model) are
established by a 4σ-wide band and centered about this
polynomial. Additionally, the model can be used as a
basis for normalization of the nodes it describes.

Though the example models temperature as a func-
tion of height, it is by no means restricted to this. This
analysis technique can be used to dynamically model
any dependencies that can be identified.

5.2. Examples of Bayesian Modeling

5.2.1 Effects of CPU Utilization on models of
Temperature vs. Height in our Shasta
Cluster

In order to explore how a model may change as a func-
tion of computational load, models were generated for
our Shasta cluster, whose configuration is shown in Fig-
ure 1. We consider 2 cases: 1) Racks 2, 3, and 5 as an
aggregate, since they have similar configurations and
previous modeling of each of these racks separately
yielded very similar models for each, and 2) Rack 8
by itself as its model is very different.

Models were inferred for these cases for each of a
series of different CPU utilizations on the nodes (ob-
tained by running OVIS’s calibration code which alter-
nates between short idle and calculation periods of ad-
justable relative duration in order to obtain a relatively
stable user-defined CPU utilization on the nodes). In
both cases, models were converged upon in about 20-30
timesteps. The resulting polynomials Q(h) are shown
in Figure 2, for values of h that correspond to the node
heights in the cluster.

With the exception of the idle model in case 1, the
resulting polynomials remain basically the same, ex-
cept for changes in the constant term. This means
that we don’t have to remodel for every shift in CPU
utilization; instead we can use the same model and
a calculated offset based on CPU utilization. Since
modeling can be computationally intensive and envi-
ronmental changes are typically slow, this character-
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Figure 2. Bayesian inferred polynomials
for different CPU utilizations for aggregate
Racks 2, 3, and 5 (upper) and Rack 8 (lower).

istic allows relaxation of the requirement for real-time
modeling though not real-time comparison of data with
an applicable model. The variation in the idle model
in case 1 may be due to averaging effects across the 3
racks and requires further investigation.

5.2.2 Dependence of Temperature on Height
in the Shasta Cluster

In both cases mentioned in Section 5.2.1 there is varia-
tion of temperature with height. Given the effect men-
tioned previously of high velocity supply air creating a
low pressure zone near the bottom of the racks (Sec-
tion 4), it is immediately apparent from the respective
models that this effect is much more pronounced for
case 2 than for case 1. Upon inspection we found that
a different style of grille with a much higher flow rate
was used for racks 8, 9, and 10 and that there was
also an opening near the base making the volume of
recirculated hot air much greater than for case 1.



5.2.3 Dependence of Temperature on Height
in the Thunderbird Cluster

Models were generated for our Thunderbird cluster
whose configuration is shown in Figure 3. In partic-
ular, we consider racks 11-20 which are the 10 racks
on the right side of the figure. These results are for a
constant CPU utilization across the cluster.

Figure 3. OVIS display of a set of racks of our
Thunderbird cluster. Racks 11-20 are the 10
racks on the right side of the figure.

The polynomial part of the models, but not the stan-
dard deviations, are shown in Figure 4. Due to differ-
ent environmental conditions, models vary from rack to
rack. Racks 13-16 are described by very similar mod-
els; Rack 20 has a flatter distribution of temperatures
than the other racks.
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Figure 5. Time averaged data, Bayesian
inferred polynomial and 95% probability
bounds for racks 11 and 13.

Models for the racks are seen in detail in Figures 5,
6, and 7. In most cases, quadratic polynomial models
yield good fits to the data. Rack 15, however, has a
more complicated temperature distribution than other
racks and, while a 2nd order polynomial fit can be ob-
tained, it is seen empirically not to be a good descrip-
tion of the distribution. In this case the 95% probabil-
ity bounds allow for a great latitude in the allowable
temperatures. Rack 20 is an end rack and has a flat-
ter distribution than that of the internal racks, due to
airflow around the end of the cluster.

While rack 13 is in general well described by the
quadratic polynomial, it is nonetheless seen to have a
value outside the 95% bounds. Automatic detection
of abnormalities such as these, is discussed in the next
subsection.

