
Holistic Measurement-Driven System Assessment

Saurabh Jha∗, Jim Brandt†, Ann Gentile†, Zbigniew Kalbarczyk∗, Greg Bauer¶, Jeremy Enos¶,
Michael Showerman¶, Larry Kaplan§, Brett Bode¶, Annette Greiner‖, Amanda Bonnie‡, Mike Mason‡,

Ravishankar K. Iyer∗, and William Kramer∗¶
∗University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61801

†Sandia National Laboratories (SNL), Albuquerque, NM 87123
¶National Center for Supercomputing Applications (NCSA), Urbana, IL 61801

§Cray, Inc., Seattle, WA 98164
‖National Energy Research Science Computing Center (NERSC), Berkeley, CA 94720

‡Los Alamos National Laboratory (LANL), Los Alamos, NM 87544

Abstract—In high-performance computing systems, applica-
tion performance and throughput are dependent on a complex
interplay of hardware and software subsystems and variable
workloads with competing resource demands. Data-driven in-
sights into the potentially widespread scope and propagation
of impact of events, such as faults and contention for shared
resources, can be used to drive more effective use of resources, for
improved root cause diagnosis, and for predicting performance
impacts. We present work developing integrated capabilities for
holistic monitoring and analysis to understand and characterize
propagation of performance-degrading events. These characteri-
zations can be used to determine and invoke mitigating responses
by system administrators, applications, and system software.

I. INTRODUCTION

Extreme-scale high-performance computing (HPC) systems
require a holistic approach to monitoring and coordination of
many disparate subsystems (both hardware and software) to
enable continued scaling and efficient execution of applications.
HPC systems are typically used for executing tightly coupled
simulation applications across hundreds of thousands to millions
of processor threads. Mismatches in processor, memory, inter-
connect, and/or storage performance can significantly influence
an application’s overall performance; a variation of 50% or more
has been observed. A single component failure can cause an
entire application to fail at any time. Power and cooling facilities
can significantly influence both component performance and
failure probability. As a result, effective failure/degradation
mitigation response(s) in complex systems require analysis of
(i) propagation of faults/errors and (ii) performance issues due
to interference among applications or resource exhaustion.

As part of a DOE Office of Science resilience project called
Holistic Measurement-Driven Resilience (HMDR), we have
been building integrated capabilities for extracting system and
application performance- and failure-related data. We have been
using these data to build fault-to-failure characterizations, and
using these characterizations to determine effective mitigating
responses. We are now extending that work to address more
generally scenarios that result in performance degradation in

This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research,
under Award Number 2015-02674.

Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

which timely and appropriate response can significantly improve
both application run times and system throughput. The eventual
product of this work will be an interoperable set of capabilities
for extreme-scale systems that provides monitoring, analysis,
and appropriate response for both resilience and performance
issues. These capabilities will support both automated and
exploratory analysis, both at run-time and in post-processing.
In order to enable analysis of the data sizes to be produced on
such systems, we include in our design low overhead collection
and extraction of raw and derived information, including system
and application-level events and effects, necessary to facilitate
the development of machine-learning-based analyses.

II. TRACKING AND DIAGNOSING SYSTEM ISSUES AT
RUNTIME

This section illustrates the use of collected data (from
NCSA’s Blue Waters [1]) and analysis tools for monitoring,
tracking, and diagnosis of both failures and performance
degradation in systems and applications through use of case
studies. Further, these case studies illustrate methods for
building features that can help diagnose application resilience
and performance problems.

A. Tracking, predicting, and diagnosing failures

In a large-scale system, faults, errors, and failures are
inevitable and can occur in hardware or software from any
subsystem. These Events of Interest (EoI) can propagate to
manifest as serious system or application stability or correctness
issues and may be silently tolerated by the system either through
built-in resiliency mechanisms or because they do not coincide
with the utilization of resources by an application. In large-
scale systems, the volume, frequency, and variety of information
output to log files, whether just informational or to document
actual errors, can hinder timely problem diagnosis and accurate
root cause analysis. Sophisticated and automated diagnostic
tools are a requirement for processing relevant information on
the time scales required to take effective mitigating action as
opposed to post-impact analysis and recovery.

