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Abstract—We present the holistic approach taken by the ACES
team in the design and implementation of a monitoring system
tailored to the new Cray XC40 KNL based Trinity Phase II
system currently being deployed in an Open Science campaign.
We have created a unique dataset from controlled experiments
to which we apply various numerical analyses and visualizations
in order to determine actionable monitoring data combinations
that we can associate with performance impact and system issues.
Our ultimate goal is to perform run-time analysis of such data
combinations and apply runtime feedback to users and system
software in order to improve application performance and system
efficiency.

I. INTRODUCTION

In previous HPC community meetings (e.g., SC15, SC16,
CUG 2016, Cray System Monitoring Working Group), the
need for monitoring versus the current state of monitoring
has been discussed. The community generally agreed that
the single biggest question asked by users is Why does my
application performance vary so much?. The foremost needs
from monitoring in support of answering this question were
seen to be understanding of the performance, utilization, and
congestion characteristics of the High Speed Network (HSN)
and IO. However, many sites stated that they were not moni-
toring because they didn’t know what they would look for in
the data or even how to approach figuring it out.

In this work, we have created a unique dataset from
controlled experiments to which we apply various numerical
analyses and visualizations in order to determine actionable
metrics that we can associate with performance impact and
system issues. While this is still work in progress, we present
the current state of our research in order to provide information
to the community on what we are trying to learn, what we are
analyzing and how we are analyzing it, how we are enabling
analysis, and what else we need to make further progress.

ACES (LANL/SNL) Trinity Phase II is a 9, 984 node,
678, 912 core Cray XC40 platform with Intel Xeon Phi 7250
processors (code-named “Knights Landing”, or KNL), as well
as 346 service nodes performing system functions, and a
Cray Aries high-speed network (HSN) as interconnect. TR2
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is currently deployed in a stand-alone configuration for “Open
Science”, a deployment phase in which selected high-impact
projects can be given dedicated runtime on the full machine
before it is moved to its production environment. When the
Trinity deployment is complete, this machine will be com-
bined with Trinity Phase I (TR1), which consists of ∼9,000
Intel Xeon E5-2698 v3 (“Haswell”) processors and additional
service nodes, into a single system.

Open Science also provides an opportunity to better un-
derstand the behavior of a large KNL machine undergoing
high utilization, as well as developing tools and processes
for running this type of machine in production. In addition
to the more general exploration for understanding application
performance variation, we have some specific circumstances
motivating our monitoring. TR2 is one of the first large scale
deployments of the KNL processor architecture for regular
HPC workloads. With the introduction of multiple cluster and
memory modes available on the KNL, there are new complex-
ities to be considered in determining the best configuration of
the KNL for a particular application. In addition, the scale of
TR2 and the eventual full Trinity deployment provides a strong
motivation for measuring energy usage. Correlation of energy
usage to system conditions, such as the application mix or
network congestion, could lead to useful decisions regarding
the management of the system. Measurement of energy usage
and its variation during real workloads will enable us to
evaluate the potential benefits of incorporating power data into
job scheduling decisions.

We are developing and deploying an architecture for whole-
system monitoring. Data sources consist of log, out-of-band,
and in-band node level data. Analysis and storage targets
include a monitoring and analysis cluster hosting a short-term
active working dataset and storage with long-term data stored
in an archive that supports retrieval. Additional downstream
entities will also be consumers of the analysis results.

To reduce the time to understanding, we support streaming
analysis at the monitoring cluster before insertion into a
database and other storage. Currently we target functional
forms of data, such as rates, aggregations, and ratios. We
can integrate numeric out-of-band, numeric in-band, and log
data with our analysis tools. We are working toward enabling
streaming computations and transformations of numeric data
at arbitrary points within the monitoring infrastructures. We
use third party tools for time-series numerical and log analysis
and visualization and we augment these with domain-specific



analysis and visualizations.

This paper is structured as follows. In Section II we
describe the implementation of our monitoring system. In
Section III we present controlled experiments and resulting
observations. In Section IV we demonstrate some of our cur-
rent approaches to analysis of the controlled experiments (still
work in progress). In Section V we present some assessments
of in-band monitoring impacts on application performance.
Finally, we conclude in Section VI with some observations
of outstanding questions in HPC monitoring.

II. IMPLEMENTATION OF MONITORING SYSTEM ON TR2

A. Overview

In [1], we described a scalable monitoring system de-
veloped for gathering and analyzing monitoring data from
TR1 during its Open Science phase. This monitoring system
combined the collection of standard, Cray-provided system
logs and environmental metrics (“System Environment Data
Collection”, or SEDC) with additional metrics collected from
each compute node using an on-node daemon provided by the
Lightweight Distributed Metric Service (LDMS) [2]. LDMS
data was transported off the TR1 system via a set of dedicated
aggregator nodes, and from there to a dedicated monitoring
cluster which was used for runtime analysis. The regular syslog
and SEDC streams were transported to the same monitoring
cluster for analysis and correlation with the LDMS data, as
well as being forwarded to shared site-level monitoring tools
which provide alerting and search capabilities for multiple
HPC systems.

The TR2 monitoring system for the Open Science cam-
paign, shown in Figure 1, has similarities to the system
implemented for TR1 [1], but includes several notable changes.
Additional capabilities for power monitoring have been added,
and some components of the system have been simplified to
take into account both past production experience and the
limited duration of the Open Science campaign. In this section,
we describe in detail the implementation of several components
of the TR2 monitoring system, including the hardware and
software deployed, its configuration, and the flow of data
through the system. Where a component is not described in
detail, it should be assumed to be the same as in [1].

