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ABSTRACT
We present an architecture for high-performance comput-
ers that integrates in situ analysis of hardware and system
monitoring data with application-specific data to reduce ap-
plication runtimes and improve overall platform utilization.
Large-scale high-performance computing systems typically
use monitoring as a tool unrelated to application execution.
Monitoring data flows from sampling points to a centralized
off-system machine for storage and post-processing when
root-cause analysis is required. Along the way, it may also
be used for instantaneous threshold-based error detection.
Applications can know their application state and possibly
allocated resource state, but typically, they have no insight
into globally shared resource state that may affect their ex-
ecution. By analyzing performance data in situ rather than
off-line, we enable applications to make real-time decisions
about their resource utilization. We address the particular
case of in situ network congestion analysis and its poten-
tial to improve task placement and data partitioning. We
present several design and analysis considerations.

1. INTRODUCTION
In high-performance computing (HPC) systems, the ap-

plication execution environment is usually completely sepa-
rated from system monitoring capabilities. While applica-
tions may access some node-level utilization data from user
space (e.g., cpu, memory utilization), there is additional per-
formance data that is not accessible from user space, partic-
ularly about shared resources (e.g., network load, shared file
system load, burst buffer use), that could be used to better
enable application-to-resource mapping. System monitor-
ing capabilities exist that run at privileged levels and thus
have access to global and restricted data. However, such
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systems are typically used only for instantaneous detection
of critical conditions (e.g., high temperatures, high loads) or
to write raw data to an off-system store for post-processing
analysis. In addition, typical monitoring system overheads
severely limit the data collection frequencies and, hence, the
useability of their data to influence applications.

Tight integration of system monitoring information with
an application’s execution environment could provide sig-
nificant opportunities to improve an application’s execu-
tion performance. Such integration requires a) lightweight,
appropriate-frequency monitoring data, b) data analysis within
the monitoring framework to provide run-time information
with low latency, c) interfaces by which an application or
system service could quickly access such data, and d) addi-
tional in situ analyses and responses that include the appli-
cation state information. Unlike other infrastructures which
address in situ analysis of scientific data, this infrastructure
exposes system state data for analysis both within the mon-
itoring system and to the running application. The moni-
toring data analysis step can also be used for greater insight
for system adminstrators without a need for increased data
handling, as streaming analysis can enable more intelligent,
and thus reduced, short-term data storage.

In this paper, we present an infrastructure that enables
this type of integration and supports general analysis in the
overall workflow. Ultimately, we anticipate this infrastruc-
ture will provide a system service available to applications
as well as to schedulers and resource managers. Use of this
service will improve execution and system performance via
improved application-to-resource mapping and/or through
better scheduling and resource allocations.

In Section 2, we describe an infrastructure that more tightly
couples the monitoring system with the application execu-
tion environment, enabling in situ analysis of monitoring
system data and application data within an execution work-
flow. In Section 3, we present requirements, details, and
advantages of the infrastructure applied to in situ network
contention analysis and dynamic task placement. In Sec-
tion 4, we present our current state of implementation, re-
maining work, and future plans.

2. INFRASTRUCTURE
We describe our monitoring and analysis infrastructure

and how it enables in situ analysis of monitoring and appli-
cation data for use by applications and/or system services.
The basic capabilities of the infrastructure are 1) data col-
lection and aggregation, 2) monitoring data analysis, 3) ap-
plication analysis, and 4) response triggering (feedback). A



high-level diagram of the architecture is shown in Figure 1.
The components are described in greater detail below.

Figure 1: Architecture overview. Nodes (and other
data sources) are squares. Circles are monitoring
system daemons which support data collection and
storage/analysis plugins. Data aggregation nodes
collect data; arrows show direction of data flow. Ar-
bitrary topologies are supported; thus analysis can
occur on any subset of data. Application and other
analysis consumers are stars and are typically not
globally distributed. Analysis consumers that are
co-located with the monitoring system daemons can
interact directly with them; remote access to the
monitoring system daemons is also supported.

System Data Collection, Aggregation, and Analysis.
In our architecture, we leverage the Lightweight Distributed

Metric Service (LDMS) for data collection and aggregation [2].
In the LDMS framework, daemons run on the nodes, with
plugins for data sampling and storage. Daemons can also ag-
gregate data from other LDMS daemons in arbitrary topolo-
gies. Thus, multiple aggregation points can be configured to
collect data from disjoint and/or overlapping sources.

Because of the low overhead of LDMS, data collection
intervals on production systems typically range from seconds
to a minute. A recent enhancement to LDMS is a vector data
type which enables more frequent sampling without the need
for a corresponding increase in aggregation frequency. The
vector type thus makes available even higher frequency data.

