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Abstract—We present a set of fault injection experiments
performed on the ACES (LANL/SNL) Cray XE supercomputer
Cielo. We use this experimental campaign to improve the under-
standing of failure causes and propagation that we observed in
the field failure data analysis of NCSA’s Blue Waters. We use
the data collected from the logs and from network performance
counter data 1) to characterize the fault-error-failure sequence
and recovery mechanisms in the Gemini network and in the Cray
compute nodes, 2) to understand the impact of failures on the
system and the user applications at different scale, and 3) to
identify and recreate fault scenarios that induce unrecoverable
failures, in order to create new tests for system and application
design. The faults were injected through special input commands
to bring down network links, directional connections, nodes, and
blades. We present extensions that will be needed to apply our
methodologies of injection and analysis to the Cray XC (Aries)
systems.

Keywords—fault injection; resilience assessment; network re-
covery.

I. INTRODUCTION

As we move to exascale systems, we expect to observe
much higher error rates [1], [2]. To overcome the “reliability
wall” [2], i.e., the upper bound of the reliability of an HPC
system, we need to understand fault-to-failure scenarios and
identify optimal places to instrument the system for detecting
and mitigating faults. In our previous study [3] on the Blue
Waters supercomputer, we showed the criticality of network-
related failures and failures of the network recovery in Cray
XE platforms by providing empirical evidence of the impact
of those failures on applications and system. Understanding
fault-to-failure scenarios based on production data is difficult
because the analysis is constrained to naturally occurring events,
and there is a lack of information on fault locations, the health
state of the system, and the workload conditions. In particular,
multiple errors and failures make it difficult to diagnose and

understand the reasons for some fault-to-failure propagation
paths. In this work, we focus on improving the understanding
of fault propagation in interconnection networks by presenting
the results of fault injection experiments conducted on Cielo,
a petaflop Cray XE system with nine thousand nodes designed
and developed jointly by Los Alamos National Laboratory
(LANL) and Sandia National Laboratories (SNL) under the
Advanced Computing at Extreme Scale (ACES) partnership.
After production, but before retirement, the ACES partnership
gave us exclusive access to Cielo for performing our fault-
injection experiments.

Fault injection (FI) methods have been widely used to inves-
tigate fault-to-failure propagation and its impact on applications
and systems, since it is possible to control fault conditions, and
decide on workload and instrumentation on the target system.
To support our fault injection experiments, we developed
HPCArrow, a software-implemented fault-injection (SWIFI) [4]
tool. We perform fault injection experiments that emulate
permanent faults at the hardware component level. Such a fault
injection approach can create and test various failure scenarios
(such as failures during recovery) by injecting combinations of
one or more faults. To the best of our knowledge, this is one
of the largest fault injection studies to date.

The contributions and results of this work are summarized
below:

• Network fault injection tool for large-scale super-
computers: We designed and developed HPCArrow,
a tool to execute fault injection experiments system-
atically. HPCArrow allowed us to inject faults on a
petaflop supercomputer. We executed 18 fault injection
experiments, which led to failures of 54 links, 2
nodes, and 4 blades. The tool was successfully used
to investigate and validate failure scenarios presented
in [5], [6], [3] and establish in-depth fault-to-failure



propagation and delays.

• Recommendation for notification and instrumenta-
tion at application and system levels: FI experiments
revealed a lack of instrumentation of network-related
hardware errors. That lack resulted in a lack of real-
time feedback to applications. The long time it takes to
recover presents a unique opportunity to feed informa-
tion to an application/system to improve its resiliency
to network-related failures. For example, application
and system resource management software does not get
a notification when a network deadlock occurs, leading
to waste of computing resources and application hang.
Placing additional detectors and/or a notification system
on the health supervisory system (HSS), which is
unaffected by failures on the high-speed network
(HSN), could be used for communication or triggering
of higher-level mechanisms in addition to transmission
of low-level fault information to the SMW and recovery
directives from the SMW. In addition, as the use of
node-local non volatile storage becomes more common,
the options for checkpointing to local disk/memory
without requiring network access should be explored

• Identification of critical errors and conditions: The
analyses of error data obtained from FI experiments
helped us identify critical errors and conditions that can
be used to provide real-time feedback to applications
and resource managers. For example, 1) at the system
level one can detect and send notifications of network
deadlock conditions, and 2) at the application level, one
can send notifications of critical errors that can lead
to corruption or abnormal termination of applications.

This paper is organized as follows - Section II outlines the
motivation for this work. Section III describes our approach
to the fault injection campaign. Section IV provides details
of the targeted FI scenarios and Cray’s automated recovery
mechanisms. Section V describes the fault injection tool we
developed for this work, and Section VI describes our event and
impact analysis methodology and tools. Section VII presents the
results of the fault injection experiments. Section VIII explains
how the results of our experiments can be used to improve
resilience in HPC systems. Section IX describes our progess
in extending our work to Aries systems. Section X presents
related work, and we conclude in Section XI.

II. MOTIVATION

In HPC systems to date, application resilience to hardware
and system software failures has largely been accomplished
using the brute-force method of checkpoint/restart [7], which
allows an application to make forward progress in the face
of system faults, errors, and failures independent of root
cause or end result. It has remained the primary resilience
mechanism because of the difficulty to design and implement
effective fault tolerant program models (e.g., the MPI User
Level Failure Mitigation approach). However, as we move
from petascale to exascale, shortened mean time to failure
(MTTF) may render the current checkpoint/restart techniques
ineffectual. Instrumentation and analysis methods that provide
early indications of problems and tools to enable use of new
windows of opportunity for mitigation by system software

and user applications could offer an alternative, more scalable
solution.

Because of the evolutionary nature of HPC technologies, it is
expected that systems, for the foreseeable future, will continue
to have fault mechanisms and behaviors similar to those found
in current deployments [8]. Thus, comparisons of well-explored
failure scenarios across multiple generations of systems should
enable identification of persistent high impact fault scenarios.
Tailoring instrumentation and resilience techniques to enhance
system and application resilience characteristics in these high
impact scenarios can enhance the efficiency and throughput of
both current and future platform architectures.

Even system recovery mechanisms that are defined and
implemented by HPC platform vendors are typically not well
understood or characterized by their signatures in log files
and platform measurables in terms of durations, impacts, and
success rates, particularly for complex fault scenarios. A number
of studies have explored system logs from large-scale HPC
systems [9], [5], [10], but connecting the failures with the root
causes or precursor faults has proven difficult at best. The
resulting fault-to-failure path models are rarely complete, and
typically there is a significant amount of associated uncertainty.
In addition, built-in, automatically triggered recovery mecha-
nisms can further obscure failure paths and may leave no trace
in the log files typically used by system administrators and
made available to researchers.

The research community needs a way to verify, and
possibly augment, failure models through testing in a controlled
environment. In particular they need tools to enable documented
and repeatable HPC environment configuration, including
instrumentation and repeatable applications placement, and
injection of known faults in a repeatable non-destructive manner
on large scale HPC systems.

