
Enabling Advanced Operational Analysis Through Multi-Subsystem Data
Integration on Trinity

J. Brandt∗, D. DeBonis∗, A. Gentile∗, J. Lujan†, C. Martin†,
D. Martinez∗, S. Olivier∗, K. Pedretti∗, N. Taerat‡, and R. Velarde†

∗Sandia National Laboratories
Albuquerque, NM

Email:(brandt|ddeboni|gentile|davmart|slolivi|ktpedre)@sandia.gov
†Los Alamos National Laboratory

Los Alamos, NM
Email:(jewel|c martin|ronv)@lanl.gov

‡Open Grid Computing
Austin, TX

Email:narate@ogc.us

Operations management of the New Mexico Alliance
for Computing at Extreme Scale (ACES) (a collabora-
tion between Los Alamos National Laboratory and Sandia
National Laboratories) Trinity platform will rely on data
from a variety of sources including System Environment
Data Collections (SEDC); node level information, such as
high speed network (HSN) performance counters and high
fidelity energy measurements; scheduler/resource manager;
and plant environmental facilities. The water-cooled Cray
XC platform requires a cohesive way to manage both the
facility infrastructure and the platform due to several critical
dependencies. We present preliminary results from analysis
of integrated data on the Trinity Application Readiness
Testbed (ART) systems as they pertain to enabling advanced
operational analysis through the understanding of opera-
tional behaviors, relationships, and outliers.

Keywords-High Performance Computing; Monitoring

I. INTRODUCTION

At the same time HPC platform scale is increasing,
systems are also becoming more heterogeneous in computa-
tional, storage, and networking technologies. As the volume
and complexity of information continues to increase it will
become impossible to efficiently manage platforms without
tools that perform run-time analysis continuously on all
available data and take appropriate action with respect to
problem resolution and power management. An example
of the complex interplay that advanced analysis tools can
be used to aid in understanding is variation in application
performance due to network congestion, contention for

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

LA-UR-15-23103

shared parallel file system bandwidth, contention for burst
buffer bandwidth, thermally related CPU throttling, working
but faulty hardware/firmware, and more. Any or all of the
above conditions can cause wide variation in application
performance but without simultaneous access to monitored
facilities data, system data, system logs, console logs, event
logs, etc., correct diagnosis and problem resolution will
become impossible.

Additionally, large scale HPC platforms are now pushing
the limits of data center power and cooling infrastructure.
Modern large scale platforms with power draw requirements
in the 20MW range can stress data center and site power
infrastructure (e.g., power demands that change abruptly
can cause power disruption in the data center and possibly
including the local power grid). Thus the ability to prior-
itize and manage platform power allocations is becoming
essential and active management of a platform’s average and
peak power draw through processor frequency management
(another parameter that affects performance) has become a
high priority for both HPC data centers and vendors and is
currently a hot research topic.

Relatedly, the increase in power density of HPC compo-
nents has necessitated the use of water based solutions for
heat transport rather than traditional air cooling solutions.
This in turn requires feedback mechanisms to maintain
proper water temperature, pressure, and flow rates as well
as active fan control in the case of hybrid solutions.

Traditionally our HPC platforms, both current and past,
have had stove-piped monitoring operations where informa-
tion rarely crossed the boundaries of responsibility between
facilities and platform operation. Data centers monitored
power and cooling at a plant level and HPC system adminis-
trators monitored platform level variables such as system and
event logs. Only when the platform environment was deemed
to be the cause of problems would there be communications

between the two groups about their respective data and
how it was pertinent. However, upcoming pre- and exascale
platforms will have the potential to incur large monetary cost
and even cause site wide disruption to power if operated
blindly.

Thus, in order to maximize the value of modern large scale
platforms a management approach that tightly integrates all
information both internal and external to the platforms is
required. The ability to control data center infrastructure dy-
namically based on platform, job, power, and environmental
information will become a necessity as we move towards
exascale computing.