Correlating the observed EoIs to build likely fault-
propagation paths, such as the one described in “Case Study 1”
below, enables early identification of adverse impact indicators
and construction of probabilistic predictors of locality and
intensity. The pictorial representation of a fault propagation
path shown in Figure 1 was built using our LogDiver [2]
tool’s semi automatic clustering algorithm [3]. Our current



Pump 
gasket 
problem

Blade 
EPO

Pump 
gasket 
fixed

Multiple 
mezzanine 
failures, 
blades 
unreachable

Other
links 
fail

H
ea

t-
R

el
at

ed
 

Pr
ob

le
m

s
Li

nk
 

Fa
ilo

ve
r

Link 
failover 
begins

Route 
compute 
fails

Link 
failover 
fails

SWO 
Declared

Fig. 1: Network recovery-sequence cluster showing relationship
between failure and recovery events

focus is on enhancing and integrating our tools to automate
the task of feature discovery and to build fault-propagation
paths independent of the particular subsystem, as described in
Section III. We will leverage machine learning methods (such
as Bayesian networks) to complete this task.

Case Study 1: A pump gasket failure led to a system-
wide outage by way of network component failures and
error propagation: Figure 1 (automatically generated by Log-
Diver) depicts a network recovery-sequence cluster capturing
relationships between network failure and recovery events
in the system. The failure of a pump gasket (pump gasket
problem) caused the temperature to rise in a cabinet. The
eventual overheating triggered an emergency power-off of a
blade (blade EPO), a protection mechanism to guard the blade’s
components, including Gemini router ASICs, from permanent
damage. The associated Gemini router failure triggered link
failover (link failover begins). As the link failover progressed,
additional failures occurred on other blades (other links fail)
in the same cabinet resulting in route computation failure
(route compute fails). The failure of the route computation
(and its retries) to establish an alternative path for nodes to
communicate with other nodes led to the failure of the link
failover (link failover fails). The overheating effect increased
and propagated to nearby cabinets, causing more blades to fail
(multiple mezzanine failures, blades unreachable). A system-
wide outage (SWO) was declared to manually fix the system
and restore it to a healthy state.
B. Tracking, predicting, and diagnosing performance problems

Performance problems can result from failure or non-failure
related causes and can also propagate in a system. For example,
both link failures and application communication design
patterns can result in the occurrence and spread of contention
for shared network resources. Performance degradation, rather
than application failure, then, may be the outcome. Here we
present case studies showcasing the use of monitoring data
collected by our LDMS [4] tool to enable analysis of non-
failure-related performance issues and propagation paths.

Case Study 2: Performance degradation due to failure:
Figure 2 shows the impact of network link failure and its corre-
sponding recovery on the Gemini 3D torus [5] interconnection
network of Blue Waters. Event logs corresponding to this failure
are shown in Figure 2(ii). In this network, traffic from multiple
applications may pass through the same Gemini routers along
their paths. Sub-figure 2(i) shows the aggregate data passing
through all of the Gemini routers. Basic statistics such as this
indicate bandwidth utilization of the system. To understand
if there is actual performance degradation and, if so, which
Gemini router may be the source of the problem requires more

in-depth analysis. Converting raw network data into derived
metrics that are indicative of performance-degrading conditions
and associating these metrics with application performance
measures are still areas of active research.

Sub-figure 2(iii) shows the “average packet transmission
time”, which is calculated by dividing “average packet size” by
bandwidth for all the links on a Gemini ASIC router. Continuous
derivation of this metric from raw monitored data for each
Gemini router can provide a detectable signal for identifying
the source of congestion. In this case, failure of one of the
links (4 Gemini tiles) on the Gemini network at “9-7-1” x,y,z
coordinates in the torus (Gem 9-7-1 in Figure 2) lead to the
initiation of network recovery and a network-wide quiesce.
From the figure it is clear that this particular Gemini router was
showing early indication of a problem, as the “average packet
transmission time” through this Gemini router was significantly
higher than for others. Such signals can be used for training,
predicting, and diagnosing problems.