B. Power and environmental data

Cray’s out-of-band system monitoring infrastructure mea-
sures per-node and per-cabinet power usage and collects this
information at 1 Hz granularity to a Power Management
Database (PMDB), which is also configured to store SEDC
information. For this data, we have deployed a dedicated server
which is referred to as the “PMDB node”. This server has
a connection to Cray Hardware Supervisory System (HSS)
network and runs an Event Router Daemon (ERD) endpoint,
allowing it to collect out-of-band monitoring data from TR2
independently of the SMW. This functionality is new in our
architecture and was introduced in CLE 6.0 UP01. The PMDB
node also runs its own instance of the Power Management
Database software (hence the name), and collects both power
management data and SEDC data via the ERD endpoint.

The PMDB node is a Dell PowerEdge R720 server, with a
single-socket Intel Xeon E5-2650 v2 processor (8 cores) and

256GB RAM. Approximately 1TB of local storage is provided
(in RAID 1) for storage of monitoring data. The PMDB node
runs Cray ERD software which allows it to monitor data
which is broadcast on the HSS network. It polls for and stores
power management data and SEDC data to a local Postgres
database. Due to the limited storage on this node, it rolls
this data off at a configurable interval to make room as new
data arrives. Under typical usage on TR2, the PMDB holds a
window of approximately 11 hours for power and SEDC data
provided by the blade controllers, and approximately 2 days
for data provided by cabinet controllers. ALPS job data is also
stored on the PMDB, but this data represents an extremely low
storage burden, such that we have configured this data to be
rolled off less frequency than once a month.

C. Node Level Monitoring: LDMS

The Lightweight Distributed Metric Service (LDMS) [2]
is used to collect data in-band from system components. Thne
configuration for LDMS is similar to that investigated for
Trinity Phase 1 [1]. LDMS daemons are run on, and collect
data from, both compute and service nodes with only the most
recent data being held on the node in set memory. Data is
pulled via RDMA over the Aries network to aggregation hosts
in the system. Daemons running on the monitoring cluster
hosts pull the data from the aggregation nodes over socket.
This is shown in Figure 1.

Collection can occur for any exposed data. We collected
the same data for this work as for Trinity phase 1. The
Aries network counters [3] are exposed via the gpcd [4]
interface and account for approximately 850 metrics. Power
data is exposed via the /sys filesystem; this accounts for 2
metrics. Note that while we collect the power data at 10Hz, we
transport it at the same 1Hz frequency as we do for the rest
of the data. We additionally collect, within a single LDMS
data set, current free and active memory; CPU utilization
information; and client side information about accesses to
the shared parallel Lustre file system such as opens, closes,
reads, and writes. This data is collected largely from procfs
and accounts for approximately 85 metrics. One could opt to
minimize contention for node level resources on the KNL of
LDMS with some applications (e.g., those using powers of
two node cores) by binding the LDMS processes to an unused
core. This option was not pursued during this DAT as some
of the applications would not fall into this category and we
did not want to add another dimension to the configuration
permutations for the DAT.

The major change in LDMS configuration in this work,
over our previous configuration [5], is improved redundancy
for collection of the Aries router counters. Since all Aries
router counters are exposed on all nodes sharing the Aries
routers, we collect with two-way redundancy from compute
nodes, which are four to a router, and full redundancy from
service nodes, which are two to a router. We have augmented
our network analysis to include assessments of backpressure at
the NIC, of injection into the HSN, and of indirect indications
of queue depths in the network.

D. Off-platform data aggregation

All data (e.g., system, SEDC, power, log) can be integrated
and analyzed at runtime on the monitoring-and-analysis cluster.
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Fig. 1. Flow of monitoring data from TR2. Logging data (LLM) is transmitted from the compute and service nodes over the HSN to the boot node, and from
there to the SMW. Power and SEDC data are transmitted via the HSS network to the PMDB node (here labeled tr2-pwr), and then synced to the monitoring
resources, tr2-mon (see Section II-D). LDMS data is produced on-node by the sampler daemons, collected by aggregator daemons on two dedicated service
nodes, and then aggregated externally on tr2-mon.

During Open Science this consists of one node, but after the
Phase 1 and Phase 2 integration this will be expanded to be a
small cluster.

To allow the PMDB node to maintain a consistent rate
of data ingestion from a large HPC system, we limit the
workload on that machine only to performing data ingestion.
To enable queries and analysis of power data while the machine
is running, we have deployed an additional monitoring node
to which we mirror this data, but which is not responsible for
ingesting data directly using an ERD endpoint. Throughout
this paper, we will generally refer to this as the “monitoring
node”.

Like the PMDB node, the monitoring node is a Dell
PowerEdge R720 server, with a single-socket Intel Xeon E5-
2650 v2 processor (8 cores) and 256GB RAM, with similar
local storage. However, it has additional storage in the form
of a 113TB JBOD attached via fibre channel and configured
as a ZFS pool, for storage of monitoring data as it arrives. It
also has a connection to a dedicated 113TB Sonexion Lustre
filesystem, should additional higher-performance storage be
needed.

As power and SEDC data are ingested by the PMDB
node, they are saved to several tables in a Postgres database.
These tables are partitioned according to the time of ingestion,
with the size of each partition being limited to a configurable
number of records. As each partition reaches its size limit, a
new table partition is started for new data, and the previous
partition is dumped to local disk as a file. In addition to the
raw Postgres table dumps, we also export this data to CSV
files. These files are compressed and transferred, using rsync
and an hourly cron job, to the monitoring node, where they
are stored to the JBOD storage. Once on the monitoring node,

these files can be analyzed in several ways. The Postgres table
dumps can be imported into another instance of Postgres for
querying in a similar manner to doing so live on the PMDB
node; or the CSV files can be parsed and analyzed using a
variety of tools.

To aggregate LDMS data, we run an instance of the ldmsd
daemon on the monitoring node which is configured to pull
from the two aggregator daemons on the Cray service nodes.
This data is pulled once per second, and stored to the JBOD
array in CSV format.