III. APPROACHES

In order to gain a well-informed, data-driven understanding
of fault behavior characteristics and fault-to-failure paths we
utilize a combination of two approaches: 1) log file analysis
to identify recurring and catastrophic failure scenarios and
2) Fault Injection (FI) for testing/validation/augmentation of
hypothesized root causes and fault to failure paths.

In order to make our approach generally applicable to
multiple generations of large scale HPC platform architectures,
we have developed generalized tools in both of these areas.
Our log analysis tools, LogDiver [6] and Baler [11], are used
to identify and prioritize failures and to identify correlative
associations among faults/failures. Our FI toolkit, HPCArrow,
is used to cause (inject) and log faults and service restorations
on targeted HPC system components in a consistent manner.
More detail about HPCArrow tool is presented in Section V.

The subject of this paper is FI which utilizes artificially
induced, hypothesized or previously observed, initial fault
scenarios to induce reactions expected to lead to failure or invo-
cation of automated recovery mechanisms. Use of a dedicated
machine for FI experiments enables better control over initial
system state than typically exists during production operation
of a large scale HPC system. This also makes observation of
the resulting failures and, if they exist, corresponding resilience



mechanisms more straightforward. These types of experiments
can be repeated many times in order to provide a statistically
significant set of results. In order to utilize FI in a consistent
way we have developed a generalized FI toolkit. This toolkit,
HPCArrow, enables us to inject targeted faults into system
components, such as nodes and network links, which are
controlled in terms of location and timing, e.g., can inject
additional faults during recoveries from earlier faults.

The injected faults are based on scenarios derived through
prior use of LogDiver on system logs containing fault and
failure information.

The remainder of this paper is devoted to description of FI
experiments run on Cielo [12] (described below) for targeted
failure scenarios, use of HPCArrow to trigger those scenarios,
and analysis of the data collected across the system during the
experiments.

Basic observable data consists of a variety of system log
data collected during the fault injection experiments. Job impact
data includes job output information such as completion status,
nodes used, and run times. Where possible we augment these
with additional system wide, periodic (1 second) collection
of system resource utilization and state data, such as network
traffic and link state.

For each experiment, we correlate contextual information on
the fault injection with the system logs and other observables.
We calculate metrics, such as recovery duration, time spent
in each phase of recovery, and retries from fine-grained
statistics of the experiments. We then assess the metrics in
order to determine high-impact fault scenarios with potentially
actionable timescales in order to make recommendations for
improving resilience through additional instrumentation and
notification mechanisms or improved architectural designs in
future systems.

Our approach is architecture-independent; however, the
details of the injections, measurements, and recoveries are
architecture-specific. In this work, we target the Cray XE
systems. We leverage our characterization of operational faults
and failures in Blue Waters [3] to design and analyze our FI
experiments. The platform used for these FI experiments was
Cielo, a petaflop Cray XE system at the Advanced Computing
at Extreme Scale (ACES) system (an initiative of the Los
Alamos National Laboratory (LANL) and Sandia National
Laboratories (SNL)) which consists of 8,944 compute nodes
with a Gemini 3D torus with dimensions 16x12x24. Each blade
in Cielo includes two Gemini application-specific integrated
circuits (ASICs), each housing two network interface controllers
(NICs) and a 48-port router. Each ASIC acts as a router and is
connected to the network by means of directional connections
X+, X-, Z+, Z-, Y+, and Y-. Directional connections X+, X-,
Z+, and Z- are made of 8 links, and Y+ and Y- are made of
4 links each. Each link is composed of 3 channels (or lanes).
In this paper we refer to directional connections simply as
connections.

The elements of our approach, particularly as they pertain to
Cray XE systems, are described in more detail in the next three
sections. Section IV describes the investigated faults, Section V
describes our FI tool HPCArrow, and Section VI describes the
log and numeric data, analysis tools and methodologies, and
results.

IV. FAILURE SCENARIOS

In this work we investigated failures in compute (nodes
and blades) and network (links, ASICs, and connections)
components in isolation and in combination (shown in Figure 1).
These particular types of failures were targeted as they occur
frequently enough in production systems to be responsible
for significant performance degradation. The Cray XE system
is designed to handle these types of failures by triggering
automatic recovery procedures (as shown in Figure 2). Failures,
depending on the occurrence location, are detected by a
supervisory block on the Gemini ASIC, a blade controller
(BC) on the blade, or a System Management Workstation
(SMW). Each BC is locally connected to a supervisory block
on the Gemini ASIC, and remotely connected to the SMW
through the Cray Hardware Supervisory System (HSS) network.
Information about critical failures is delivered to the SMW by
a failure impacted BC for initiating any necessary recovery.
Upon detection of a network-related failure, the SMW initiates
a system-wide recovery. Actions taken by the SMW during
the recovery depend on the failure type. A connection failure,
for example, would lead to a loss of connectivity between two
Gemini ASICs. For connection failures the SMW recalculates
the routes, quiesces the network (i.e., injection into the network
is paused), installs the newly calculated routes on all ASICs,
and unquiesces the network. In the case of a single link
failure that does not result in a connection failure, the failed
link is masked (i.e., removed from service) and the ASICs
maintain connectivity through the remaining functional links
of that connection. In some cases, recovery mechanisms can
mask failure(s) without causing a major interruption of the
system. Analyses of field failure data indicate that: 1) recovery
mechanisms handling complex failure scenarios may not always
succeed and 2) protracted recoveries that eventually succeed
may still have a significant impact on a system/application(s).
In this study, we created failure scenarios using FI in order
to understand the system’s reaction and susceptibility to some
fault/failure scenarios seen to occur on production systems.

Failure scenarios are defined by specifying the location and
timing of the faults. The failure scenarios studied in this work
are described below.

Fig. 1: Target components of fault injection experiments.
A failure of a blade leads to failure of two ASICs.

Node failure: We recreate a node failure by powering off
one of the nodes running an application on the system. The
failure of the node will result in the failure of the application.
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Fig. 2: Recovery procedures of the Cray Gemini high-speed
network: main stages of the recovery. Additional failure(s) at
any stage will restart the network recovery operation.

No automatic network recovery response is expected in this
case, as the failure of one or more nodes does not impact the
routing paths in the network. However, there can be effects on
network traffic balance across remaining nodes and network
elements which can, for other networks and topologies (e.g.,
Aries dragonfly), affect routing decisions.

Link failure: We recreate a link failure by deactivating one
of a connection’s links via modification of a status flag on
one of the two Gemini router ASICs connected by the link.
Injecting faults in this way emulates a scenario in which the
flag is modified to deactivate a link that is physically damaged
or is unavailable due to other problems (e.g., a high soft-error
rate). When a link is taken down by modifying a status flag on
the router on one end, the router on the opposite end of the link
is also affected. The link failure is detected by the Hardware
Supervisory System (HSS); the hardware masks that link and
traffic automatically uses the other links in the connection.
After the automated recovery completes, the link is disabled
(marked down) on the SMW.

