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Abstract—This work demonstrates the integration of moni-
toring, analysis, and feedback to perform application-to-resource
mapping that adapts to both static architecture features and
dynamic resource state. In particular, we present a framework
for mapping MPI tasks to compute resources based on run-
time analysis of system-wide network data, architecture-specific
routing algorithms, and application communication patterns. We
address several challenges. Within each node, we collect local
utilization data. We consolidate that information to form a global
view of system performance, accounting for system-wide factors
including competing applications. We provide an interface for
applications to query the global information. Then we exploit the
system information to change the mapping of tasks to nodes
so that system bottlenecks are avoided. We demonstrate the
benefit of this monitoring and feedback by remapping MPI
tasks based on route-length, bandwidth, and credit-stalls metrics
for a parallel sparse matrix-vector multiplication kernel. In the
best case, remapping based on dynamic network information in
a congested environment recovered 48.9% of the time lost to
congestion, reducing matrix-vector multiplication time by 7.8%.
Our experiments focus on the Cray XE/XK platform, but the
integration concepts are generally applicable to any platform for
which applicable metrics and route knowledge can be obtained.

I. INTRODUCTION AND RELATED WORK

We demonstrate the benefit of combining dynamic system
monitoring, architecture-specific network data, and task man-
agement algorithms to avoid application performance degre-
dation caused by competing applications. Clearly, an appli-
cation’s performance depends strongly on its ability to use
optimally the resources allocated to it. However, many factors
influencing performance are out of the application’s control.
One such factor in a shared parallel computing environment
is competing applications’ use of shared network resources.
When several applications communicate over the same net-
work links, congestion can cause slow-downs in application
performance. Performance degredation in such cases is well
known anecdotally (e.g., every sysadmin has heard something
like “My app runs more slowly whenever Joe is running jobs,
too.”), and also has been well documented [1].

In this work, we aim to relocate or remap MPI tasks
among nodes to reduce the impact of network congestion on
an application’s performance. We assume an application is
allocated a set of nodes by the system’s resource manager. Our
work does not influence the selection of these nodes, although
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other efforts have looked at strategies for reducing congestion
by using static system topology information to more selectively
allocate and order nodes (e.g., [2]–[4]). MPI provides a default
mapping of ranks to cores in allocated nodes, typically a simple
linear ordering of ranks, with no regard for the communication
patterns of the application. Given a set of allocated nodes, our
goal is to find a new assignment of MPI ranks to the nodes’
cores that attempts to minimizes the cost of communication
for the application. We call this assignment a “mapping” or
“task placement.”

In a non-shared environment, this mapping can examine
distances or connections between nodes to assign interdepen-
dent application tasks to nodes that are “nearby” in terms
of proximity or topology, decreasing the cost to communi-
cate data between the tasks. For example, grouping inter-
dependent tasks within cores of nodes as much as possible
can significantly reduce communication costs in large-scale
systems [5], and further accounting for proximity of nodes
within the network topology can extend scalability to larger
core counts [6]. Several software tools exist to compute such
mappings, including graph-based mapping in LibTopoMap [7],
Scotch [8], and Jostle [9], and geometric mapping MJ in
Zoltan2 [6]. All rely on the application to provide some models
of the network and application communication patterns to
perform mapping; LibTopoMap, additionally, gets node-level
information from the hwloc tool [10]. The parallel run-time
environment Charm++ performs topology-aware mapping for
grid and torus networks, approximating communication costs
by “hop-bytes”: the distance between nodes in the network
multiplied by the number of bytes sent [11], [12]. In this work,
we have chosen to use a graph-based mapping strategy in order
to explicitly account for the cost of communicating within the
network. We opted to use Scotch, but other packages could be
used similarly without loss of generality.

Additional complexity arises in shared computing environ-
ments, where applications cannot account a priori for envi-
ronmental factors such as competing network traffic. In such
cases, dynamic information from the computing environment
is needed. System-level software is needed to collect metrics
of interest (e.g., bandwidth or stalls metrics), aggregate them
into useful form, and deliver them to applications. Several
sampling and aggregation tools exist that could provide the
base data for this functionality; see, for example, MRNet [13],
Ganglia [14], [15], Nagios [16], Performance Copilot [17], and
the Lightweight Distributed Metric Service (LDMS) [18]. A
performance comparison of these tools is beyond the scope of
this paper, and, indeed, is orthogonal to this discussion, as any



tool with sufficient data collection and aggregation capabilities
could be used. We have chosen to use LDMS because of its
excellent scalability [18] as demonstrated by its deployment on
NCSA’s 27648-node Cray XE/XK platform (Blue Waters) [19],
as well as its existing deployments on our local Cray XE/XK
systems. Moreover, LDMS is open source, which will give us
greater flexibility in interacting with dynamic data in future
work. Additional capability is also required for assessing the
base data in the context of the system architecture and making
it available to mapping tools.