Case Study 3: Performance degradation due to non-
failure related issues: Figure 3 shows where a 32-node job
caused high congestion in the system interconnect, triggering
two congestion protection events, first at 10:00 am (within 10
seconds of job launch) and then at 15:20 (red lightning bolts in
Figure 3(i)). Congestion within the torus can adversely impact
the performance of the application responsible for triggering
the congestion protection events and other running applications
and is a major cause of inconsistent application run times.
Blue Waters uses topology aware scheduling (TAS) [6] to
maximize communication performance for jobs in its 3D torus
by placing a job in a compact rectangular prism-shaped set
of physical nodes. Such assignment maximizes locality of
inter-node communication patterns within the prism-shaped
allocation geometry. I/O calls to the file system, however, are
likely (but not guaranteed) to cause communication outside a
job’s geometry. A linear shape in the “Z” direction is more
likely to funnel much of the I/O traffic to shared links, causing
high congestion in the system. Detection and diagnosis of the
cause of congestion helps optimize scheduling strategies for a
job as well as improve application communication performance.
Use of derived metrics and anomaly-detection algorithms can
enable diagnosis and detection of such issues.

Figure 3(i) shows a plot of maximum credit and inq stall
metrics, indicating when traffic cannot be sent to a port of
a different Gemini router (credit) or within the same Gemini
router (inq) because of a lack of receiver buffer space, across
links in the job. These unprocessed metrics alone do not help
in diagnosis of congestion issues in the network or job.

Figure 3(ii) shows a plot of the sum of stall rates on all links
for all the Gemini routers local to compute nodes used by the
job (normalized to the total stall rate throughout the duration of
the job). The two peaks (marked) in this sub-figure correspond
to the triggered congestion protection events.

Figure 3(iii) shows a plot of the absolute difference between
job input data and output data transferred over the network
(normalized by total input or output data throughout the duration
of the job). This shows three large peaks that hint at I/O rather
than inter-process communication in the application. Only 2
of the 3 peaks in this sub-figure match congestion protection
events. Combined knowledge from Figure 3(ii) and Figure 3(iii)



(i) System Bandwidth

(iii) Average Transmission Time

Link failed

(ii) Network Log Events

Recovery 
complete

A
ve

ra
ge

 p
ac

ke
t 

la
te

n
cy

Gem 9-7-1

Gem 2-13-9

Measurement Window (bin size = 1 min)

Fig. 2: Case Study 2

(i)

(ii) (iv)

Max stall across links within application geometry (iii) Application input and output traffic

Sum of inq stall across routers within application geometry Application RDMA read/write traffic

Measurement Window (bin size = 1 min) Measurement Window (bin size = 1 min)

Measurement Window (bin size = 1 min)
Measurement Window (bin size = 1 min)

Fig. 3: Case Study 3

enables correlation of the congestion protection events with
filesystem I/O.

Figure 3(iv) shows a plot of read and write remote direct
memory access (RDMA) values for read and write for this job
normalized by total read/write RDMA bytes through the job’s
duration. It confirms that only large amounts of “read” RDMA
trigger congestion protection events.

Case studies 1, 2, and 3 illustrate the need to holistically
monitor applications and systems to understand application
resilience and performance bottlenecks. Moreover, these case
studies demonstrate that extraction of features from raw data
can help build machine learning models to distinguish and
diagnose application performance and resilience issues.

III. APPROACH

This section presents our approach to building an integrated
tool suite for monitoring, analysis, and response. This suite
is comprised of 1) passive tools for gathering and analyzing
information produced by typical HPC systems (e.g., system and
hardware error logs), 2) active querying tools that collect data
not naturally emitted/collected from a system (e.g., performance
counters, facilities power and cooling information), and 3)
active probing tools that inject stimuli into a system to assess
the system response in terms of behavioral characteristics of
information gathered by the tools in categories 1 & 2. We
are extending our suite of tools with components for post-
processing and run-time analytics. The tools are designed to
interact seamlessly together and with target system components
to provide efficient operation of platforms and applications.

The architecture for our “Holistic Measurement-Driven
System Assessment” (HMDSA) infrastructure is shown in
Figure 4. We describe the major HMDSA components and their
functional interactions here. Our first target deployments are
Open Science platforms at NCSA. Currently, on Blue Waters,
the Integrated System Console (ISC) [7] provides capabilities
for data collection, analysis, visualization, and report generation.
HMDSA will provide next-generation advancements to the ISC,
with greater capabilities for extreme-scale automated analyses
and new capabilities for determining and invoking run-time
system-level and application-level responses.