Blade failure: In this scenario, we recreate a blade failure by
turning off the voltage regulator of the mezzanine in the blade.
When the entire blade is powered off, there is a concurrent shut-
down of the four associated compute nodes and two Gemini
router ASICs, each with 40 network fabric links. When the
fault is injected, the blade becomes unavailable for computation
and routing network traffic. Automatic recovery is expected to
reroute around the failed routers.

Multiple sequential link failures: In this scenario, a sequence
of link faults are injected one after another over a user
configurable duration of time (typically sub-second). Depending
on the failure detection latency and time between injections, the
SMW may recover all of the failed links together (i.e., a single
recovery procedure), or recover each one of them sequentially
(when the time between two successive failure detections is
longer than the aggregate failures step [13] time of 10 seconds),
or identify additional faults during a recovery. In the case of
identification of additional failures during recovery, the SMW
aborts the current ongoing recovery and starts a new recovery
that addresses the new failure(s) in addition to the previous
failures.

Single and multiple connection failures: We defined two
modes for connection failures: single connection and multiple

connections. For single connection failures, we sequentially
inject faults into all links of a target connection. In a torus
topology, each router connection consists of 8 links for each
of X+, X-, Z+, and Z- directional connections, and 4 links
for each of Y+ and Y-. Failing a connection creates a hole
in the routable topology. The associated recovery is expected
to reroute the network paths around the hole. In the case of
multiple connection failures we target two connections which
do not share a common Gemini router ASIC. To create this
failure scenario, we randomly chose two blades whose location
differs in all dimensions X, Y, Z. The automatic recovery
should be able to route around the failed connections. Note that
unrouteable topologies [13] do exist and will cause a reroute
failure.

V. FAULT INJECTION TOOL: HPCARROW

We have developed HPCArrow, a software-implemented
fault-injection (SWIFI) [4] tool and methodology that can inject
one or more faults into specific target locations (currently nodes,
blades, and/or links) in the system. Those faults may in turn
invoke various recovery procedures in the system, as discussed
in Section IV.

HPCArrow (refer to Figure 3) consists of three major mod-
ules for systematically studying the effects of faults/failures on
HPC systems/applications: (1) a Workload manager generates
workloads and submits all applications to the selected nodes for
execution; (2) a fault injector selects the fault type along with
the target location and timing of injections; and (3) a restoration
manager restores the system to a healthy state (i.e., resets the
system to the state before the injections) or, in critical scenarios,
it issues a notification stating that the entire system must be
restarted manually1. The tool supports execution of arbitrary
failure scenarios consisting of network- and compute-related
failures (refer to Table I). Currently, HPCArrow is preconfigured
with all fault injection campaigns discussed in this work. A
fault injection campaign specifies failure scenario(s) and the
workloads to run concurrently during the FI experiment(s). For
this study, we ran the tool in a supervision mode in which all
commands to be executed by the tool could first be verified by
the user in order to reduce wasted time spent in error recovery
and bug fixes.

To conduct a fault injection experiment2 using HPCArrow,
a user selects one of the available preconfigured campaigns
through a simple user interface (step 1, S1 in Figure 3).
HPCArrow then launches a set of applications (defined by the
workload) to be executed on the system (step 2, S2), and verifies
their execution (step 3, S3). In step 4 (S4), HPCArrow injects
faults in sequence as defined in the campaign configuration
file. During this phase of operation, there may be automated
system responses to the injected faults along with associated
log output.

Upon completion of the experiment(step 5, S5), the user
invokes the restoration manager (step 6, S6), which restores the
system to a healthy state. After restoration completes, the user

1The ability to detect critical scenario such as a deadlock by active monitoring
of logs is available only in the latest version of the tool and was a result of
this study. This feature was not present during the experiments discussed in
this paper.

2HPCArrow launches only one campaign during an experiment and collects
data for that experiment.



Fig. 3: HPCArrow: A network fault injection tool for HPC systems. Data produced during an experiment or campaign can be
further analyzed using tools like LogDiver. The steps taken by HPCArrow to launch fault injection experiments are shown as
S1, S2, ..., S6.

is allowed to run further fault injection campaigns. HPCArrow
reports the results of the campaign on the user console
and collects all the relevant data for further analysis of the
system/application behavior during the experiment. HPCArrow
allows to verify the execution of the steps using the output on
the administrator console, and the logs generated in the system.
For example, when a restoration is interrupted, the administrator
console shows errors. In that case, the administrator can retry
a warm swap or blade reboot commands. A more in-depth
description of the HPCArrow modules, along with examples
that illustrate the scenarios, follow.

A. Workload Manager

To activate the injected faults, HPCArrow launches a mix
of applications (specified in the campaign via the Workload
manager module) at various scales. The scale in this context is
defined by the number of nodes occupied by an application job.
In this study, we defined three application scales: a nano-scale
application executed on fewer than 512 nodes; a small-scale
application executes on more than 512 but fewer than 1,024;
a medium-scale application executes on more than 1,024 but
fewer than 4,096 nodes; and a large-scale application executes
on more than 4,096 nodes. In all fault injection experiments, we
applied the same workload, which consisted of five small-scale,
two medium, and one large-scale application. We used Intel
MPI Benchmarks (IMB) [14] as the benchmark application.
IMB performs a set of MPI performance measurements for
point-to-point and global communication operations for a range
of message sizes. Use of this application enabled us to measure
the effects of injected faults on the performance and resilience
of network-intensive applications.

B. Fault Injector

The Fault Injector module is responsible for executing
the commands that inject faults into the system components.
In the case of multiple overlapping fault injections, this
module is responsible for timing the injection of faults with
respect to each other. These commands and the underlying
mechanisms employed are system-specific. The commands for
fault injections (refer to Table I) recreate the failure scenarios
described in Section IV. Each one indicates the type of target
component (i.e., link, node, connection, or blade/mezzanine).
Faults can be injected either manually at a specific location
(selected by the operator) or randomly (selected by the tool)
in the system. The injection commands are issued from the
SMW by the system administrator. Each target component is
uniquely identified by a symbolic name (Cray physical ID or
Cname).

C. Restoration Manager

The system restoration commands (refer to Table II) are
issued by the user/administrator to restore the system to the state
that preceded the execution of the fault injection experiment.
Those commands are based on the Cray XE commands [13].
Each campaign, along with the workload and fault injection,
specifies the steps to be run (automatically) for the restoration
of the component injected. Note that the Restoration Manager
recovers blades (BR) and links (LR) by executing the warm
swap command.