E. Off-platform data analysis

On the off-platform monitoring resources, we can perform
data analysis. This includes streaming analysis of the LDMS
data before inserting it into the stores, such as computation
of functional forms used for the network analysis; analysis of
the LDMS data for presentation in directly consumable form
(e.g. rates rather than raw counters); and analysis of the log
data, either in isolation or in conjunction with the numerical
data. Log Data analysis is performed using Baler [6]. Examples
of all such analyses applied to a dataset are presented in
Section IV.

F. Integration into LANL site monitoring infrastructure

TR2 is deployed in a dedicated network enclave to allow
for testing and reconfiguration with minimal impact on the
larger production HPC infrastructure. It has been deployed
with a dedicated Lustre scratch filesystem, a dedicated NFS
appliance for home directories and project files, and dedicated
network switches for interconnections between “TR2 proper”
(i.e., the Cray service nodes and SMW) and supporting external
nodes such as the front-ends, PMDB, and the monitoring node.



Connections to the larger site network have been limited as
much as possible, to include only the necessary connections for
user access, file transfers, and system administration. Because
of these limitations, the integration of TR2 into our larger
production monitoring infrastructure has likewise been limited.
The bulk of the monitoring data produced by the system, i.e.
LDMS metrics, SEDC metrics, and PMDB data, is therefore
only analyzed on the dedicated TR2 monitoring node called
“tr2-mon”.

However, we do forward syslog data, via the SMW, to
our site monitoring infrastructure. This allows us to integrate
basic system data, which is identical or similar to the same
data for our commodity system deployments – e.g., error logs,
tests for running services, and security logs – into the same
tools we use for managing similar data from our production
systems. Currently, our primary tool for managing this data is
Splunk [7], which allows us to provide a number of alerts and
dashboard visualizations for common system issues. Splunk
also provides an easy-to-use search interface, which enables
us to easily find and correlate historical data in the course of
troubleshooting production issues.

When the TR2 Open Science campaign is completed,
the larger volume of monitoring data will be archived and
transferred in bulk to our production infrastructure for long
term analysis.

III. CONTROLLED EXPERIMENTS

In support of this work, we obtained a full-system Ded-
icated Application Time (DAT) on Trinity Phase II. During
the DAT, we had exclusive access to the entire system. We
ran two controlled workloads, both with and without LDMS
monitoring. The goals of the DAT were: 1) to assess per-
formance impact of LDMS on significant ACES applications
and 2) to provide us with a controlled experimental dataset
from which we could determine actionable indicators to be
used for monitoring that would give insight into application
performance.

The applications, workloads, and timing results are pre-
sented in this section.

A. Experiment Descriptions and Timing Results

Two different workloads were run. Workload 1 consisted
of: CTH runs of 1024 nodes each on quad/cache, 2 SPARC
runs of 1024 nodes each on quad/flat, and 1 SPARC run of
2048 nodes on quad/flat. Workload 2 consisted of the same set
of CTH runs with 4 partisn runs of 1024 nodes on quad/flat.
The applications are described in Section III-B.

The workload details and timing results are shown in Fig-
ure 3. The workloads were run in the following order in direct
succession: 2x Workload 1 with monitoring, 2x Workload 2
with monitoring, 2x Workload 1 without monitoring, and 2x
Workload 2 without monitoring.

For this work, the application-to-resource mapping and
underlying machine configuration was set up to minimize
potential variation due to network contention in order to better
assess performance variation due to the monitoring and to
more easily identify application interference. Thus, electrical
groups were configured entirely as quad/cache or quad/flat and

applications were placed to minimize the number of groups
and cabinets spanned per application. Applications were run
in reservations in order to ensure as similar allocations from
run-to-run as possible.

Trinity Phase 2 consists of 50 cabinets and thus 25 elec-
trical groups, with 8 connections between groups. Thus our
layout consisted of 12 groups each in quad/cache and quad/flat,
with 1 group unallocated. Note that the traffic is still subject to
adaptive routing [8], which may result in non-minimal routing
and thus traffic in applications may still interfere. The routing
rules are the system defaults.

Several nodes were rebooted in the system during the first
run of the first workload. As a result, one node in each of
CTH1, SPARC1, and SPARC3, and three nodes in SPARC2
were different between the first runs and all subsequent runs.
Otherwise, there were no differences in the job-node alloca-
tions. All applications in a workload were released simultane-
ously to the resource manager (moab); with run times planned
to largely coincide (15-20 minutes), however, minor variations
in the launch time did occur. Adaptive routing (described in
Section IV-B1) could result in performance variations in even
identically launched workloads.

The system was rebooted earlier in the day, with some
intervening runs between that time and the start of the runs
presented here. As a result, it is possible that use of the
cache may affect the performance of quad/cache workloads.
There is no exposed counter that can give us an indication
of fragmentation of the cache, so we cannot quantitatively
assess the state of the cache. However, the run time were not
monotonically increasing over time, so overall such an effect
was not overwhelming.

From the experiments, we made the following observations:

• No significant in-band monitoring overhead was ob-
served.

• partisn runtimes were highly variable and runtime was
not correlated with monitoring on/off.

• CTH4 had significantly longer runtime than any other
CTH run.

• Runtimes of CTH were slightly longer in Workload 1
than in Workload 2.

Our goal was to investigate the relationships between
our measured indicators and the application run times. In
particular, the variations seen suggest possible root causes to be
part-to-part variations and impacts of concurrent applications.
In this work, we present the current state of our investigations
as information and motivation of the kinds of monitoring
and analysis we perform. Our analysis is still on-going and
no results presented here should be regarded as complete or
conclusive.

B. Details of the Applications

a) CTH: CTH [9] is a massively parallel Eulerian finite
volume code for solving large deformation and strong shock
problems, and is widely used throughout the DOE and DoD.
It has models for multi-phase, elastic viscoplastic, porous and
explosive materials. CTH uses a structured Cartesian mesh



Fig. 2. Screenshot of our standard “on-call” dashboard for monitoring TR2 with Splunk [7]. This dashboard is generated by a combination of regular syslog
messages from standard services, as well as metrics which are generated by node-local monitoring scripts and added to the syslog stream.