Dynamic information can then be used in graph-mapping
algorithms to set graph-edge weights representing communica-
tion costs in the network. Algorithms that attempt to minimize
application communication costs then have a real-time picture
of network performance, allowing more effective mapping
decisions to be made.

While we focus on task placement in this work, the integra-
tion strategies described could also be applied to other resource
management scenarios. For example, dynamic information and
applications’ expected communication patterns could both be
integrated with existing static information in batch scheduling
systems to reduce contention at a system level. Or dynamic
computational load and network information could be used
for data-level load balancing within applications, adjusting
processor work loads to accommodate, say, power throttling
or localized network congestion. Many opportunities exist for
performance improvements once the mechanisms for collecting
and sharing dynamic system information are in place.

This paper makes several contributions.

• We outline the key components needed to integrate
dynamic monitoring with resource management tools.

• We describe a specific implementation of an integrated
monitoring, analysis and response environment for
dynamic task placement using LDMS and Scotch to
avoid network congestion in a Cray XE/XK system.

• We demonstrate the potential benefits of this integrated
system to reduce execution time of a key computa-
tional kernel – sparse matrix-vector multiplication.

We target Cray XE/XK systems since they are widely
used for large-scale scientific computing; NERSC’s Hopper
and Los Alamos’ Cielo are both Cray XE/XK systems. Many
concepts from this paper would apply for other architectures
given appropriate data collection tools for those systems.

This paper continues as follows. In Section II, we address
issues in the Cray Gemini environment that motivate both the
need for dynamic response to resource state and the need for
system-level monitoring to acquire relevant data. In Section III,
we outline the key components of an integrated monitoring and
response system, and describe our specific implementation for
resource- and architecture-aware task mapping. In Section IV,
we describe our experimental set up for generating controlled
resource-state variations and dynamic mapping response. Re-
sults of the experiments are given in Section V. We address
future work and conclude in Section VI.

II. THE CRAY GEMINI NETWORK

All High Performance Compute (HPC) systems employ a
variety of resources that are shared among nodes within a
job and among all jobs running across the system. Examples
include high speed network interconnects and file systems.
Typically these resources are insufficiently provisioned to
avoid some level of contention when there are many nodes
concurrently competing for them.

Figure 1 illustrates the Cray Gemini [20], [21] interconnect
utilized in their XE/XK platforms. (In particular, this figure
represents the 64-node, 32-Gemini system, Curie, used in this
work.) Typically this interconnect is configured as a 3D torus;
the wrap-around links have been eliminated in the figure for
clarity. In the figure, each circle represents a Gemini routing
element, each of which connects directly to two host nodes.
Gray circles denote Gemini associated with service nodes
which are unavailable to applications, while blue indicates
association with compute nodes. The XYZ mesh coordinates
associated with Gemini are used as their labels. Two hosts
associated with each Gemini are indicated by comma separated
pairs above and to the left of each Gemini. Hosts have unique
node identifiers called their nid numbers. This identifier has the
same format for all hosts; it is the word nid followed by a five-
digit host number padded with zeros to the left (for example,
hosts in the front lower left of the figure denoted by 62,63 have
identifiers nid00062 and nid00063 respectively). The gray
bi-directional arrows depict the network connections between
adjacent Gemini. The orange and red arrows illustrate traffic
routes taken between a few of the Gemini.

Routing between any two Gemini is deterministic and goes
first from source X to destination X, then from source Y to
destination Y, and then from source Z to destination Z. The
shorter of the paths in the +/- directions is taken. In case
of a tie, the + direction is taken if the matching destination
coordinate is even, and - if it is odd. As an example, traffic sent
from nid00012 to nid00038 proceeds (as shown in the
figure) by the following path: (0, 0, 6) X+→ (1, 0, 6) Y +→
(1, 1, 6) Z− → (1, 1, 5) Z− → (1, 1, 4) Z− → (1, 1, 3).