System and Application Data Collection In HMDR, we
use LDMS to collect data that are, or can be, exposed on-node,

Fig. 4: HMDSA Infrastructure. Data sources (left); analysis results
and responses (right). HMDSA will enhance our capabilities for
advanced automated analyses of failure and performance degradation
EoI and to inform system-level and application-level responses.

for example, CPU, IO, and network utilization data. An LDMS
daemon is run on each node to collect data via queries to
the daemon. LDMS collects data at user-configurable intervals
from milliseconds to minutes. These datasets are the basis
of our analyses to determine performance issues and inform
propagation scenarios. We are currently extending our collectors
to incorporate application-provided information. Timestamped
application phase and progress information will enable better
understanding of how system events, characteristics, and
conditions, including contention for underprovisioned resources,
impact an application’s performance.

Propagation Characterizations Log data are an important
information source for determining an initial problem and
the sequence of events in fault handling. LogDiver is our
tool for extracting and assessing sequences of events in
log data. Currently, message patterns associated with EoIs
must be identified in advance and manually categorized as
to domain (e.g., network, storage). LogDiver then processes
logs, identifies significant messages, and determines spatio-
temporal relationships of significant messages. This enables
characterization of sequences, such as steps and timings in
failure recovery, as well as identification of failures in recovery,
which are identified by missing or additional warning lines in
sequences. An example is shown in Figure 1.

To facilitate identification of important log messages, partic-
ularly in new systems in which the possible and meaningful
messages are unknown, we use our Baler [8] tool. The user



provides a dictionary of words; Baler turns the log lines
into patterns by retaining dictionary terms and treating all
other items as variables (indicated by *), e.g., “handling
failed link *”. Baler can also turn numeric value ranges
into distinct patterns. Both patterns (textual and numeric) can
be treated identically for queries and analyses. This facilitates
understanding relationships of numerical characteristics and log
events for automated detection of EoIs, abnormal behaviors,
and associations.

We are currently integrating LogDiver and Baler (Figure 4) to
streamline the analysis process. Patterns determined by Baler
will be directly usable by LogDiver, which will process the
pattern occurrence data in the Baler database. This will enable
more efficient extraction of sequences and timings and will
enable LogDiver extensions to include numerical data as well.

Diagnosis and Prediction By determining the text, numerical
sequences, and timings of interest, we seek to both diagnose and
predict stability and performance-impacting issues. Detection
of numeric indicators that can be associated with propagation
characterizations could enable use of the sequences to identify
both initial causes and impending events in the sequence. The
run-time usability will depend on actual time windows between
events in a particular sequence.

Validation Through Fault and Performance Degradation
Injection In order to expand and refine our characterizations,
we augment our production data with data from controlled
experiments. We have built a toolkit for fault injection, HPCAr-
row [9], which includes both injection of faults into system
components and launch of applications in order to assess the
resulting impact on performance and stability. We capitalize
on HPCArrow’s flexibility and are extending it to perform
injection of performance-impacting events such as memory
leaks and contention for shared network and I/O resources.

Feedback to Applications and System Software To mitigate
performance-impacting scenarios, we seek to provide data,
diagnosis, and prediction information in actionable form to both
human and system software consumers. Feedback to system
administrators and users can be used for complex diagnosis,
improved understanding, and subsequent tuning. However,
more direct run-time mitigating responses can be achieved by
providing direct feedback to applications and system software
where it can be used for load-balancing, task-mapping, or co-
scheduling decisions. We have previously shown [10] that
in certain congested network scenarios, remapping based
on dynamic monitoring of system information can be more
effective than that based on static architectural measures alone.
Providing information to on-node consumers is facilitated by the
LDMS daemons that innately host data. Validated propagation
scenarios can be used to prioritize event response, based on
potential severity of impact and window of opportunity.