The design of our infrastructure enables us to perform full
resolution data analysis directly on the data as it is stream-
ing through the aggregators, thus avoiding the overhead of
first storing to disk and then reading back for subsequent
analysis. To do this, we take advantage of the fact that
storage plugins have direct access to the in-memory data
of LDMS aggregators. Thus, we have implemented analysis
plugins, based on the storage plugin, that take advantage of
this access to perform analyses directly on this data. The
most recent analysis and limited historical data (e.g, last
defined number of data points) are then kept in-memory
in the plugin; the complete data can additionally still be
stored or discarded. By integrating the analysis with the
data aggregator and performing continuous analysis, the
results are more immediately available whenever they are
required. This integration also enables more sophisticated
analysis, including consideration of variable frequency time
history of the system state, rather than an analysis based
on only the most recent data. By splitting the data among
the aggregators, analyses can be performed in parallel on
subsets of the data, and the results combined, if desired, by

the ultimate data consumer.

Monitoring Analysis Interface.
Low latency is a requirement for applications and system

services to derive maximum benefit from in situ analysis
of run-time monitoring data in their computations and re-
sponses. If acquisition of pertinent data increases the run-
time, its use becomes detremental. Thus, the design in-
cludes the option for the data consumer to register, at the
outset, its intent to gather a defined set of information from
the analysis plugin. For example, the registered information
could be a set of routes for which network congestion state
values are desired. The required calculations could then be
included as part of the aggregator data collection and the
query latency could be as short as a round trip communi-
cation plus data transmission time. The latency could be
further reduced if the information were made available to
appropriate application elements via memory mapped re-
gions on their local hosts.

The analysis and shared data architecture are shown in
Figure 2. This figure includes data operations in the plu-
gin and also the memory mapped region for sharing data
between the plugin and the data consumer.

Figure 2: Plugin and shared in-memory data archi-
tecture supporting both in situ analysis in the moni-
toring system and in the application/system service.
The analysis plugin can optionally function as a stor-
age plugin and store the raw and/or derived data.

3. USE CASE: NETWORK CONGESTION
AND APPLICATION RESPONSE

Application performance can be affected by a number of
factors: load imbalance, data locality, communication over-
head, etc. Some of these factors can be controlled by careful
algorithmic design. But some are impacted by the state
of the computing system at execution time. For example,
network contention with other applications running concur-
rently can slow an application’s communication in unpre-
dictable ways. Conversely, suboptimal placement of an ap-
plication’s tasks on nodes can increase the total network
bandwidth used, impacting other running jobs. Even the
particular choice of nodes assigned to an application can im-
pact its performance, as messages may have to travel many
hops between allocated nodes. Using dynamic performance
data and analysis to make decisions about an application’s
use of resources can alleviate some of this unpredicability.

Use of system performance data in applications places re-



quirements on the data collection and analysis infrastruc-
ture. Performance data needs to be relevant to avoid mak-
ing decisions based on stale information; in-situ aggrega-
tion in analysis plug-ins allows data to be provided in real-
time. However, to prevent applications from thrashing be-
tween decisions, data also should not be too jittery. Anal-
ysis must provide reasonable expectations of future system
performance based on recent past performance. Off-line a
posteriori analysis can help identify patterns and trends in
system-level usage; for example, it can provide probability
distributions that, combined with real-time data, help pre-
dict near-term system performance based on current state.
These distributions can then serve as initial conditions for
in-situ evaluation of current and recent state. The in-situ
analysis must be fast, so that potential benefits of redis-
tributing data are not outweighted by the cost of analysis.

In the following sections, we present one use case for our
infrastructure: analysis of network congestion and place-
ment of MPI tasks on cores to avoid detected congestion.

3.1 Network Congestion Analysis
We demonstrate benefits of our infrastructure with exper-

iments on Cray XE systems with Gemini [4] networks. The
Gemini network is a 3D torus. Each Gemini routing element
connects directly to two nodes. Traffic between any source
and destination node is sent via a deterministic multi-hop
route. (There are 6 directional options at any intermedi-
ate router,(X/Y/Z) (+/-), and traffic in each of the 6 di-
rections is independent.) Congestion on intermediate and
shared hops can affect the application’s performance; how-
ever, the nodes directly connected to the Gemini routers for
the intermediate hops may not be part of the application’s
allocation and thus information on network state of those
hops would not be accessible by the application. A global
monitoring system analysis can provide information about
network contention that can then be used with application
communication patterns to enable allocation and mapping
decisions. Details of the route identification, calculations of
a) maximum percentage of bandwidth used and b) maxi-
mum percent time spent in stalls among all hops along a
route, and the use of these calculations as a measurement of
congestion are given in [9]. In that work, calculations were
performed on-demand.