To handle link congestion without data loss, the Gemini
network utilizes a credit-based flow control scheme. A source
is allowed to send only an amount of traffic to a particular
destination for which it has credits. When a source runs out
of credits for a destination but has data to send, it must pause
(stall) until it receives credits back from the destination. Stalls
when sending from one Gemini to another are referred to
as credit stalls. Likewise, within the Gemini router, a credit-
based flow control scheme is utilized to ensure that data in
input buffers cannot be transferred to internal output buffers
unless there is space available. Stalls in this case are called
inq stalls. Thus, depending on which host resources have been
allocated to which applications, there can be contention for
network resources, potentially causing congestion, which can
adversly affect application performance across multiple jobs.
Additionally, within the Gemini distributed network fabric,
different link types have different maximum bandwidths (not
shown in the figure), further exacerbating link oversubscription
and network congestion.



Fig. 1. Test system Architecture. Circles denote Gemini with arrows indicating traffic directions between Gemini. For clarity, torus-wrapping links are not
shown. Grey circles are Gemini associated with service nodes, which are unavailable to applications. XYZ mesh coordinates label each Gemini. Two nodes
sharing the same Gemini are indicated by pairs of node numbers. For example nid00016 and nid00017 share the Gemini at mesh coordinates 0,1,7. Traffic paths
for the congestion traffic pairs are shown in orange and red.

III. INTEGRATION OF MONITORING, ANALYSIS, AND
RESPONSE TOOLS

Several components are needed to integrate system mon-
itoring with resource- and architecture-aware task mapping:
dynamic data collection and aggregation; incorporation of
static routing information; interfaces to deliver the informa-
tion to mapping tools; mapping tools that can use dynamic
information; and applications that can accommodate mapping.
We have developed a tool called the ResourceOracle (RO) that
is the cornerstone of this integration.

Applications can obtain information directly from their
local nodes (e.g., from /proc/meminfo, /proc/stat)
to obtain coarse-grained understanding of how well they are
utilizing their allocated resources. However, to gain insight into
strategies to utilize allocated resources in a way that minimizes
shared resource oversubscription, a global view is required.
The ResourceOracle queries and aggregates platform-wide
network-state information to provide such a global view. The
RO also provides a user interface that enables applications
or resource-management tools to easily obtain system infor-
mation. The RO and its relationship with other integration
components are described below.

A. Data collection and aggregation framework

In order to access and aggregate system-wide network
data, we run the Lightweight Distributed Metric Service
(LDMS) [18] monitoring and aggregation tool on all nodes.
LDMS has samplers for relevant network data, and utilizes
RDMA over Gemini to transport information from compute
nodes to aggregator nodes in a low-overhead fashion.

Fig. 2. High-level diagram of the framework components: LDMS monitoring
and aggregation, ResourceOracle, and Scotch. Rounded rectangles denote
LDMS daemons; circles within denote metric sets.

A high-level diagram of the LDMS monitoring and ag-
gregation framework is shown in Figure 2. Samplers in this
figure refer to hosts running monitoring daemons (one per
host, including both compute and service nodes). Samplers
collect information of interest on the hosts, including network
performance counter information. The information is period-
ically pulled from sampler to aggregator or from aggregator
to aggregator (depicted by dashed lines). The time interval
is a user-specified configuration parameter; in this work, we
used a two-second interval. Aggregators can also be queried by
non-LDMS applications for their current data. Figure 2 depicts
our ResourceOracle querying a second-level aggregator. For
our small 64-node system, a single aggregator was used, as



LDMS supports fan-in from over ten thousand samplers to an
aggregator.

A sample of the per-node information available from
LDMS is shown in condensed form below. This information
is the pertinent network information that can be used to infer
network link congestion. Note that the metrics starting with
X+ have counterparts in X-, Y+/-, and Z+/- directions which
are not shown here.