Fig. 3. Workloads and runtime variation used in the controlled experiments.

and has block based Adaptive Mesh Refinement (AMR). The
parallelization is done through a standard halo cell exchange
method using MPI or memory copies within the same MPI
task. Profiling of the code has shown that it is memory
bandwidth bound, and the algorithms used have a nearest
neighbor’s communication pattern.

The version of CTH utilized for this study is version 11.2
with some local modifications to support the Trinity Phase II
Open Science period; the latest date of the local modifications
is Thursday, February 16th, 2017, at 16:33:47 MST. The CTH
used in this study was built with Intel version 17.0.1 compilers
and Cray MPICH version 7.4.2.

The CTH test problem used is a 3D elastic-plastic Riemann

problem. A 3D domain of 160 cm3 is divided into 8 quadrants
with each quadrant consisting of a different material and
initialized to a different pressure, as shown in Fig. 4. The
domain is discretized into 2,048 cells with symmetry boundary
conditions used for all boundaries. This “flat mesh” setup was
crafted to strive for a consistent amount of work for each time
step and to better enable weak- and strong-scaling studies.

The CTH test problem was run in quad/cache mode on
1,024 nodes with 64 MPI ranks per node (65,536 total ranks)
and 4 cores per node dedicated to core specialization. This test
problem was set to perform 241 time steps; this time step limit
corresponds to ∼20 min. run time at this node and rank count.

This test problem and run time configuration was run thrice



Fig. 4. Initial state of CTH test problem.

TABLE I. CTH PRE-DAT TIMING INFORMATION.

Run/Quantity Time (sec.)

pre-DAT 1 1,238.48

pre-DAT 2 1,174.40

pre-DAT 3 1,260.14

Mean 1,224.34

prior to the DAT. Table I contains these run times and their
mean. This gave us an idea of targetting run time and potential
runtime variation.

b) partisn: Version 8 23 of Partisn [10] was used
for this study. The code was built with version 2.7 of
Python. The following source code change was made
to solver/tim3d/timsc3d.f: write out, as part of
write(601), a wall-clock time stamp to the output file on
every cycle. This enabled us to track variations in progress
through time.

Every Partisn run used 1024 KNL nodes in quad/flat
mode, with 64 ranks per node and 1 thread per rank. The
input deck was a standard sntiming.inp deck, gener-
ated with the “make-scaling-decks4” tool. The parameters
supplied to the tool were: 720 (zonespcore), 1024 (nodes),
and 1 (threads). The sntiming.inp file generated by
the tool was then edited to use 16 rather than 40 for
“nchunk” and 192e-3 rather than 5e-4 for “ts”. The appli-
cation was run with MPICH_RANK_REORDER_METHOD=3,
and the MPICH_RANK_ORDER file was generated using the
following grid_order command: grid_order -R -Z
-m 65536 -n 64 -g 32x32 -c 4,4.

Other aprun options used to launch the application include:

• core specialization to segregate OS activities to a
dedicated core (-r1)

• the numactl --membind=1 precommand to spec-
ify that all application data structures be placed exclu-
sively in MCDRAM.

c) SPARC: Sandia’s Parallel Aerosciences Research
Code, SPARC, provides advanced simulation of computational
fluid dynamics (CFD) calculations. The code is mutli-node

parallel, three-dimensional, using traditional MPI but features
on-node parallelism provided by OpenMP directives and, for
some of the significant computational kernels, implementations
using Sandias Kokkos C++ parallel pattern abstractions [11].
SPARC utilizes cell-centered finite volume methods for CFD
calculations and Galerkin finite element methods for ablation
and thermal analysis [12]. Several packages from the Trilinos
framework [13] are also used during execution to provide
solutions to complex systems of equations.

IV. MONITORING-ENABLED ANALYSIS

In this section we discuss our approaches to determine
actionable metrics that can be associated with the performance
issues identified in Section III.

A. Power Analysis

As previously stated, run-to-run performance variation was
higher than expected in several cases. For example, in Work-
load 1 (Table II) the final CTH run was 14% slower than
the fastest CTH run, even though each of the four CTH runs
were configured identically. More alarmingly, the Baseline1
run of the final PARTISN run, Workload 2 (Table III), was 32%
slower than the others, with no obvious explanation. To inves-
tigate further, we analyzed the power and energy information
collected during each run to look for possible explanations. We
focused on comparing the fastest and slowest PARTISN runs
in Workload 2, “PARTISN 2” and “PARTISN 4” respectively,
as these had the largest run-to-run variation observed. Note
that this instantiation of Workload 2 was a Baseline and hence
without LDMS monitoring so our available data was limited to
that available via the Cray-provided monitoring mechanisms.

As can be seen in Table III, there was not a significant
difference in average power per node between PARTISN 2
(201.90 W) and PARTISN 4 (202.75 W). The average power
was calculated by dividing the total energy used by the
job, as recorded by Cray’s RUR tool, by the run’s total
execution time and then dividing by the number of nodes
(1024). RUR additionally breaks down the total energy into
CPU and memory components. At this level, there is a more
significant 12% difference in memory power between the two
jobs. However, PARTISN was configured to run exclusively out
of on-package MCDRAM, which is counted in the CPU energy
measurement rather than memory energy (external DIMM
slots). This suggests the 12% difference may be more a result
of part-to-part differences in idle external memory power for
the different set of nodes used by each run.