The ability to analyze data at run-time in the monitoring
system aggregator enables us to perform continuous analy-
ses of any type on any subsets of data that we wish. The
most comprehensive analysis would require data from all
nodes, in conjunction with the static routing map, which
would require the analysis to be performed at a global sys-
tem aggregator. While the overall computation could be
significant (e.g., 27648*27648 unique route calculations for
the NCSA’s BlueWaters [1]), there are a number of possible
optimizations. Registration of the routes of interest is the
most significant reduction for computations required. Fur-
ther, we perform all routes’ calculations in parallel. For anal-
ysis algorithms that can be further subdivided, such as the
maximum value of a quantity for a hop along a route, we can
do the analysis across multiple aggregators each with only
a subset of the data and then combine the results. Finally,
examination of the data may provide some reduction of the
analysis. For instance, our preliminary examinations of data
from BlueWaters have shown significantly less congestion in
the Z+/- hops as compared to the others, so equivalently

effective calculations might be done without consideration
of these values.

An advantage of continuous analysis is that detection of
significant change could be used to trigger application recon-
figuration. For example, a newly launched communication-
intensive job may create long-lived, significant congestion;
discovery of such an event could be used to advise other
jobs to redistribute their tasks or data. An indication of X+
link-congestion duration from one arbitrarily selected (not
representative) day on BlueWaters is shown in Figure 3. We
show P (t+dt), the probability that if the percent time spent
in credit stalls on a given link is over some value at time t,
that it still will be over that value at time t+dt. Results for
four different values are shown in the figure. (Data was col-
lected at one-minute intervals [2] for each router in each of
the 6 directions). Although congested links were infrequent
(values of percent time spent in credit stalls ≥ 30% consti-
tuted ∼ 0.6% of the data values of this entire day), when
higher congestion values occured they exhibited significant
durations of more than 20 minutes (e.g, a link with value
≥ 50% has over 60% probability of having a value ≥ 50% 20
minutes later (blue line)). The congested links would thus
affect all applications communicating via routes which con-
tain these links. Characterizations such as this can also be
used to guide the data collection/recomputation frequency.

Figure 3: P (t+ dt) vs dt: Probability that if the per-
centage of time spent in credit stalls on an X+ link
is greater than some value at time t, it will also be
greater than that value at time t + dt. P (t + dt) is
shown for 4 different values. Data was taken on one
arbitrary day on a large-scale Cray XE system at
one minute intervals.

Our infrastructure allows applications to perform more
relevant interpretations of hardware metrics than would be
possible by directly querying hardware counters (even be-
yond the issue of off-node data accessibility). For example,
the source of the Gemini network data (gpcdr [11]) uses
cached data values that are not updated until a specified
time window has passed. Cray’s initial implementation of
this source did not check for negative time values. A neg-
ative clock reset results in the aged, and now inaccurate,
values being reported until the clock catches up with the
time of the reset. This condition is easily discoverable at
run-time by the monitoring system by detection of gross
timestamp discrepencies and/or changes across large sets of
collected data. Generation of a mitigating response would
be trivial from a monitoring-system perspective.



Additionally, on Cray XE/XK systems there is a mech-
anism that quiesces the network (stopping injections into
the network) in response to extreme congestion or routing
around failed links. This situation causes contention metric
values to drop, which may look like congestion has abated,
when, in reality, the network may be overloaded. Indication
of quiesces and rerouting are privileged and thus more eas-
ily obtained from a monitoring system rather than from a
user-space entity. Inclusion of quiesce events into the anal-
ysis, in this case, would prevent erroneous reporting of low
congestion values and provide new path computations to ac-
commodate re-routing around failures.

3.2 Congestion-Aware MPI Task Placement
The placement of MPI tasks in cores has been shown to

impact the scalability of even simple stencil-based applica-
tions (e.g., [8, 3, 6]). Typically, job schedulers assign MPI
tasks in a linear or random fashion to the nodes allocated to
the jobs. These default placements of MPI tasks in cores do
not account for interdependence among the MPI tasks, the
static topology of the network, or the real-time state of the
computer. Several algorithms exist to account for the static
network topology and task interdependence [18, 7, 15, 12].
These algorithms take as input geometric or graph-based
representations of both the application data and the net-
work topology, and map one representation onto the other.