U64 1 nettopo_mesh_coord_X
U64 1 nettopo_mesh_coord_Y
U64 6 nettopo_mesh_coord_Z
U64 13 X+_SAMPLE_GEMINI_LINK_USED_BW (%)
U64 0 X+_SAMPLE_GEMINI_LINK_INQ_STALL (%)
U64 0 X+_SAMPLE_GEMINI_LINK_CREDIT_STALL (%)

Mesh coordinates (example: nettopo mesh coord X) are
taken in conjunction to define the XYZ coordinates of each
Gemini router (see Figure 1). USED BW here provides the
percentage of total theoretical bandwidth on an incoming link
that was used over the last sample interval. INQ STALL
provides the percentage of time, over the last sample interval,
that the input queue of the Gemini spent stalled due to lack
of credits. CREDIT STALL provides the percentage of time,
over the last sample interval, that traffic could not be sent from
the output queue due to lack of credits. These stalls are due
to the Gemini network using credit-based flow control.

The percentage calculations are derived from link aggre-
gated quantities of traffic counters (bytes) and time stalled
(nanosec) presented by Cray’s gpcdr /sys interface [22],
which aggregates fundamental per-channel and NIC perfor-
mance counter data [23]. Details of the percentage calculations
can be found in [18]. USED BW is proportional to the traffic
per second on a link during the collection window as a fraction
of the theoretical maximum bandwidth of the network media
type. CREDIT(or INQ) STALL is proportional to the time
stalled divided by the number of lanes in the given direction
normalized as a fraction of the total time between data samples.

B. Integration of system data with route information

In order to provide useful, global, network-related informa-
tion to applicatons, we integrate collected data with full route
information for all pairs of nodes. Applications can then query
the RO for network information with the full route context.

Route information is built from the individual link in-
formation obtained from Cray’s “rtr --phys-routes”
command, while link-type information is obtained using the
“rtr --interconnect” command. While the first pro-
duces a complete listing of pairwise routes including router tile
information, the second produces a list of link directions. The
second is also the source of the media type (independently used
in the USED BW calculation) which defines the maximum
bandwith for that link. Limited output of each is shown below:

rtr --phys-routes:
23,24,33,34,43,44,53,54c0-0c0s0g000,01,10,11,25-27,35 ->
06,07,16-22,32c0-0c0s1g000,01,10,11,25-27,35 ->
06,07,16-22,32c0-0c0s2g000,01,10,11,25-27,35 ->
06,07,16-22,32c0-0c0s3g023,24,33,34,43,44,53,54

rtr --interconnect:
c0-0c0s0g0l00[(0,0,0)] Z+ -> c0-0c0s1g0l32[(0,0,1)] LinkType: backplane
c0-0c0s0g0l01[(0,0,0)] Z+ -> c0-0c0s1g0l21[(0,0,1)] LinkType: backplane
c0-0c0s0g0l02[(0,0,0)] X+ -> c0-0c1s0g0l02[(1,0,0)] LinkType: cable11x
c0-0c0s0g0l03[(0,0,0)] X+ -> c0-0c1s0g0l03[(1,0,0)] LinkType: cable11x
c0-0c0s0g0l04[(0,0,0)] X+ -> c0-0c1s0g0l04[(1,0,0)] LinkType: cable11x

The nid number to cname string (e.g. c0-0c0s0n0)
mapping is unique and can be found from, for exam-
ple /proc/cray_xt/cname and /proc/cray_xt/nid.
For example, nid00012 is c0-0c0s6n0 and is associated
with Gemini c0-0c0s6g0. Given any two nodes, the entire
route can be determined from this information. Also, the static
path-length metric HOPS (the number links between any pair
of nodes) can be computed from this route information.

The ResourceOracle is responsible for associating the
dynamic monitoring information with the static system in-
formation. The RO parses the route information once, upon
startup. On demand, the RO obtains the dynamic information
for the relevant links from the current information in the
aggregator (Figure 2). Bandwidth information is reported by
the Gemini performance counters in the incoming direction.
Thus, in evaluating, say, the maximum used-bandwidth in
the route traversed between nid00012 and nid00038, the
contribution from the first hop is obtained from the value of the
bandwidth used in the X- direction reported by nid00050
(associated with the Gemini at mesh coords (1,0,6)) which
is at the endpoint of the hop. Bandwidth and stall values
for intra-node communication or for communication between
nodes sharing the same Gemini are reported as 0.