The aggregated job-wide energy usage values reported
by RUR obscure the individual node-level details. It could
be the case that one node out of the 1024 nodes has a
very different power usage behavior than the others, possibly
suggesting a “slow node”. To probe further, we plotted the 1
Hz power samples recorded for each individual node, shown
in Figure 5. The plot includes 1024 separate curves, but they
largely overlap making it difficult to see the fine detail. There
are roughly 100 spikes evident in each plot, which likely
correspond to the 100 cycles that PARTISN was configured to
run. In the PARTISN 4 run, the spikes are more spread out than
in PARTISN 2, indicating that the slow down in PARTISN 4
is spread out over the entire run rather than centralized to a



single time period. If there were slowdowns due to network
or I/O contention, we would expect there to be large dips in
power usage during each cycle. This is either not the case or
the dips are obscured by the overlapping waveforms for the
1024 nodes. As analyzing each of the waveforms by hand is
not practical, it might be useful to apply a clustering algorithm
or some other automated technique to look for outliers. This
is a possible area for future work.

As a final effort to understand the run-to-run variation, we
plotted histograms of the per-node average power usage for
each run. The histograms count the number of nodes that had
the average power usage shown on the x-axis, with 50 bins
used. Separate distributions for total node power, CPU power,
and memory power are plotted. In general, the histograms
for the two runs look very similar. The primary difference
seems to be in memory power, with the slower PARTISN 4
run having a narrower range of values, except for one outlier
node that is barely visible with an average memory power of
27 W. This is further confirmed by plotting the 1 Hz memory
power samples, shown in Figure 6. We have not yet been able
to confirm the reason for this outlier node, but it could be
due to a miscalibrated power sensor or the node’s memory
mode somehow being misconfigured (e.g., set to quad-cache
instead of quad-flat). A second run of Workload 2 produced the
same outlier behavior, but in the second run the PARTISN 4
performance was as expected (i.e., not significantly slower than
the other runs). Hence, we do not believe the high memory
power outlier node is the reason for the slower PARTISN 4
run, but we continue to investigate.

B. HSN

Identification and determination of network congestion are
generally of interest. While the Aries network performance
counters [3] can be used to determine traffic and congestion
related metrics of interest, quantification of actionable metrics
with respect to performance impact is still unresolved. In
this work, since the run times of CTH in Workload 1 are
longer than those of Workload 2, though not greatly, we poten-
tially have a dataset which would facilitate the determination
performance-impacting indicators.

In this section we present some initial analyses and visual-
izations of the HSN network data. We first present background
on the Aries Network.

1) Aries Background: This section provides a brief descrip-
tion of the Aries network necessary to understand this work.
The reader is encouraged to check Faanes et al [8] for more
information. Highlights and figures in this subsection are from
that work.

The Aries router connectivity is shown in Figure 8. Con-
nectivity within an electrical group (2 cabinets) is shown in
the top figure. Aries routers (light blue) are connected to other
Aries routers within the same chassis via green links and to
symmetrically placed Aries routers in all other chassis in the
group via black links. Four nodes (dark blue) share an Aries
router ASIC. Connectivity between electrical groups is shown
in the bottom figure. All groups are connected via multiple
links to all other groups.

1Times in this table are derived from the RUR data, which may be slightly
different than that of the alps data used in Figure 3.

The Aries network utilizes adaptive routing. Packets are
generally routed adaptively along either minimal or non-
minimal paths, but can also be routed deterministically when
the runtime requires in order packet delivery. There are con-
figuration parameters which can influence the routes that can
be taken. However, no configurations beyond the standard
configurations have been applied to Trinity. The following is
a high-level description of adaptive and minimal routing.

With adaptive routing, four possible routes are chosen at
random. Two of these are minimal and two are non-minimal.
The load on each of the 4 paths is compared and the path with
the lightest load is chosen. Minimal routing within an electrical
group will take at most 2 hops: one green and one black, in
either order. Minimal routing between groups will take 1 blue
hop, and minimal routes in the source and destination electrical
groups. Non-minimal routing is used to avoid congestion and
to spread traffic over the available links in the system. Non-
minimal routing within an electrical group can take up to 2
green and 2 black hops. Global non-minimal paths can take
up to 10 hops. They route to an intermediate Aries router and
then to a destination along a minimal path.

2) Inter-Electrical Group Traffic Analysis: We first seek
to assess when an application’s traffic is potentially affecting
other allocations. To this end, we are investigating visual-
izations that will enable us to understand inter-group traffic
characteristics.

The basis for this visualization is shown in Figure IV-B2.
In this case we represent the communications between two
electrical groups. Traffic can flow from 0 to 1 or from 1
to 0 across blue links; traffic cannot flow across blue links
for any traffic within a group. Thus, we can represent the
communications within a 2x2 grid, colored by some attribute
value of the link. Traffic incoming into group 1 from group 0
is represented by the yellow color in row 1 column 0. Traffic
incoming into group 0 from group 1 is represented by the
green color in row 0 column 1. The diagonal elements are not
possible and are always colored black.

Figure 10 uses this representation for the 24 electrical
groups of Trinity Phase 2 The cells are colored by the
maximum incoming flits (summed over the Virtual Chan-
nels) per sec over a collection interval (1 sec, in this
case) over any of the blue links between the two rel-
evant groups during the runtime of the workloads; it is
not a snapshot in time. The relevant network counter is
AR_RTR_r_c_INQ_PRF_INCOMING_FLIT_VCv. Details
of determination of relevant network counters in the context of
the network connectivity can be found in our previous Aries
HSN analysis work [5]. The upper figure addresses Workload
1 and the bottom, Workload 2. Green indicates lower values
and red indicates higher values. The color-scale is not meant
to signify that any particular value is indicative of congestion
or “high” load.

Outlined boxes in the figures indicate the placement of
the applications. As depicted in Figure 3 CTH 1 is located
within groups 31-33, CTH 2 within 24-37, etc. In both figures,
the blue boxes correspond to the CTH locations. In the upper
figure, the pink boxes indicate the SPARC placements. In the
lower figure the purple boxes indicate the partisn placements.