VI. ANALYSIS METHODOLOGY

We analyze the system-generated logs and measurement
data in the context of the fault injection experiment to quantify
metrics (e.g., recovery duration, time spent in each recovery



TABLE I: Failure scenario commands and acronyms used in
this paper

Target Failure scenario
commands Concurrency Description

Node NF
(Node Failure) Single Power-off of a node

in a blade.

Link

LF
(Link Failure) Single Activation of link alarm

status on the router.

SCF
(Single Connection
Failure) Sequential

Activation of the alarms for
a set of links composing
an entire directional
connection X, Y, Z
between two routers.

2CF
(2 Connections
Failures with
Non-Overlapping
Dimensions)

Activation of the alarms for
a set of links composing 2
directional connections
among routers with
different coordinates
in the network topology.

Blade BF
(Blade Failure) Concurrent Power-off of the voltage

regulator in a blade mezzanine.

TABLE II: Restoration commands issued by the administrator
with the support of the HPCArrow tool.

Restoration commands Description

BR
(Blade Restoration)

BR is a sequence of commands
executed after an injection to a blade:
crayadm -c ‘xtwarmswap –remove
blade Cname’
+ crayadm -c ‘xtwarmswap –add blade Cname’
+ crayadm -c ‘boot CNL0 blade Cname’

LR
(Link Restoration)

Warm swap on links addressed
using their Cnames:
crayadm -c ’xtwarmswap
-s link 1,. . . ,link N -p p0’

phase, number of retries to restore the system operation, and
network pause time) for assessing the impact of the failure
scenarios injected on the applications/system. The data collected
and the analysis techniques are described in this section.

A. Event Analysis: LogDiver

LogDiver [6] is a tool for the analysis of system- and
application-level resiliency in extreme-scale environments.
The LogDiver approach is to create a unique data set that
encapsulates events that are essential to performing resiliency
and performability measurements. In the context of this study,
the tool allows us to (1) extract network-recovery operations,
determine the completion status of the recovery, and diagnose
the cause of recovery failures [3]; and (2) identify application
termination status and potential reasons behind abnormal
terminations of applications. Specifically, LogDiver filters the
logs (collected from the fault injection experiments) that match
the regular expressions configured in the tool. Once filtered,
data are used by LogDiver to compute metrics of interest.

B. Network Performance Counters

The main source of the numerical monitoring data provided
by Cray XE systems is the Systems Environmental Data
Collection (SEDC) [15] system, which mainly collects data
such as temperature, fan speeds, and voltages. While such data
can potentially be used in a resilience context for detecting
abnormalities that might be indicators of degrading components,
their use in this work is limited. More relevant indicators of
the effects of the fault injections on the system and application

state, such as network traffic, stalls, and link status, are exposed
on nodes, but are not normally collected or transported. In this
work we augmented the available system data with our own
collection and transport of these network data.

Low-level network counters are available via Cray’s Gemini
Performance Counter Driver [16] (gpcd) and by entries in a
/sys fs interface available via Cray’s gpcdr kernel module.
The latter method in Cray’s default configuration presents the
metrics as directional-link aggregated quantities. We are using
the gpcdr interface as our data source, with a refresh rate of
one second. Details on these quantities can be found in [17].

In the Gemini network, any given router may be responsible
for handling traffic both for jobs allocated to the nodes directly
attached to the router and for other jobs’ traffic that passes
through that router along their communication paths. In the
Gemini network, routing is primarily deterministic. Traffic goes
first from source X coordinate to destination X coordinate, then
from source Y coordinate to destination Y coordinate, and then
from source Z coordinate to destination Z coordinate. This
most likely means that a router will handle traffic for multiple
applications. The values shown in this work for routers are thus
the aggregates of traffic handled over the connection of a router;
they cannot be attributed to any particular job(s) nodes and are
subject to instantaneous demands of those jobs, including job
starts and stops.

Numerical data were collected at 1-second intervals via the
Lightweight Distributed Metric Service (LDMS). Details of
LDMS data collection on Gemini systems, including overhead
assessments demonstrating that there is no significant detri-
mental system impact, are provided in [18], [19]. Of relevance
here is the fact that data are collected by on-node daemons
and held in memory on a node until they are overwritten by
the next sample. Data are pulled from that memory location by
other daemons via RDMA. If network connectivity is lost, as it
would be during a full-system quiescence, data points collected
during that period are lost.

While in our other XE/XK systems with more current CLE
versions, the link status was observed to change in response to
downed individual links, we did not see this behavior on Cielo.
This did not allow us to monitor traffic on single links, but on
entire connections.

C. Application Data

As mentioned in the previous section, we ran IMB bench-
marks to study the impact of faults/failures on applications.
Variability in the application run times was significant enough
to impact our ability to draw conclusions from run-time
performance. However, since the jobs were network-intensive,
we can consider the impact of the injections on the instantaneous
network traffic and communication. In addition, information
in the job output files provides some insight on MPICH errors
and some network events (e.g., throttles) of interest. As part
of this work, we discovered that the reporting of node quiesce
event counts is not always accurate, and thus it is not included
in our assessments.

D. Output of Analysis

We summarized each fault injection experiment in the form
of a report like the one given in Table III. This schema allows us



TABLE III: Example summary for one fault injection
experiment.

Entry Value
Experiment ID 5
Start Time 1473176186
End Time 1473176880
Experiment Window [hours] 0.192777778
Failure Scenario SCF (Random)
Components Targeted 8
Errors on Admin Console No
Recovery Time [seconds] 630
Number of Recovery Procedures 4
Number of Procedures: Success 2
Number of Procedures: Failure 2
Is Last Recovery Failed? No
Application Errors 1
Warm Swap Failed 0
Gemini Link Failed 32
EC Node Failed 0
Gemini Link Recovery failed 2
Gemini Lane Recovery failed 0
Gemini Channel Failed 32
Blade Recovery Success 0
Warm Swap Success 0
Link Recovery Success 4
...

to identify experiments that showed anomalous logs (e.g., high
volumes or unusual hardware error logs) and to characterize
the impact on the applications in terms of network traffic.
Each experiment is represented with a set of parameters: an
ID to uniquely identify an experiment, an acronym for the
injection/restoration performed, the links/nodes/blades targeted
by the fault injection command or the object of the restoration
operation, the presence of errors on the administrator console
during the experiments, the number of network recovery
operations in the time interval of the experiment, the number
of successful and failed recoveries, and the counters for the
events3 collected from the data sources (system-generated logs).
In Section VII, we discuss the results of the fault injection
experiments conducted on Cielo.

VII. RESULTS FROM FAULT INJECTION EXPERIMENTS

We analyze the results of fault injection experiments
by characterizing failures, recoveries, and application/system
impact. We first summarize the results across all experiments
and then present example cases for each failure scenario studied
in this work.