In this paper we present how we are planning on per-
forming such information integration to efficiently manage
Trinity, the upcoming ACES Cray XC40 platform. We show
how we are utilizing our Application Readiness Testbed
(ART) systems to prototype and validate our planned con-
figuration with a particular eye to power, thermal, and data
center facilities data. We first present our ART system and
monitoring configurations in Section II. Next we describe
the various sources of information along with how they are
being collected/aggregated in Section III. In order to produce
data under normal operating conditions we put together
a workload to run on the system which is described in
Section IV. Select data along with analysis of its pertinence
is presented in Section V. Finally we present conclusions
and future work plans in Section VI.

II. SYSTEM CONFIGURATION AND MONITORING SETUP

Trinitite and Mutrino are ART systems obtained to prepare
for Trinity with respect to the applications that will be
run. Additionally, they provide platforms for validation of
facilities–platform interaction and comparison. Most of the
testing and measurements presented in this paper were
performed on Trinitite, a single cabinet Cray XC40 at Los
Alamos National Laboratory (LANL), where Trinity will
also be sited. We also present some comparisons between
behaviors of Trinitite and an identical system, Mutrino, sited
at Sandia National Laboratories (SNL), in Section V. The
ART systems were delivered in February 2015.

In this section we first describe the basic configuration of
our ART systems. We provide insight, at a high level, about
our integrated monitoring configuration, what information
we are collecting, and our information aggregation and
processing approaches. Finally we discuss the mechanisms
used for transport of data from the various sources to a
common system for processing. Note that the monitoring
infrastructure on the full Trinity system will be distributed.

A. System Configuration

Our ART systems are single cabinet water cooled Cray
XC40’s populated with 100 compute nodes and 18 service
nodes (the rack is not fully populated with server blades).
The service nodes have the following functionalities: 1

Figure 1. High Level Monitoring Diagram showing ART related informa-
tion sources and their data feeds to a Monitor host

logins, 6 burst buffer, 2 MOMs, 2 DVS, 3 LNet routers,
2 sdb (1 failover) and 2 boot (1 failover). Additionally
linux white boxes are provided for: external login, System
Management Workstation (SMW), and Power Management
Node (PMN). The PMN is currently being utilized as a
Monitor host. All compute nodes and service nodes utilize
the Cray Aries interconnect in a dragonfly configuration [1].
Each compute node is configured with dual 16 core Intel
Haswell processors running at 2.3GHz and 64GB of mem-
ory. The external connections consist of FDR Infiniband to
Lustre storage (Sonexion), and 40/10 Gigabit Ethernet to
SMW, sdb, external login, and PMN. The public network
connections are 10 Gigabit Ethernet.

B. Monitoring Setup

Figure 1 depicts the current HPC platform components
in the colored band with all monitored data, including that
from the data center infrastructure, being sent/forwarded to
a Monitor host deployed specifically for data aggregation,
analysis, and both short and long term storage of the data.
This scenario will change with the full Trinity system in that
there will be several Monitor hosts for both scalability and
redundancy with the 10K nodes depicted in the figure being
an upper bound on what a Monitor host would be expected to
process. As shown all monitored data will be aggregated to
a set of Monitor hosts which will serve as data aggregation,
storage, and both run-time analysis and post processing.
This is the approach we have taken with data gathering for
this paper where the Monitor box here is represented by
the PMN block in Figure 2. The exceptions were that our
data center infrastructure monitoring was performed out-of-
band as described in Section III-E and we supplemented
the SEDC and power data as described in Sections III-F
and III-C.

Node level data collection is performed by Lightweight
Distributed Metric Service (LDMS) samplers (Section III-D)
running on every host (including login) as shown in Figure 2.
Aggregators for this information run on service nodes (a
login node in this case) and collect data at regular time
intervals using Remote Direct Memory Access (RDMA)
to minimize compute node CPU overhead. Aggregators

Figure 2. Application Readiness Testbed (ART) Connectivity Diagram
showing how the major components of the platforms are interconnected

running on the Monitor hosts collect this data from the
aggregators running on the service nodes and store the data.
The aggregators running on the Monitor hosts are also capa-
ble of doing analysis on the data as it is streaming through
and will ultimately be able to provide notification of outlier
behavior. Note that the out-of-band Hardware Supervisory
System (HSS) network exists but is not shown. All log files
and SEDC data are forwarded to the Monitor from the SMW.
On the full Trinity platform each Monitor will be receiving
a fraction of the SEDC data with appropriate redundancy
for failure mitigation.