Note that traffic on the system is not limited to application



(a) PARTISN 2

(b) PARTISN 4 (runtime +32%)

Fig. 5. Node-level power over time for two of the PARTISN runs in workload 2. Spikes likely correspond to application cycles indicating that any slowdown
in PARTISN 4 is not a large localized event.

(a) PARTISN 2

(b) PARTISN 4 (runtime +32%)

Fig. 6. Memory power over time (external DIMMS, does not include MCDRAM) for two of the PARTISN runs in workload 2.



TABLE II. WORKLOAD 1 POWER AND ENERGY USAGE

Avg Power Avg CPU Power Avg Mem Power Number of Nodes
Nodes Runtime1 (s) Total Energy (J) Per Node (W) Per Node (W) Per Node (W) Throttled

CTH 1 1024 1343 278268114 207.28 148.84 12.39 0
CTH 2 1024 1339 281224066 205.10 147.28 12.03 3
CTH 3 1024 1304 274096754 205.27 148.24 12.31 0
CTH 4 1024 1485 310102646 203.93 146.73 12.20 0
SPARC 1 1024 1371 312268221 222.43 145.78 28.54 0
SPARC 2 1024 1369 306805951 218.86 145.02 26.58 0
SPARC 3 2048 1512 685787490 221.47 145.82 27.89 2

TABLE III. WORKLOAD 2 POWER AND ENERGY USAGE

Avg Power Avg CPU Power Avg Mem Power Number of Nodes
Nodes Runtime1 (s) Total Energy (J) Per Node (W) Per Node (W) Per Node (W) Throttled

CTH 1 1024 1236 264790220 209.21 149.87 12.30 1
CTH 2 1024 1249 264785934 207.03 148.33 11.95 0
CTH 3 1024 1196 254463798 207.78 149.72 12.23 0
CTH 4 1024 1424 299234211 205.21 147.28 12.12 1
PARTISN 1 1024 1120 233431163 203.54 146.73 11.57 5
PARTISN 2 1024 1019 210674495 201.90 146.32 10.53 2
PARTISN 3 1024 1039 215450107 202.50 146.94 10.87 3
PARTISN 4 1024 1343 278823301 202.75 145.69 11.81 4
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(a) PARTISN 2 (b) PARTISN 4 (runtime +32%))

Fig. 7. Histogram of node-level average power for two of the PARTISN runs in workload 2. The histograms include average power for each of the 1024 nodes
in each run, calculated from the per-node 1 Hz power samples recorded during each run. There is an outlier node value in the PARTISN 4 allocation.

traffic alone, although system traffic should not be large. Also,
while adaptive routing should contribute to the traffic between
groups not sharing an allocation, applications may commu-
nicate with nodes outside of the job allocation, for example
for IO operations. Since there is no way to perform traffic
attribution, we cannot determine the origin an ultimate destina-
tion of the traffic. However, we seek to examine visualizations
such as these to provide insight into network utilization and to
help tie it to application performance. For example we see that
there is traffic from all electrical groups into all other electrical
groups, despite the job layout, and indication that at least the
maximum traffic in Workload 1 is greater than that in Workload
2, which is in alignment with the observation that runtimes of
CTH in Workload 1 were greater than those of Workload 2.
Four snapshots in time (starting at an arbitrary time) of the
traffic for Workload 1 are shown in Figure 11. Each snapshot
represents a 1 second interval and the time between snapshots
is 30 seconds. This sequence shows temporal variations with
fluctuation in intensity of communications.

3) Backpressure Analysis: In assessing congestion, Stall to
flit ratios [3] can be indicative of backpressure at the various
interfaces. Stall counters increment when a flit which is ready
to forward is prevented from dong so by backpressure. If the
stalls and flit increment at equal rates, e.g., ratio of 1, then
flits are crossing the interface at half the rate they would be if
there were no stalls.

Figure 12 shows the percentage of links between elec-
trical groups with stall to flit ratios equal to or greater
than various threshold values. These are shown throughout
the times of the workloads. The plots include all links, not
just the maximum value as in the previous subsection. The
relevant stall counter to be used with the flit counter above
is AR_RTR_x_y_INQ_PRF_ROWBUS_STALL_CNT. From
discussions with Cray engineers [14], 0.25 is a normal value
for this quantity in the network.

Consistent with the indications of the previous subsection,
we see that a higher percentage of the links experience greater
values of backpressure in Workload 1 (top) than in Workload 2
(bottom). While we seek to assess the relationship of observed



Fig. 8. Aries network connectivity. Within an electrical group (2 cabinets)
(top): Aries routers (light blue) are connected to other Aries routers within the
same chassis via green links and to symmetrically placed Aries routers in all
other chassis in the group via black links. Four nodes (dark blue) share an Aries
router ASIC. Between electrical groups (bottom): All groups are connected
via multiple links to all other groups. Figures from Faanes et al [8]..

Fig. 9. Explanation of the layout of subsequent figures. Communications
between electrical groups can be shown on a colored grid. The convention
used is incoming traffic into group 1 from group 0 is shown in row 1 column
0. Communications within a group will not utilize the blue links and hence
all diagonal elements are colored black.

values on application performance, our guidance can give us
some indication of the possible significance of the values. For
example, Workload 1 generally has a stall to flit ratio greater
than 1, in about 50 percent of the links while Workload 2 has
values that high in only 20 percent of the links.

The stall to flit ratio is relevant to all interfaces.
For example, backpressure at the node is a function
of stall to flit ratios between the PTILES and the
NIC’s. As per guidance from Cray Engineers [14] we
have been assessing a functional form of the ratio
of AR_NL_PRF_REQ_PTILES_TO_NIC_n_STALLED to
AR_NL_PRF_PTILES_TO_NIC_n_FLITS as an assess-
ment of backpressure at the node (details are beyond the
scope of this paper). Histograms of the percentage of NICs
with maximum backpressure exceeding chosen thresholds over
the run time of the workloads is shown in Figure 13. All

Fig. 10. Traffic (Flits/s) between electrical groups. Values shown are the
highest value over the course the workload for any link of those between the
two groups. Workload 1 (top) and Workload 2 (bottom).