C. Availability of the information to the mapping tools

The RO provides an interface to applications and, more
specifically, to mapping tools by which they can retrieve the
information of interest. Mapping tools require information that
can be used for graph analysis in the mapping algorithms.
The mapping tools identify nodes of interest by their nid
numbers as obtained from MPI_Get_processor_name.
Needed information includes coordinate information and link
weighting information. Thus, the RO provides an API by which
Gemini coordinate information and simple functions (e.g., min,
max, sum) of well-known metrics (e.g., available bandwidth,
credit stalls) of nodes and node pairs may be requested and
returned. The RO listens on a socket for such requests. This
interaction is depicted in Figure 2, where Scotch is receiving
requested information from the RO.

D. Evaluation of information for use in mapping

The data available from the ResourceOracle then needs
to be incorporated into models suitable for computing new
task placements. Graph-based models are a natural choice
for mapping, as graphs can be used to represent both the
machine’s network topology and the task dependencies of
the application. Most tools for task placement rely on users
to provide insight about the properties of the architecture or
application. In this work, we use the Scotch graph mapping
library [8], populating its graph models with dynamic infor-
mation from the RO. Scotch accepts as input weighted graphs
of the application tasks and of the machine topology. Function
SCOTCH_graphMap then performs dual recursive bisection
of both graphs to assign vertices of the task graph to vertices
of the machine graph in a way that attempts to minimize the
total cost of communication by the application.

In the application graph, each graph vertex represents one
rank’s computation. Task-graph edges represent the amount of
data communicated between interdependent tasks. Edges exist
only between tasks that share data.



The machine graph is the mechanism for providing LDMS
state information to Scotch. Rather than represent the entire
machine topology (i.e., all cores and links) in the machine
graph, we build a graph representing only the allocated nodes.
We construct a complete graph with one vertex per core; edges
are weighted by the cost of sending data between the cores.
Metrics from LDMS are incorporated into these graphs as edge
weights. For example, with the HOPS metric, edge weights are
the number of links in the routes between pairs of cores. Using
the BW metric, an edge between two cores is weighted by the
maximum percentage of bandwidth used along all links in the
routes between the cores. With the STALLS metric, the edge
weight is the maximum percentage of time spent in credit-
stalls along any link in the edge’s route. Graph edges between
vertices i and j are undirected; we use the larger of the metric
values from i to j and from j to i.

Scotch’s mapping capabilities are serial at present. For
these experiments, we gather the machine and task graphs to
one core, compute the mapping, and broadcast the result. For
moderate core counts, this solution is sufficient; future work
will include parallel mapping strategies.

E. Re-mappable application

Finally, applications must be able to make use of the new
task placement. Applications can be designed to dynamically
migrate data to new cores when a new mapping is computed;
this option allows a long-running application to adjust its task
placement to accommodate the changing network conditions.
Alternatively, mapping can be done as a pre-processing step
to the actual computation, accounting, at least, for conditions
at start-up time and avoiding the complications of data migra-
tion. For this paper, we chose the former approach, moving
application data during execution to their new MPI ranks.

IV. EXPERIMENTAL CONFIGURATION

Our experiments evaluate the feasibility and benefit of
remapping application tasks to cores based on run-time system
data. We first show that competing traffic can negatively
impact application run time. Then we show that we can obtain
information about system traffic, and use that information to
reduce application run time through preferential placement of
communicating tasks on cores to avoid the competing traffic.

A. Sample Application

As a sample application, we chose an important compu-
tational kernel: sparse matrix-vector multiplication Ax. This
kernel is used in a wide range of scientific applications.
For example, it is the main component of iterative linear
solvers used for finite element analysis, of eigensolvers used
in structural mechanics, and of graph analysis algorithms such
as PageRank. Our application, denoted SpMV, is built using
the Trilinos [24] solver framework. Matrix and vector classes
and operations are provided by Trilinos’ Epetra package [25].
The matrix A generated in SpMV represents the discretization
of Laplace’s equation on a uniform grid. A has 8000 rows
and 53,600 nonzeros, representing a 20× 20× 20 grid. On 64
processors, each rank’s submatrix represents a 5×5×5 subgrid,
resulting in a seven-point stencil-like communication pattern
during matrix-vector multiplication. That is, ranks are arranged

logically into a 4× 4× 4 mesh, and each rank communicates
with its north, east, south, west, front and back neighbors.
Our x is a multivector of 100 vectors to which A is applied.
Communication between neighboring ranks i and j consists
of exchanging vector entries along the shared faces of the
subgrids associated with i and j; thus, each message contains
5 × 5 × 100 double-precision values. SpMV was run using
64 processes spread across the 16 allocated nodes, with four
MPI ranks per node. Each experiment consisted of remapping
tasks to cores, redistributing the data to reflect the new task
assignment, and performing 10,000 matrix-vector multiplica-
tions. In the redistribution, the application migrated matrix and
vector data among processors according to the new mapping;
the MPI infrastructure (e.g., the MPI communicator) was not
changed. All performance statistics shown are averaged over
24-44 experiments.