Future instrumentation Historically, systems have provided
limited exposure of the information that we require for
actionable analysis. Often the reason is a lack of instrumentation.
In recent years more information has been exposed; for example,
the number and scope of network performance counters has
greatly increased in the Cray Aries router ASIC [11] since the
previous-generation Cray Gemini router ASIC. However, in
some current and upcoming subsystems, while instrumentation
has increased, exposure of raw information to the user has been

reduced, while the vendor utilizes it for making low level fault
and performance decisions. This trend limits the usability of
such information by the user and researchers for more global
analysis and decision-making processes. As part of our work
we seek to demonstrate the utility of processing low-level
resource utilization/contention information in a global context
to form the basis for discussions with vendors for data exposure.
This includes identifying additional potentially actionable
information, including location and maximum refresh rates, that
would support earlier and more accurate discovery, diagnosis,
and prediction of stability/performance issues. Further, we are
pursuing advanced analytics, including machine learning and
low latency evaluation of raw and derived data against learned
behavioral models, to provide the most effective response
possible to degradation in stability and/or performance.

IV. RELATED WORK

There is a substantial body of research, reaching back over
a decade [12], in the area of intelligent use of monitoring data.
Much of it focuses on characterizing failure rates from text logs
in order to set checkpoint intervals for applications. There has
been less numerical analysis work due to the complexities of
collecting numerical data at sufficient fidelities with low impact
and of analyzing large datasets. The work that has been done
in that area includes [13], [14]. In contrast to our previous
work which focused on development of infrastructures for
combined monitoring, analysis, and response [15], [7], here we
are developing more sophisticated tools for combined text and
numeric analyses to build detailed propagation characterizations
reflective of complex interactions among subsystems that will
require autonomous resource-utilization optimization in order
to deliver on the promise of extreme-scale computing.

REFERENCES

[1] “Blue Waters.” [Online]. Available: https://bluewaters.ncsa.illinois.edu
[2] C. D. Martino et al., “LogDiver: A tool for measuring resilience of

extreme-scale systems and applications,” in Proc. of the 5th Workshop
on Fault Tolerance for HPC at eXtreme Scale. ACM, 2015, pp. 11–18.

[3] S. Jha et al., “Analysis of Gemini Interconnect Recovery Mechanisms:
Methods and Observations,” in Cray User Group, 2016.

[4] A. Agelastos et al., “Lightweight Distributed Metric Service: A Scalable
Infrastructure for Continuous Monitoring of Large Scale Computing
Systems and Applications,” in Proc. Int’l Conf. for High Performance
Storage, Networking, and Analysis (SC), 2014.

[5] R. Alverson et al., “The Gemini System Interconnect,” in Proc. 2010
IEEE 18th Ann. Symp. on High Perf. Interconnects (HOTI), 2010.

[6] J. Enos et al., “Topology-aware job scheduling strategies for torus
networks,” in Proc. Cray User Group, 2014.

[7] J. Fullop et al., “A diagnostic utility for analyzing periods of degraded
job performance,” in Proc. Cray User Group, 2014.

[8] N. Taerat, J. Brandt, A. Gentile, M. Wong, and C. Leangsuksun, “Baler:
deterministic, lossless log message clustering tool,” Computer Science -
Research and Development, vol. 26, no. 3-4, pp. 285–295, 2011.

[9] V. Formicola et al., “Understanding Fault Scenarios and Impacts Through
Fault Injection Experiments in Cielo,” in Proc. Cray User’s Group, 2017.

[10] J. Brandt et al., “Demonstrating Improved Application Performance
Using Dynamic Monitoring and Task Mapping,” in IEEE Int’l Conf. on
Cluster Computing, 2014.

[11] Cray Inc., “Aries Hardware Counters,” Cray Doc S-0045-20, 2015.
[12] R. Vilalta et al., “Predictive algorithms in the management of computer

systems,” IBM Systems Journal, vol. 41, no. 3, pp. 161–474, 2002.
[13] T. Evans et al., “Comprehensive Resource Use Monitoring for HPC

Systems with TACC Stats,” in Proc. of the First Int’l Wrk. on HPC
User Support Tools, 2014.

[14] S. Gallo et al., “Analysis of XDMoD/SUPReMM Data Using Machine
Learning Techniques,” in Proc. IEEE Int’l Conf. on Cluster Comp.,
2015.

[15] J. Brandt et al., “OVIS-2: A robust distributed architecture for scalable
RAS,” in Proc. IEEE Int’l Symp. on Parallel and Dist. Proc., 2008.