Fig. 11. Timeseries of traffic in Workload 1. Each panel is a snapshot colored
by the highest value for any link between those two groups over a 1 second
interval. Time of the data snapshot is 1 second. Time between panels is 30
seconds; arrows indicate the progression of time. Fluctuations in the intensity
of communications is seen.

(100 percent) of the NICS have maximum values greater
than 0 in both workloads. In general, more links have higher
backpressure in Workload 1 than in Workload 2.

Of particular interest is that there is one NIC (0.01 percent
of the total NICs) that has higher backpressure than others. A
time history examination (unshown) indicates that this NIC is
continuously higher through time. This NIC is c0-7c0s14
NIC 3 is in node allocation of the long runtime CTH4 case
in both workloads. We continue to investigate the cause of the
backpressure and how to determine if this backpressure is the
cause of the long runtime.

C. Log Analysis

With new system hardware and software comes changes
in the events of interest and in the logging of such. Thus,
we cannot know apriori the log message indicators of events.
Brute-force examination of the logs to determine events of
interest is not feasible. Five months of the TR2 logs, including
pre-production time, contain over 4.5 billion log lines (not
including the job related data).

One tool we use for log analysis is Baler [6]. Baler
generates patterns from log lines requiring no user domain
knowledge for determining log lines of interest. The user
supplies a dictionary of words; words in the log lines are
retained and all other items in the log lines are turned into
variables, indicated by *. Patterns from log lines are shown in
Figure 14. Many log lines reduce to a few patterns, thus easing
search and the ability to identify events of interest, including
log events that are similar in periods of time or across certain
components. An interface exists for querying and searching

Fig. 12. Percentage of links between electrical groups exceeding Stall/Flit
thresholds through time. Workload 1 (top) and Workload 2 (bottom). Larger
values indicate higher backpressure. A higher percentage of the links experi-
ence greater values of backpressure in Workload 1.

patterns through time and across components. We have used
Baler in previous Trinity-related work to determine significant
patterns for the Phase 1 architecture [15], [16].

We have supplemented the Baler English dictionary with a
domain-specific dictionary of approximately 100 words, such
as Lustre, DIMM, and aprun. Baler pattern analysis and
meta-pattern grouping reduces the 4.5 billion log lines to
11, 000 patterns. While this is a substantial improvement, we
have applied a further heuristic to more favorably highlight the
patterns of interest. We have additionally weighted the patterns
by the presence of approximately 50 words of interest such
as critical or congestion. Occurrences of more words
results in a higher overall pattern weight. After the weighting,
this reduces to 1350 meta-patterns. Examples of top-weighted
meta patterns are shown in Figure 15.

Numerical data can be turned into patterns as well, by
defining a data source and numerical value range as its own
pattern. In this way, Baler can be fed numerical data, such
as backpressure calculations, in order to enable association of
numerical data and log events.

We searched the Baler patterns during the DAT in order
to extract significant events, particularly as they might relate
to the observations of the runs. One possible pattern of
interest was * HWERR[*-*][*]:*:The pcie had *
link width change or * speed change (*, *,



Fig. 13. Percentage of NICs with Max backpressure greater than or equal to
threshold value. Larger values indicate higher backpressure. Workload 1 (top)
and Workload 2 (bottom). Backpressure at one NIC (0.01 percent of the total
number) is significantly higher than all other NIC’s values.

Fig. 14. Baler extracts patterns from log data without requiring active user
input.

or * speed). This pattern occurred on one component
at the beginning of the DAT when we performed a reboot
at the beginning of the day and again when the machine
was rebooted before returning the machine to the users.
The component in question was that with the NIC of
the continuously high node backpressure in run CTH4,
c0-7c0s14a0n3. This is not a common pattern; over the
lifetime of Trinity Phase 2 this pattern has occurred 6 times
on this component, 6 times on c11-5c1s2a0n1 and 1 time
on each of 3 other components. We are investigating if this
event could be related to the high back pressure at the same
NIC and/or to the performance of CTH4.

TABLE IV. CTH IN WORKLOAD 1 (W/ SPARC) TIMING
INFORMATION.

Run/ Mean Time Mean Time Increase
Quantity w/o LDMS (sec.) w/ LDMS (sec.) “from LDMS”

CTH1 (1024) 1,290.60 1,278.73 -0.92%

CTH2 (1024) 1,332.30 1,308.48 -1.79%

CTH3 (1024) 1,290.52 1,273.54 -1.32%

CTH4 (1024) 1,451.98 1,454.03 +0.14%

Mean 1,341.35 1,328.69 -0.94%

TABLE V. CTH IN WORKLOAD 2 (W/ PARTISN) TIMING
INFORMATION.

Run/ Mean Time Mean Time Increase
Quantity w/o LDMS (sec.) w/ LDMS (sec.) “from LDMS”

CTH1 (1024) 1,215.61 1,205.58 -0.82%

CTH2 (1024) 1,237.72 1,252.19 +1.17%

CTH3 (1024) 1,193.72 1,203.64 +0.83%

CTH4 (1024) 1,424.89 1,410.48 -1.01%

Mean 1,267.98 1,267.97 0.00%

TABLE VI. MEAN “LOADAVG” OVER ALL 1,024 NIDS OF EACH JOB.