Each case study is supported by a graphical depiction of the
key events corresponding to a given fault injection experiment
(i.e., time and location of the injected fault), system behavior (in
terms of the network traffic) at each step of a fault propagation,
and the system response (i.e., recovery actions) to injected
faults. For example, Figures from 4 to 8 show the traffic
distribution captured using LDMS (top subplot), injection and
network activity as seen from SMW filtered out using LogDiver
(middle subplot), and hardware error events reported by the
health checker systems of the Cray system and filtered by
LogDiver (bottom subplot). The traffic distribution subplot
shows the fraction of traffic volume that has passed through a
connection between time T=0 and any given time T=t compared

3LogDiver encodes each event type in the form of a regular expression that
matches one or more lines in the logs.

to the total volume passed through it during the fault injection
experiment. In the top subplot the “injected connection” line
represents traffic flowing through a Gemini router ASIC on
the connection targeted with fault injection, and the “other
connections” line represents average traffic flowing through the
same Gemini router ASIC on other connections. During the
experiments, hardware error logs were generated after the fault
injection. Some errors showed anomalies in terms of number
of occurrences (count) and persistence (duration over which
an error was reported). We reported the distributions of those
hardware errors, calculated as the fraction of hardware error
events that occurred between time T=0 and any given time
T=t compared to the total number of errors (of the same type)
encountered throughout the fault injection experiment (bottom
subplots in Figures 4 to 8). We summarize the information
available for those hardware error logs below.

• ORB RAM Scrubbed Upper Entry: The Output Request
Buffer (ORB) frees the upper 64 entries in the ORB
RAM by monitoring the number of clock cycles an
entry has been in the ORB RAM since the entry was
written. An error entry is logged for every network
request that was scrubbed because of a timeout.
Similarly, ORB can free the lower 64 entries of the
ORB RAM in an action called an ORB RAM Scrubbed
Lower Entry. Because the two have similar behavior,
only ORB RAM Scrubbed Upper Entry is shown in the
figures. It is a transient error that could be indicative
of critical network issues if continuously generated,
e.g., in the case of a deadlocked network.

• ORB Request with No Entry: This error is generated
when a response packet comes into the receiver
response FIFO buffer that does not correspond to
a full request entry in the ORB RAM. These are
critical errors that require the killing of uGNI Generic
Network Interface threads. uGNI threads are used by
MPI applications, and thus this error indicates a critical
condition for MPI applications as well.

• Receiver 8b10b Error: This error indicates a transmis-
sion error and is reported by the completion queue.

• LB Lack of Forward Progress: A lack of forward
progress is detected on NIC0 or NIC1, indicating that
all subsequent requests destined for those NICs will be
discarded, thereby stopping any traffic flows through
those NICs. If this error message is reported by several
components, it may indicate a critical issue in the
network.

• NW Send Packet Length Error: This error is generated
by packet corruption during the transmission.

• SSID Stale on Response, SSID Stale: These messages
can be caused by problems in the ORB of the network
cards. Usually, they are not related to transmission
timeouts.

• NIF Squashed from Tile Request: Packets are squashed
because of failed consistency check (e.g., ECC, CRC,
misroute). Possible causes for these errors are packet
corruption or bad routing.



A. Summary of Fault Injection Experiments

We used HPCArrow to execute 18 fault injection campaigns,
coordinated from the SMW of Cielo by the system administrator.
Faults were injected into links, connections, nodes, and blades.
Table IV(a) summarizes the fault injections classified by target
type (node, link, connection, blade) and acronym (according
to Table I). We indicate the number of experiments executed
(Exp), and the number of network recovery procedures (RP)
successful or failed (S/F), as extracted from the system logs
using LogDiver. We also reported if the overall recovery suc-
ceeded (ORS). LogDiver reconstructed 37 automatic recovery
operations after the fault injections (26 successful and 11 failed).
Finally, we report the mean and standard deviations of the
recovery durations calculated using LogDiver4.

Restoration commands to return the system to the state
it was in the start of the campaign were executed 7 times
on the blades and 10 times on single links. Table IV (b)
summarizes the restorations initiated by the administrators and
gives the occurrence of errors on the administrator console
after the restoration command were issued (EAC). Manual
link restorations completed successfully every time. Blade
restorations failed five times due to misconfiguration of the
HPCArrow restoration manager: once because of an error during
the blade boot, twice because of errors during blade removals,
and twice because of errors during blade additions, in the
case of the restorations shown in the Table IV(b) for the BR
case. This bug has since been fixed. Restorations of the failed
components resulted in fifteen network recovery operations,
two of which did not complete successfully because of critical
network conditions (i.e., deadlock in the network) during an
experiment.

Next, we describe example cases corresponding to each
failure scenario studied in this work.

B. Node Failures and Single Link Failures

Execution of link injections with HPCArrow effectively
recreates failure conditions that quiesce network traffic, trig-
ger automatic recovery operations, generate system recovery
and error logs, and are seen in production in similar Cray
HPC systems.

The plot in Figure 4 shows the profile of network traffic
when a link failure injection experiment (scenario LF in
Table IV) is executed, when an automatic network recovery is
executed by the system to reroute around the failed links, and
when a successive manual restoration is issued by the operator
to reintegrate the failed link into the system. The traffic on
the two Gemini router ASICs connected by the link targeted
by the injection was monitored using LDMS. The top part of
the figure shows the traffic on the connection with the fault-
injected link (solid line), and the average of traffic received
by the router connected to the other end of the injected link
(dashed line). The average is calculated on all the connections
of that particular router. Drop-outs of data occur in two time
intervals, i.e., after the link fault injection (since the system
automatically recovers the network) and after the warm swap
executed by the operator to restore the failed link. A network
quiesce command sent to all the controllers of the Gemini router

4LogDiver does not provide accuracy within 1 second on recovery duration.

TABLE IV: Summary of fault injection experiments (a) and
restoration commands (b). Statistical parameters are not meant
to imply that this set of experiments constitutes a statistically
significant set.

[FS = Failure scenario, #Exp = Number of experiments, #RP
(S/F) = Number of recovery procedures (succeeded/failed),
ORS = Overall recovery success, EAC = Errors on admin
console]

(a) Fault injection experiments on Cielo.

Target FS #
Exp

#
RP

#
RPS

#
RPF ORS

Duration
(µ,σ)
[seconds]

Node NF 2 0 0 0 Yes -
Link LF 6 7 7 0 Yes (50,21)

Connection
SCF 4 15 9 6 Yes (64,157)

2CF 2 10 5 5 Yes
1/2 (32,29)

Blade BF 4 5 5 0 Yes (134.5,
82.5)

(b) Summary of restorations executed by the administrators after fault
injections.