In [9], we investigated the placement of MPI tasks onto
allocated cores to avoid real-time network congestion. As
with most graph-based static mapping tools, our dynamic
placement used two graphs as input. One graph described
the communication patterns of the underlying application.
Graph vertices represented MPI tasks and weighted edges
represented the volume of communication (number of bytes)
to be sent between pairs of tasks. This graph was provided
by the application. A second graph described the cost of
communication between the nodes allocated to the applica-
tion. Graph vertices represented the nodes, and weighted
graph edges represented the cost to communicate between
pairs of nodes. For static mapping, these weights could be,
e.g., the number of network hops between nodes. But for our
dynamic placement, the edge weights were obtained from
a separate software component (the ResourceOracle) which
queried LDMS for raw data and calculated the percentage
of used bandwidth or time spent in credit stalls along the
route between a pair of nodes. Routes with greater con-
gestion used higher edge weights in the architecture graph,
while routes with little congestion had lower weights. The
two graphs were then passed to the Scotch [18] graph par-
titioning and mapping toolkit which, through recursive bi-
partitioning of the two graphs, assigned interdependent MPI
tasks to nodes with low communication cost between them.
We showed that we could recover up to 49% of the execution
time lost to congestion in small-scale experiments.

Our improved infrastructure overcomes several shortcom-
ings in this prior work to enable us to apply our approach
to larger-scale systems and with more responsive analysis.
In the prior work, the network congestion analysis was per-
formed on-demand and required an explict query to the Re-
sourceOracle and thus the aggregator by a remapping analy-
sis component. That data was obtained over a socket with a
well-defined message format for the query and the response.
With our new infrastructure, the integration of the network
analysis with LDMS via the plugin reduces the overhead and

latency to obtain the network contention data and do the
route congestion analysis. The plugin performs continuous
analysis which enables us to discover changing contention
in the routes of interests and pro-actively trigger remapping
of tasks. Moreover, the memory mapped region reduces the
latency for obtaining the congestion data to be used in the
mapping analysis as compared to the socket-based approach.

3.3 Congestion-Aware Data Partitioning
Many applications (e.g., adaptive finite element meth-

ods [5, 13, 17, 23, 25]; particle-in-cell methods [19, 20, 26])
use dynamic data partitioning to balance changing work-
loads and/or maintain locality during a simulation. Such
applications could benefit further by including real-time sys-
tem performance information in their repartitioning. In tra-
ditional graph-based partitioners [22, 10, 14, 16], application
data is modeled as a graph: weighted vertices represent data
objects and their computational cost, while weighted edges
represent the strength of dependence between data objects.
The graph is then divided into a specified number of equally
weighted parts so that the weight of edges cut by part bound-
aries is small. A few graph partitioners [18, 24] also accept
a static graph of the network to try to align application
communication across part boundaries that span low-cost
communication links in the network graph. Replacing the
static network graph with a graph weighted with dynamic
information about congestion or used bandwidth holds the
potential to make partitioning strategies more effective by
allowing them to avoid network bottlenecks. Continuous
analysis detecting changes in network performance can also
trigger repartitioning for the application.

4. CURRENT STATE AND FUTURE WORK
We have presented an infrastructure for analyzing real-

time system monitoring data and providing it to applica-
tions for decisions about task placement and work distribu-
tion. Currently, we have implemented the continuous analy-
sis plugin with the parallel network analysis described here.
We have not yet implemented the memory mapped region
for more tightly coupled sharing of analysis results with ap-
plications; we still provide a socket interface to that data.

We are investigating direct inclusion of network quiesce
event data and detection of significant decrease of network
congestion values on all links as indicators of quiesce events.
We are also performing experiments to characterize the im-
pact of contention measures on application performance, to
refine the weighting of the machine graph for remapping.

We addressed Cray’s Gemini network, because it has de-
terministic routing. However, we are also investigating con-
gestion measures on Cray’s Aries-based dragonfly network.
The benefits to performance of the Aries adaptive routing
are not clear and detailed information from the Aries per-
formance counters could be used for better understanding
of the existing routing algorithms, exploration of other algo-
rithms, and enabling finer grained response to congestion.

While the work and use cases presented have focused on
application use of network congestion information, there is
a wealth of other information such as power consumption,
thermal information, storage bandwidth use, that could be
exposed via this same interface for use by both applications
and other system entities such as schedulers, resource man-
agers, analysis tools, etc. For example, memory contention
has been used to manage concurrency in multithreaded ap-



plications [21], and CPU utilization could be used in setting
appropriate part sizes in dynamic load balancing tools.

Batch schedulers currently interact with resource man-
agers to assign nodes to jobs based only on availability and
expected job duration. If these system services also had
access to current and expected network congestion informa-
tion within the system, they could place jobs away from
heavily congested regions, reducing the jobs’ communica-
tion time and increasing overall system throughput. Like-
wise having access to current shared filesystem bandwidth
headroom in conjunction with historic application use could
inform these system services to enable scheduling and re-
source allocation that could minimize contention and in-
crease system throughput. A small amount of application
information, historic and/or run-time, (e.g., whether the job
is communication-bound or computation-bound) would al-
low more customized node allocations that would avoid or
tolerate congested regions accordingly.
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