5.3. Abnormality Detection

After model inference has been done (with either
training or run-time data), we have a stochastic model
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Figure 6. Time averaged data, Bayesian
inferred polynomial and 95% probability
bounds for racks 15 and 17.

whose parameters optimally fit the data. For example,
in a particular rack whose nodes are all idle, the model:

T ∼ N (0.005h2 − 0.1h + 23, 1.5)

gives a full (stochastic) description of that rack’s node
temperature with respect to height. Note that this
model is only valid for this point in time and for this
particular rack. As new data is acquired, the valid
model may change and will certainly be different for a
rack with different environmental characteristics.

Such models can be used to determine nodal abnor-
malities in several ways. One method is to consider
whether the data (e.g., run-time data, or stored data
for post-crash diagnosis) belongs to a prescribed con-
fidence interval. This can be done either by (1) con-
sidering the data relative to applicable models, or by
(2) using these models to globally normalize node tem-
perature values and considering these values relative to
the resultant global mean (µ) and standard deviation.
Then, for example, a 95% confidence interval is estab-
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Figure 7. Time averaged data, Bayesian
inferred polynomial and 95% probability
bounds for racks 19 and 20.

lished by a 4σ-wide band centered about the mean,
Q(h) or µ, respectively. Another useful method is to
consider the relative probabilities of the data, given the
model. For example, the relative probabilities (prob-
ability distribution values relative to the distribution
peak) of node at height 10 exhibiting temperatures of
23 or 25, given this model are:

RP (h = 10, T = 23|0.005,−0.1, 23, 1.5,M) ≈ 95%

RP (h = 10, T = 25|0.005,−0.1, 23, 1.5,M) ≈ 25%.

Thus, only a few degrees difference in temperature can
result in a significant difference in relative probability,
depending on the applicable model and what part of
the parameter space is being considered. In this paper,
we illustrate abnormality detection by comparison of
data to their relevant models, as this is the simplest
method for automated outlier detection and for clarity
in the figures.

Identification of abnormalities based on statistical
probabilities allows us to identify potential problems



in a cluster much sooner and with greater sensitivity
than threshold-crossing mechanisms would. While it is
true that “thresholds” are still defined (e.g., the user’s
selection of confidence interval), they are now in terms
of probabilities determined by statistical processing of
actual data rather than a constant defined by the man-
ufacturer. Thus the real numerical threshold values
that result are learned and can change in response to
aging, environmental effects, etc.

5.3.1 Abnormality Detection in the Shasta
Cluster

As in Section 5.2.1, models were inferred for Shasta
racks 2, 3, and 5 as an aggregate. The resulting poly-
nomials for average CPU temperature, with 95% prob-
ability bounds, both during idle and while hosting a
particular application are shown in Figure 8. Indi-
vidual node values are shown in the figure with bars
representing their time-averaged variation.

While other nodes occasionally fall out of bounds, a
consistent outlier is seen in slice 10, rack 5, correspond-
ing to node 86. This node runs significantly cooler than
other nodes at its height. This effect is much greater
under load than at idle.
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Investigation of this node showed that fan controller
failure was causing its fans to run at full speed inde-
pendent of what the controller was directing/reporting.
The fan data did not show this problem, as the values
obtained were those the fan controller was reporting,
rather than the fan’s actual value.

This is another instance where ensemble consider-
ation is necessary for the discovery of the problem.
Traditional thresholding mechanisms consider temper-
ature related failure to occur when a node gets too hot,
but not too cold, and therefore low temperature cases
are never considered. However, in this case, the low
temperature is a manifestation of a problem that could
result in reduced lifetime of the fan and possibly, by
effect, the node.

6. Conclusions and Future Work

We have presented OVIS, a tool for cluster mon-
itoring and analysis. OVIS’s consideration of nodal
values in a statistical rather than a singleton man-
ner enables OVIS to provide more meaningful analysis
and detect problems earlier than traditional, threshold-
based management tools.

The OVIS graphical display provides deterministic
information about state variables and their aggregate
statistics. It is particularly useful for detecting en-
vironmental effects in the cluster configuration. The
Bayesian module enables the system to model out un-
changeable environmental effects and to automatically
determine abnormalities.

While we limited our discussion in this work to tem-
perature and CPU utilization issues, the methodologies
presented here are generally applicable. We will be ex-
panding to additional variables, in particular, memory
error rates, voltages, network interface parameters.

Architectural enhancements under development in-
clude a distributed framework for the analysis and
adaptation of the algorithms for distributed processing.
These modifications will also provide fault-tolerance to
the design.
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