Target #
Exp

#
RP

#
RPS

#
RPF ORS

Duration
(σ,µ)
[seconds]

EAC

Link
(LR) 10 10 10 0 Yes (91,5) No

Blade
(BR) 7 5 3 2 Yes 2

No 5
(515,
365)

Yes
6/7

ASICs on the blades results in traffic being quiesced globally
for 30 seconds. In both the initial link injection and successive
restoration, data were lost for around 30 seconds (recovery
intervals covered all the phases of the recovery). LogDiver
reconstructed an automatic recovery procedure with a duration
of 1 minute after the fault injection, and about 90 seconds
after the link restoration (warm swap). In particular, the tool
extracted logs reporting an automatic recovery operation for a
failed channel, link inactive, network quiescence, a rerouting
operation, and dispatching of new routes. For the warm swap,
the tool reconstructed a recovery procedure consisting of a warm
swap start, a quiesce and unquisce, a reroute, a dispatching
of new routes, and a message of successful warm swap. The
hardware error logs (bottom figure) reported only an event of
“NW Send Packet Length Error”, generated after the failure of
the link.

The system logs collected during the experiments of a
node failure (scenario NF) show the system did not react to
this injection at the network level (i.e., the number of recovery
procedures is 0 for NF in Table IV), since no network rerouting
was required for a compute node failure, as expected. The
experiment for node failure generated a log from the application
placement framework (ALPS) indicating that an application
was killed for “ec node failed”, i.e., there was a hardware
error and the node was correctly marked down by the system.

C. Multiple Sequential Link Failures

To understand the impact of causing connection failures by
inducing multiple sequential link failures, HPCArrow was used
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to emulate two different failure modes (refer to Section IV):
single connection failures (SCF, executed in four experiments),
and two non-overlapping connection failures (2CF, executed
in two experiments). The relative timings and modes (2CF
or SCF) of the injections resulted in three different recovery
behaviors: (1) an invocation of a single network recovery with
the recovery ending in success (observed in one experiment);
(2) an invocation of multiple network recoveries with a final
recovery ending in success (observed in four experiments);
and (3) an invocation of multiple network recoveries with a
final recovery reporting success, but the system ends up in a
deadlock state (observed in one experiment).

1) Single network recovery completed successfully: Figure
5 shows the result of one of the sequential multiple link failure
scenarios for a single connection failure experiment. In this
specific experiment, an X+ connection was targeted. As can
be seen from the top subplot in Figure 5, the network traffic
volume that passed through the connections starting from time
T = 0 continued to grow until T = 230 seconds. At T = 230
seconds, the campaign was executed, causing all eight links

to fail within a 3 second window. The failure of all links on
the injected connection triggered a recovery action requiring
a route recalculation, and network quiesce for the new route
instantiation (following the recovery procedure shown in Figure
2). The automatic recovery action resulted in the suspension
of network traffic flow on all links throughout the system until
the successful completion of the recovery (shown in the top
subplot). This recovery took 630 seconds (ending at T = 867
s in the figure) to complete successfully. After the completion
of the recovery, traffic started to flow in connections other than
the failed one (increasing traffic on the remaining connections).

Analyses conducted on hardware error logs revealed anoma-
lous behavior for certain error types. We had not observed
any “ORB RAM Scrubbed” errors because other links, in
the same direction, were available for sending traffic. In this
case, these errors were observed during the entire recovery
duration because of the loss of all links. Our analyses confirm
the observation, as none of the Link Failure (LF) campaigns
had produced “ORB RAM Scrubbed” errors; however, those
errors were widespread in connection-failure (single or multiple)
campaigns. Certain hardware errors (i.e., “ORB Request with No
Entry” and the “8b10b error”) appeared in only two experiments
(this experiment and the deadlock failure scenario). The overall
occurrence of “NIF squashed request for a tile” was also high,
in this, relative to all other experiments. These anomalies, and
the observed long recovery completion time for this experiment,
are indicative of a problem in the network. However, we did not
see any abnormal application terminations due to these errors.
We did observe an MPICH2 error reporting a transaction failure
for a large-scale application (4,096 nodes) running during this
experiment. Since our application runs were limited to IMB
benchmarks, we cannot determine if other MPI application will
be able to tolerate “transaction failure” errors, but Cray’s MPI
is designed to be resilient in the face of many of these errors.
Handling link recoveries can be a lengthy process whether
single or multiple links of a connection have failed.

2) Multiple network recoveries completed successfully:
Figure 6 shows the effects of one of the sequential multiple link
failure scenarios, in which a SCF fault injection experiment was
conducted. In this experiment, a Z+ connection was targeted.
The sequential failures of the eight links in the failed connection
did not occur within a 10 second window, which resulted in
additional faults occurring during recovery. In such cases, the
SMW restarts the recovery, to account for any additional faults it
encounters during recovery. However, this extends the recovery
time. As shown in Figure 6, at T = 100 seconds, a fault was
injected. Traffic was globaly quiesced (at around T = 100
seconds in the figure), and no network traffic flow was seen
in the network until the completion of the recovery. The first
two fault injections were within 10 seconds of each other (1st
link injected and 2nd link injected) and hence were handled
together by the automatic network recovery response. Injection
of the third fault (3rd link injected) caused a new link failure,
triggering another automatic recovery response (2nd recovery).
At T = 185 s, i.e. 28 seconds after the third fault was injected,
a fourth fault was injected into the network (4th link injected),
causing a link failure and abortion of the ongoing recovery
(2nd recovery fail) a few seconds later. The ongoing recovery
was aborted because the time difference between detections of
the corresponding two link failures was more than 10 seconds.
A retry of the recovery handling both the failures completed
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successfully. Injection continued on the rest of the links in this
connection; observations for them were similar and hence are
not shown or discussed here any further. During the campaign,
a significant number of ”ORB RAM Scrubbed Upper Entry”
hardware errors were observed that were due to loss of links
that could have been used by the ORB.

Another sequential multiple link failure scenario, in which a
2CF (two connection failures with non-overlapping dimension)
campaign was executed, led to observations similar to those
described above (although in this case the recovery handled
failures of links on two separate connections). Figure 7 shows
the result of this campaign. Overall, the recoveries eliminated all
traffic for around 150 seconds. The system was able to recover
the network functionality, and the ORB messages disappeared
after the recovery. However, not all 2CF campaigns recovered
the system successfully, which is discussed in Section VII-D.

A failure during recovery can lengthen the time to
recover the system and may lead to multiple network
quiesce and throttle events, which in turn can impact the
system and application traffic.
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Fig. 6: Single connection fault injection as a sequence of link
failures. Top: Cumulative distribution of network traffic
measured in the time interval of the experiment. Middle: Time
series of network events (enlarged). Bottom: Cumulative
distribution of anomalous hardware error logs during the
experiment.