SpMV’s task dependencies are modeled for Scotch in
the task graph. Each task-graph vertex represents one rank’s
computation (5×5×5 subgrid and associated matrix and vector
values). Task-graph edges represent the amount of commu-
nication between the tasks; for our experiments, these edges
represent SpMV’s seven-point stencil. Edges are weighted with
the message size between processors: 5×5×100 doubles. For
our experiments, we used Scotch v6.0.0 [26].

B. Node Allocation and Competing Network Traffic

We generated competing background traffic using a simple
bi-directional bandwidth benchmark. The benchmark continu-
ously sends 1 MiB messages between two MPI processes as
quickly as possible, placing load on the network links between
the two processes. We place the two MPI processes on our
test system based on the network topology and static routing
algorithm to target specific network links. Multiple instances of
the benchmark were placed on nodes with overlapping routes
in order to increase the load on a single targetted link, as well
as to create multiple hot spots in the network.

We created competing traffic between three pairs of nodes,
as shown in Figure 1: nid00016 and nid00040,
nid00048 and nid00042, and nid00012 and
nid00038. These nodes are labeled in green; forward
and reverse communication routes are shown in red and
orange, respectively. Significant traffic is routed between
Gemini at mesh coords (1,1,5) and (1,1,4), (1,1,6) and (1,1,5),
and (1,1,7) and (1,1,6). The maximum percentage of time
spent in credit stalls along any link induced by this competing
traffic is roughly 68% on the Y+ link out of Gemini (1,0,6),
with that out of Gemini (1,0,7) being comparable. The
maximum percentage of available bandwidth used along any
link is 61% on the Z+ link into Gemini (1,1,5). The maximum
theoretical bandwidth in the Y direction is less than that in
the X and Z directions, resulting in the potential for a higher
percentage of time spent in stalls in the Y direction, even
for equivalent traffic. These generated values are in line with
values seen during production conditions on Blue Waters. In
a representative dataset of a day’s worth of data presented
in [18], several instances of values of 60+% for time spent in
credit stalls occurred over time ranges of up to 1.5 hours, with
values of 30-40+% ranging over 20 hours for some links. The
percentage of bandwidth used was not considered in [18],
but values of 60+% can be observed in that same dataset.



These values were determined over a collection interval of
one minute.

Application nodes were chosen to include those that
could potentially route traffic through congested links,
depending on where the tasks are placed. Application
nodes are shown in Figure 3 labeled in red (nids
17-19,24,32-35,39,41,43-45,49-51), as are their
associated Gemini. There are then a total of 256 unique routes
between the 16 nodes. The distribution of HOPS for the
possible routes in the application is shown in Figure 4 (top);
the distribution of representative values of STALLS and BW
for the possible routes due to the competing traffic is shown
in Figure 4 (bottom). Task placement determines which routes
are actually utilized during execution. The goal of remapping
is to minimize the use of links involved in the congested paths
in Figure 1.

Fig. 3. Node allocation for our experiments. Nodes allocated to the
application and their associated Gemini are shown in red. Edges designate
hardware links.

C. LDMS

The LDMS samplers were configured to sample a variety of
data, including the High-Speed Network performance counters
and Gemini grid coordinates on all nodes (compute and
service), at intervals of two seconds. An aggregator was config-
ured to collect data from the samplers at the same two-second
interval. Samplers were configured to sample synchronously.
The aggregator was configured to collect from the samplers
approximately 100ms after sampling. This synchronization
between samplers provides a system snapshot of the sampled
state, while the aggregator’s delay ensures that samples are
complete when collected. Both raw counter data and derived
values based on the counter values over the last interval (e.g.,
percent time spent in stalls) were made available in the data
set, and, thus, were accessible via the RO. The data used in
mapping decisions was based on the derived data at the time
of the query; thus, mapping decisions were based on a two-
second average behavior of the chosen metric values that were
up to two seconds old. The data associated with aggregation
is 1088 bytes per sampler or 68kB overall every two seconds
and, thus, does not contribute significantly to network traffic
or congestion. No historical values are retained by either the
samplers or aggregator beyond their current data sets.