JIDs Mean Over NIDs

1st CTH1 (w/ SPARC) 92115 6,085.7
1st CTH2 (w/ SPARC) 92116 6,095.1
1st CTH3 (w/ SPARC) 92117 6,077.8
1st CTH4 (w/ SPARC) 92118 6,119.0

2nd CTH1 (w/ SPARC) 92119 6,063.1
2nd CTH2 (w/ SPARC) 92120 6,088.2
2nd CTH3 (w/ SPARC) 92121 6,065.9
2nd CTH4 (w/ SPARC) 92122 6,103.7

1st CTH1 (w/ PARTISN) 92135 6,042.3
1st CTH2 (w/ PARTISN) 92136 6,072.1
1st CTH3 (w/ PARTISN) 92137 6,044.1
1st CTH4 (w/ PARTISN) 92138 6,101.2

2nd CTH1 (w/ PARTISN) 92139 6,045.0
2nd CTH2 (w/ PARTISN) 92140 6,063.0
2nd CTH3 (w/ PARTISN) 92141 6,059.0
2nd CTH4 (w/ PARTISN) 92142 6,151.3

V. MONITORING IMPACT

In this section we use the run times to assess the impact of
the in-band monitoring. Since the partisn runtimes were highly
variable across all runs, including runs for the same placement,
we cannot use this application for assessing impact.

A. CTH

Each workload was performed twice with and without
LDMS monitoring present during the DAT. Table IV provides
the data from Workload 1 (i.e., CTH SPARC) and Table V
provides the data from Workload 2 (i.e., CTH with PARTISN).

These tables contain the mean run times with and without
LDMS for each of CTH’s 4 reservations in addition to the
mean of all reservations. The differences between the data
with and without LDMS running contains no more than ∼2%
variation, which is within the observed run-to-run variations
present from the DAT and pre-DAT data (Table I). Moreover,
if the mean across all 4 reservations is taken into account, the
data with LDMS on had either an overall reduced mean (see
Table IV) or practically no impact whatsoever (see Table V).



Fig. 15. Selection of top weighted Baler meta-patterns. Weights (W) and number of occurrences are listed.

TABLE VII. SPARC IN WORKLOAD 1 (W/ CTH) TIMING
INFORMATION.

Run/ Mean Time Mean Time Increase
Quantity w/o LDMS (sec.) w/ LDMS (sec.) “from LDMS”

SPARC1 (1024) 1,346.5 1,357.0 0.78%

SPARC2 (1024) 1,347.5 1,357.0 0.71%

Mean 1,47.0 1,357.0 0.74%

TABLE VIII. WORKLOAD 1 (SPARC+CTH) TIMING INFORMATION.

Run/ Mean Time Mean Time Increase
Quantity w/o LDMS (sec.) w/ LDMS (sec.) “from LDMS”

SPARC3 (2048) 1,486.0 1,483.5 -0.17%

LDMS has no noticeable impact on CTH run times on Trinity
Phase II.

Tables IV and V indicate that “CTH 4” consistently had a
larger run time than the other three CTH groupings. Average
load from LDMS was analyzed for these allocations across
each NID during these simulations. Table VI contains the
mean load average for each of these jobs. The load average
for “CTH 4” is consistently higher than the other three CTH
groupings as well. This mean is not the result of an outlier; all
of the NIDs for “CTH 4” have this higher average load. Further
investigations are ongoing to better understand the cause for
this increased load.

B. SPARC

During the DAT, each workload with SPARC was per-
formed on the same nodes. twice with and without LDMS
running concurrently. Tables VII and VIII provide the SPARC
data from Workload 1 (SPARC was not present in Workload
2).

These tables contain the mean run times, labeled ”Mean
Time”, with and without LDMS running for each of SPARC’s
3 reservations in addition to the mean of all reservations.
Across all twelve SPARC runs the differences in run times,
with and without LDMS running, exhibit less than ∼1%
variation. In the SPARC (1024) runs there appears to be a clear,
though small, impact of ∼0.8% that, unlike the CTH case,
does not fall within the observed ∼0.15% run-to-run variations
present in the baseline cases. Also, unlike the CTH case, we
had no pre-DAT run data with which to gauge our DAT data.
Interestingly, in the SPARC (2048) case, shown in Table VIII

we observe an impact of ∼ − 0.17% when we would have
expected an even greater impact, than for the SPARC (1024)
case, in run-time due to the presence of LDMS because of
the 2X increase in application scale. We conclude that, while
there may be cases where there is an impact greater than the
natural run-to-run variation for SPARC, the impact is minimal
and worth the information access it can provide.

C. Additional Planned Testing

We will be augmenting this data with additional runs on
Mutrino, the Trinity testbed sited at SNL. This will include im-
pact on smaller benchmark runs. We will also run PSNAP [17],
which measures OS jitter. Since we run this on a per-node
basis [1]), we can get representative results on the smaller
system.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have presented our system for large-scale
metric collection and analysis of system metrics, platform
environmental data, energy consumption and logs. Future work
includes solidifying the Trinity monitoring data paths after
the system integration in June. We have paths forward for
integration of application-provided data, such as phase of
an application, with system data and for better support of
streaming analysis, including on-node options.

From our DAT, we have obtained a dataset which is a
unique resource for determining if there are actionable metrics
that we can associate with performance impact and system
issues. We have only just started analysis of the dataset, with
some initial investigations presented here.

More globally, outstanding questions in enabling meaning-
ful analysis of HPC monitoring datasets remain. How do we
best present and analyze large numbers and large dimensions
of data for exploration? Often one attempts to reduce the
dimensions of the problem, for example, by reducing the
number of variables explored, or by doing aggregations of
data across multiple components or across time, as we have
done here. However it is pertainent to ask: what dimensional
reductions still result in meaningful results?

Some of our analyses require significant understanding
of architectural issues of the system. The Cray monitoring
community has sought to determine how we can better work
with Cray in order to get the domain knowledge that we need to
guide analysis and to distinguish significant event associations



from coincidences. Machine learning has been suggested and
investigated for years in the hopes of automatically extracting
information from high dimensional data, however in vari-
ous domains many “unsupervised” learning procedures return
meaningless results.

Community forums, such as the Cray System Monitoring
Working Group, and collaboration can help to address such
questions.
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