D. Multiple Network Recoveries, Final Recovery Ending in
Report of Success but System Deadlocks

Figure 8 shows the effects on the system and application
of one of the sequential multiple link failures scenarios, in a
2CF (two connection failures with non-overlapping dimension)
campaign. Unlike the previous experimental campaign for 2CF
(refer to Figure 7), in this experiment two targeted connections
belonged to different dimensions (one in X+ and another in Y+).
As in all other cases discussed so far, the network traffic flow
stopped during the recovery. However, unlike the other cases,
traffic flow was never successfully restored after the recovery
seemingly completed successfully (as reported by the SMW)
within 120 seconds of the start of the campaign. A large number
of “ORB RAM scrubbed” errors were continuously observed,
despite the successful completion of automatic network recovery
(which also was not the case in other campaigns). The analyses
of hardware error logs revealed that ORB messages were being
generated by increasing numbers of components over time. This
is anomalous behavior, as the system is not expected to generate
“ORB RAM Scrubbed” errors after the successful installation of
correct routing tables. “LB Lack of Forward Progress” messages
from the Gemini router ASICs further strengthens the belief
that traffic could not be routed to its destination even after
the recovery. The “LB Lack of Forward Progress” errors are
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not critical if contained in a small set of routers, but they
can indicate a more severe situation if generated across the
entire network. An attempt to do a warm swap on the links
(after 24 minutes) in an attempt to restore the system to a
working state, was also reported as successful in the logs.
Nevertheless, the huge number of hardware errors persisted.
Eventually, additional hardware errors were observed (“SSID
Stale on Response” and “ORB Request with No Entry”). The
situation above is typically considered a deadlock as packets
are stuck in the output buffer of the Gemini router ASICs
(which in turn leads to severe congestion in the network). We
hypothesize that a corruption of the routing tables in one of the
routers could be the cause of this deadlock. In this scenario, the
routing tables would indicate incorrect connection paths that
are not consistent with the real state of the network and of the
working links. This type of problem would not be detected by
the health checker daemons in the system, and the SMW would
assume the system state to be healthy. This kind of critical
scenario is typically assessed by a human operator, who must
manually analyze the system error logs. The system needs to be

rebooted after a deadlock, leading to unsuccessful termination
of all the applications running in the system.

A network deadlock in the Gemini network can be
detected by analysis of hardware error logs and SMW logs.
A temporally increasing number of Gemini router ASICs
reporting “ORB RAM Scrubbed Entry” along with “LB
Lack of Forward Progress” errors is indicative of a critical
state in the network. Automated analysis could enable early
detection of the deadlock network state.
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E. Multiple Concurrent Faults

This scenario shows the effects of a concurrent multiple link
failure scenario, in a BF (blade failure) campaign. In this case,
a fault targeting a blade led to permanent failure of the blade,
causing two Gemini router ASICs to fail, and hence multiple
communication links to become unavailable instantaneously.
This, in turn, caused failure of additional links (connected to
six different Gemini router ASICs) on the other ends of the
physical links of the failed blade. Software daemons on the
Blade Controller (BC) (one for each blade) detect failure of
links and of the blade associated with the controller itself.
Therefore, failures of links on different blades are detected



and reported by the associated BCs asynchronously. In total,
72 links were reported in two seconds, as two groups of 36
failed links each. The recovery completed successfully, but the
network was unavailable for 68 seconds.

Blade failure recovery times might be improved by
handling the failure of both ends of a connection when
either end fails as failure of links at one end implies
unavailability at the other end.

VIII. RESILIENCE RECOMMENDATIONS

Our fault injection experiments have enabled us to better
understand the details of failure scenarios we have seen in
large-scale production Cray systems, such as Blue Waters.
In the case of the Gemini High Speed Network (HSN),
failures and automated recovery mechanisms largely operated as
expected [13]. However, the more complex scenarios described
in Section IV resulted in large variations in time to impact,
time for recovery, and success of recovery. Duration of some
scenarios was long enough (e.g., tens of minutes) that additional
mechanisms could be developed to enable improved resilience
and/or reduce adverse impact.

Potentially the HSS, which is unaffected by failures on
the HSN, could be used for communication or triggering of
higher-level mechanisms in addition to transmission of low-
level fault information to the SMW and recovery directives
from the SMW. In addition, as the use of node-local non volatile
storage becomes more common, the options for saving state
without requiring network access should be explored.

In general isolated events (e.g., link and node failures) were
well handled and of short duration. Notification of job-killing
events, such as node failures, appear in the job output. For
these cases we currently see no obvious instrumentation that
could be used to provide advance warning to the system or
applications of impending failures.

Cray’s aggregation of faults that co-occur within a system-
defined time window (e.g., multiple HSN link failures) can
ensure orderly response to cascading faults, faults that derive
from the same root cause but are slightly displaced in time, or
faults that are unrelated but temporally close. In the best case
scenarios, faults and attempted recoveries occur over a number
of minutes. However, fallout from the recovery mechanisms
can still result in substantial job run-time impact, even when
full recovery is ultimately successful (e.g., as in Figure 5).
This provides a potential window of application resilience
opportunity, as these time scales are long enough to enable send-
ing of actionable notifications to affected applications and/or
system software components to initiate defensive mechanisms
in preparation for a likely failure in recovery. For example, post-
recovery-process system conditions resulting in “ORB RAM
Scrubbed” messages were clearly related to extended impact
duration. The conditions that trigger such events could be used
to pro-actively notify applications and system software. For
example, task-based applications could speculatively farm off a
duplicate task, rather than wait for a task response to a heartbeat.
Higher-priority indicators could be used to mark prolonged
events within certain time windows.

Higher-level aggregation and notification of system-wide
events would also be of particular benefit. More “ORB RAM

scrubbed” messages occurred over a greater spatial extent
for the longer-duration and ultimately unsuccessful recovery
attempts (e.g., Figure 8). Higher-priority notification of such
cases could enable more accurate indication of potentially
severe faults. For example, the jobs in the deadlock case were
not killed, so the user was not informed that their application
progress had ceased; typically only system administrators have
access to the error logs where this information is available. In
addition, the lack of information aggregation made it harder
to assess the system state in post-processing analysis. Faster
diagnosis would have been made if the notification and logging
for the successful implementation of the link were more
integrated with the notification and logging for the resulting
continuous hardware errors.

Finally, some system-wide events, such as network throttles
and quiesces, occur as a result of defensive actions taken
because of faults on unrelated nodes. Wider notifications could
be used to inform run-time mechanisms about nodes that may
be indirectly affected.

Some of the items above require only increased notifi-
cations from already existing instrumentation and system-
logging mechanisms. In addition, had the link state counter
been accurately identifying degraded connection capacity,
this instrumentation could also have been used to trigger
notifications based on multiple sequential reductions of the same
directional connection’s capacity or on a global assessment of
the overall network state. The faults injected were relatively
instantaneously detected, and thus additional instrumentation
would not necessarily have helped.

IX. ARIES

The next phase of this work involves applying our FI ap-
proach to the Cray XC platform which employs the Cray Aries
router ASIC (an evolution of the Gemini router ASIC). The
Aries HSN resiliency mechanisms [20] have some similarities
to those of the Gemini. Cray has stated that many of the FI
mechanisms used here for the Gemini router ASIC will also
work for the Aries router ASIC. Thus, the injector plugin
components in HPCArrow for the XE can be easily leveraged
for performing FI experiments on the XC.