V. EXPERIMENTAL RESULTS

Our first experiment demonstrates that our congestion util-
ity does, indeed, generate enough interference to affect SpMV

Fig. 4. Impact of network geometry and of competing traffic on the potential
application routes. Distribution of HOPS values for the possible application
routes are shown at the top. Distribution of representative values of STALLS
and BW for the possible application routes due to the competing traffic are at
the bottom. (Range values are inclusive of the low and exclusive of the high.)
There are 256 possible unique routes. Task placement determines which routes
are actually utilized during execution.

Average SpMV time (secs)
for 10K matvecs

Without Congestion 5.07
With Congestion 6.03

TABLE I. EXECUTION TIME OF SPMV WITHOUT AND WITH
CONGESTION, DEMONSTRATING THE EFFECTIVENESS OF THE

CONGESTION UTILITY.

execution time. We first measure the execution time of SpMV
with no congestion in the network. Then we launch three
instances of the congestion utility to generate network traffic as
shown in Figure 1, and rerun SpMV. The execution times with
and without congestion are shown in Table I. The congestion
utility increases the average execution time by 18.9%.

Next we apply Scotch remapping to SpMV in the congested
environment. We compute new task placements based on the
metrics HOPS, BW, and STALLS. To show that our metrics are
important to finding a good task placement, we also compute a
new map using no metric. In this “No Metric” case, we provide
a complete architecture graph with uniform weights to Scotch.
We again measure the execution time of SpMV. For each map-
ping, we compute the estimated communication cost of each
message in SpMV as the product of the number of bytes in
the message and the machine-graph edge weight for the route
taken by the message. This total estimated communication cost
is the metric Scotch tries to reduce through remapping.

In Figure 5 (left), we show the maximum estimated com-
munication cost per message for each mapping metric, as well
as the base case with the default MPI placement of tasks on
cores (i.e., no mapping). Results are normalized with respect



to the “no mapping” results. We see that Scotch is effective
in reducing the estimated communication costs for the HOPS,
BW, and STALLS metrics. Because the “no metric” case uses
uniform machine-graph weights, the estimated communication
cost is identical to the “no mapping” case.

In Figure 5 (right), we show the average execution time for
10,000 matrix-vector multiplications in SpMV. The solid black
line represents the normalized execution time of SpMV with-
out congestion; this time is the ideal execution time we could
achieve if the mapping could completely avoid the congestion.
As expected, we see that mapping with no metric increases
execution time; in this case, the uniformly weighted machine
graph incorrectly tells Scotch that all routes are equally good,
so Scotch can place tasks arbitrarily in the machine. The
static HOPS metric offers some improvement (execution time
reduced 2.2%), as locality of tasks within nodes is enabled.
However, this metric does not account for congested links, so
limited benefit is seen. The BW and STALLS metrics offer
greater benefit than HOPS, reducing the execution time by
6.9% and 7.8%, respectively.

Figure 6 shows, for each mapping method, the percentage
of the extra execution time due to congestion that is recovered
by performing mapping. Here, higher values are better, indicat-
ing that more of the congestion overhead is alleviated. Again,
we see that the dynamic BW and STALLS metrics provide the
greatest recovery from the congestion overhead. “No Metric”
results are not included, since mapping with no metric resulted
in higher execution times.

Fig. 5. Estimated maximum communication cost per message (with respect
to the machine graph used in mapping) and actual execution time for 10K
matrix-vector multiplications using no mapping, mapping with no metric, and
mapping with the HOPS, BW, and STALLS metrics. All results are normalized
to the “no mapping” case. Lower values are better, indicating lower estimated
communication and faster execution. The solid line in the right figure indicates
the “ideal” time: the execution time without congestion.

As a final test, we compare our mapping methods with
the geometric mapping technique of Deveci et al. [6]. Their
method MJ computes mappings based on the physical proxim-
ity of cores and tasks, rather than on their graph connectivity;
physical proximity serves as a proxy for interdependence of
tasks. MJ applies geometric partitioning to both the Gemini
coordinates for each core and to geometric coordinates rep-
resenting each task’s data. For our experiments, we use the
average grid coordinates for each task’s 5 × 5 × 5 subgrid
as the task’s geometric coordinates. The geometric partitioner

Fig. 6. The percentage of congestion time recovered by performing mapping.
Higher values are better, indicating that more of the overhead caused by
congestion is alleviated by mapping.