Our approach requires the ability to discover and attribute
log messages relating to events of interest. As was the case
for the Gemini router ASIC, steps in the recovery of a single
failure of an Aries router ASIC are well described in Cray’s
documentation [20]. However, the steps for handling more
complex scenarios, such as additional failures during recovery,
are not as well-described. Determining the relevant messages for
complex, infrequent failures requires searching large numbers of
logs for possibly unknown messages. Search of the BlueWaters
logs provided the initial basis for determining the expressions
and sequences in LogDiver for Gemini [3]. For the Aries,
five months of logs for the ACES Trinity Phase 2 system
(approximately 9000 nodes), including pre-production time,
contain over 4.5 billion log lines (not including the job related
data), which would be time-consuming to search.

In order to aid us in this task, we utilize our Baler [11]
tool for log analysis. Baler converts log messages into
deterministic patterns of interest without requiring any apriori
knowledge of the messages. A dictionary is used to convert



messages into a pattern consisting of dictionary words, with
non-dictionary words resulting in variables. For example, lines
such as found_critical_aries_error: handling
failed PT c11-8c1s3a0n0 (blade c11-8c1s3)
become pattern found_critical_aries_error:
handling failed • •-• (blade •-•). Baler can
then aggregate similar patterns into a single higher level
meta-pattern. This process can result in a substantial reduction
in the patterns to search. Optional use of the dictionary to
include domain-relevant words, such as ORB, and weight
words of significance, such as failed can further reduce the
search space. We have used Baler to reduce the Trinity Phase 2
log data set down to 1350 meta-patterns. (More details can be
found in [21]). Examination of these patterns and surrounding
events can then help us identify new messages and sequences
for inclusion in LogDiver to address the Aries.

In general, many messages and sequences are similar, for
example, some events involved in the computations of new
routes and handling of additional failures during recovery.
However, there are some failure messages from the XC platform
that we have not seen in 4 years of Blue Waters data, for
example “Warm swap aborted due to hardware failure during
link initialization”, in addition to the similar message seen in
this work but for “failure during route computation”. There also
appear to be differences in some of the handling and reporting
of ORB events. Of particular interest, given our observations
in this work, is that the form and location of the messages
pertaining to the ORB scrubbing have changed. In general,
we expect that advances in the Aries router ASIC, particularly
because of the flexibility in the routing, will result in less
adverse impact in the handling of single and multiple failures.
We will be comparing the duration of recoveries and the use of
the ORB scrubbing messages as useful resiliency notification
and triggering for the Aries router ASIC.

In addition, the expected handling of applications in the face
of certain critical errors, such as those seen in Section VII-C1 is
more well-defined in the Aries router ASIC documentation [20]
than in the public Gemini router ASIC documentation. We will
be comparing application behaviors between the XE and XC
platforms under production conditions resulting in observed
critical errors (e.g., critical_aries_error) that we can
induce using our FI tools.

Finally, we have implemented Aries performance counter
data collection using LDMS [22]. In contrast to Gemini, Aries
provides more counters, which will enable more detailed
understanding of the impacts in various parts of the routers
and NICs.

X. RELATED WORK

Fault injection: Fault injection is a technique used to
study the system behavior by systematically exposing the
system to faults. Such a technique allows system designers
and developers (1) to assess the correctness of fault-handling
mechanisms; (2) to understand fault-to-failure propagation
paths; and (3) to assess system vulnerability. Fault injection
techniques can be categorized as hardware-based or software-
based [23]. Hardware-based fault injection techniques normally
require specialized hardware support for the target systems.
Software-implemented fault injection (SWIFI [4]) techniques

typically enable emulation of hardware faults using software
techniques via perturbation of code or data. SWIFI techniques
are easy to deploy and can be highly tuned to emulate complex
fault scenarios. For this reason, we built HPCArrow, a SWIFI-
based HPC interconnection network fault injection tool that
(1) hard injects faults, (2) monitors the system at appropriate
levels to enable understanding of the effects, and (3) restores
the system health. The design of HPCArrow is based on the
NFTAPE [24] fault injector design. HPCArrow is architecture-
independent; architecture-specific injections, such as the Cray
XE injections studied here, are supported through different
instantiations of the Fault Injector component.

Fault injection in HPC systems: In the past, fault injection
experiments in HPC systems have mostly focused on injecting
faults in the memory [25], [24], processor [26], [24] and
application run-times/processes [27], [28] of the system. The
chances that such faults will propagate to the other nodes are
much smaller than for other faults and failures in the network.
There has been a dearth of studies investigating the effects of
network-related faults on applications and systems. In [29], [30]
the authors only investigated the effects of faults in a message-
passing interface that were caused by either network-related
failures or corruption in the memory/process. These studies
characterized application resiliency to message corruption and
message loss. However, recovery from one or more link failures
can take several minutes, during which time the system and
applications are in a vulnerable stage. In this work, therefore,
we focused on understanding the susceptibility of recovery
mechanisms of HPC networks to faults and failures. In our
study, unlike other fault injection studies, faults were injected
on a real petaflop-scale system consisting of nine thousands
nodes running an HPC workload. This allowed us to understand
the fault-to-failure path of network faults/failures on the system
and applications. To the best of our knowledge, the previous
largest fault injection study was conducted on a Teraflops
supercomputer [31] that injected faults on Intel processors at
the pin level.

XI. CONCLUSION

In this work we presented a fault injection campaign on
Cielo, a Cray XE petascale HPC system with 8,944 nodes and
a Gemini topology, jointly developed by Los Alamos National
Laboratory (LANL) and Sandia National Laboratories (SNL)
under the Advanced Computing at Extreme Scale (ACES)
partnership. We had a unique opportunity to execute the
experiments after Cielo’s end of production, but before its
complete retirement. To execute the experiments, we developed
HPCArrow, a software fault-injection tool capable of recreating
failure scenarios on nodes, links, and blades, as well as more
severe combinations of failures, like sequential link failures and
failures of entire directional connections. We proved HPCArrow
effectively interrupted traffic on the injected links and on failed
nodes and blades running in the system. The traffic profiles
and log events observed in Cielo correspond to those observed
for Blue Waters at UIUC. The experiments have generated
anomalies in the hardware error logs that can be used as
indicators for critical conditions in the network. Further, the
relative times and locations of injections have generated critical
scenarios with longer recoveries or unrecoverable problems
(deadlock). For some critical scenarios, recovery durations
were long enough to provide the opportunity to pro-actively



notify applications and system software to initiate defensive
mechanisms in preparation for a likely failure in recovery.
Finally, similarities in logs and recovery operations for Cray
XC Aries and Cray XE Gemini suggest that it will be possible
to recreate similar failure scenarios in the newer Cray network.
This will allow us to compare fault-to-failure paths and failure
handling capabilities in the two systems.
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