HOPS BW STALLS MJ
Percentage of Congestion Time recovered 14.2 43.2 48.9 25.5

TABLE II. PERCENTAGE OF CONGESTION TIME RECOVERED THROUGH
GRAPH-BASED MAPPING WITH STATIC HOPS AND DYNAMIC BW AND
STALLS METRICS, AND WITH STATIC GEOMETRIC MAPPING MJ [6].

assigns each task and core to a part; tasks and cores in the
same part are mapped to each other. Currently, MJ is unable
to use information about stalls or bandwidth, although one
could consider scaling the Gemini coordinates based on this
dynamic information. Since the Gemini coordinate information
does not change due to congestion in the network, we expect
MJ to produce results most similar to graph-based mapping
with the static HOPS metric. Indeed, in Table II, we see that
static geometric mapping with MJ recovers roughly 25.5% of
the congestion time, a bit more than graph-based mapping
with HOPS, but less than graph-based mapping with dynamic
metrics BW and STALLS.

Given that this paper is meant to demonstrate the potential
impact of using dynamic monitoring information for resource
assignment through mapping, we have focused on the benefit
of resource-aware task placement for our application. However,
the cost of performing the remapping is also important; our
future work will address reducing the cost of remapping. In
our experiments, the time required for computing a new map
(including serial Scotch mapping and broadcast of the results)
averaged 0.012 seconds. The cost for actually redistributing
the matrix and vector data to implement the new map was
also small, averaging 0.004 seconds.

The bulk of the overhead was incurred in obtaining the
dynamic data, which depends on mechanics of the RO which
are not yet optimized. To remain fully generic, we intentionally
did not integrate the routing analysis with the data-collection
system. The interface of the RO with generic system monitor-
ing requires user-space calls and processing which could incur
meaningful overhead. Our future work includes integration of
the RO with our LDMS daemon so that the RO reads the
required data directly from the internal data structures and,
thus, incurs negligible overhead for obtaining the dynamic
data. We can get an upper bound on the overhead after this
integration by considering the cost of obtaining the HOPS



metric in our current configuration, since the HOPS metric uses
static data and, thus, bypasses the user-space call for obtaining
the dynamic data but is the same in all other respects. For the
HOPS metric, the time to obtain the data for one mapping is
0.27 seconds, on average. Overhead could also be reduced by
improving our mapping interface to the RO to bundle several
requests into a single query.

VI. CONCLUSION AND FUTURE WORK

We have shown the potential for dynamic monitoring to
improve the performance of parallel applications in shared
environments. By integrating data collection from LDMS,
data aggregation in the ResourceOracle, and graph-based task
placement in Scotch, we demonstrated the ability to avoid
congestion in shared networks, reducing application execution
time for a key computational kernel, SpMV. Our work shows
that utilizing global knowledge of network state can signifi-
cantly improve application performance. It is a first step toward
a scalable integrated system for very large-scale simulations.

Still, several challenges remain. From related work [5],
[6], we expect even greater benefit from dynamic mapping in
large-scale applications. Experimentation with our system at
large scale and in a production environment is needed. Further
analysis and reduction of our system’s overhead are also
needed, particularly at scale. The major reduction in overhead
will be through enabling the RO to have direct access to the
LDMS Aggregator’s data. Greater scalability of our approach
might be achieved through the use of multiple, distributed RO
as well as batching RO queries from the mapping tools. Serial
mapping is sufficient for O(100K) tasks and nodes, but at larger
scale, parallel mapping algorithms may also be needed. We
will also evaluate more closely which system metrics are of
most importance for parallel performance, and their sensitivity
to relative weighting and transient phenomena. Supporting
time-windowed data in the RO will decrease the likelihood
that application responses are overly sensitive to small or
short-term environmental changes. Finally, we will pursue
use of integrated monitoring and finer-grain response at the
application level through data-level dynamic load balancing.
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for reducing communication contention on large parallel machines,” in
Proc. Int’l IEEE Parallel and Distributed Processing Symposium, 2006.
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