III. DATA SOURCES

In this work we utilize data from a variety of sources
including System Environment Data Collections (SEDC),
node level information, scheduler/resource manager, and
data center environmental sensors. The SEDC data provides
information about voltages, currents, and temperatures of
a variety of components at the cabinet, blade, and node
level. This data also includes dew point, humidity and
air velocity information. While the system utilizes many
of these measurements to identify out of spec, and hence
unhealthy, components it relies on fixed thresholds being
crossed to trigger knowledge of an unhealthy situation.
The node level information provides high fidelity energy
measurements, OS level counters, and high speed network
performance counters. Scheduler/resource manager informa-
tion provides time windows and components associated with
user applications. Data center environmental data provides
fine grained power draw, information about noise on the
power feeds, and water temperatures and flow rates.

A. Logs

Logging when errors or meaningful transitions occur
is used by many subsystems as a means of providing
system administrators and troubleshooters with diagnostic
information. On the Cray XC system many sources of
log information exist: syslog, console, power management,
smw, event, Application Level Placement Scheduler (ALPS),
etc. All of these logs are forwarded from various components

to the SMW and placed in appropriate directories. In order
to make them available for analysis in conjunction with the
rest of the data we are collecting, we forward all log files to
our Monitor host using rsyslog. This data path is depicted
in Figure 1.

B. System Environmental Data Collections (SEDC)

Cray’s System Environment Data Collections (SEDC) [2]
provides a rich source of environmental data for many low
level system components such as CPUs, memory, power
supplies, nodes, blades, and more. The beauty of this in-
formation is that it is completely out-of-band with respect
to node level computation and network communication.
While the typical (default) configuration is to push the
SEDC data to an aggregation point (the SMW) over the
Hardware Supervisory System (HSS) network at 60 second
intervals, we configured it to be pushed at 1 second intervals
and configured rsyslog on the SMW to forward it to our
Monitor host. One of the problems we see with the current
configuration is that independent of platform size, all SEDC
data is configured to go directly to the SMW. This presents
a bottleneck to storage and parallel processing of this data.
Ultimately we would like the ability to incorporate other
devices, such as our Monitor hosts, into the HSS network
and have the SEDC data distributed across them.

Some of the data that should have been available via
the SEDC data stream was missing i.e., all cooling water
related data, such as temperatures, pressures, and flow rates,
was not present. Additionally it should be noted that while
CPU Package energies units are defined as Joules in the
SEDC scanID file, the actual data appears to be in units of
milli-Joules (mJ). We did not use this data for comparison
purposes in this paper as we could not validate that it was
actually calibrated in mJ. Cray [3] states these bugs are fixed
in CLE7.2 UP03 and CLE7.2 UP04 respectively.

C. Power API

We use the Power API prototype, which is a reference
implementation of the Power API specification version
1.0[4] released to the HPC community in September of
2014, to collect node level data at 10Hz. The Power API
specification describes a comprehensive system software
API for interfacing with power measurement and control
hardware. The specification defines the system model, theory
of operations, and features exposed, covering the facility
level down to low level software / hardware interfaces. The
prototype supports most core features of the Power API
specification. The prototype is a layered architecture that
conforms to the specification and provides rich descriptive
system configuration semantics, supports runtime plugins for
a variety of devices and resources, and enables distributed
communication for remote invocations of capabilities (see
Figure 3).

Power API
CORE FEATURES

Device Plugin
XTPM

System Description
XML Config

Daemon
XML RPC

SQL

Database

XML

Document

hwloc PowerInsight RAPL XTPM

WattsUp PowerGadget

Figure 3. Framework of the Power API Prototype

For our study, we describe our system using a node
level XML configuration file and utilize a plugin specifically
created for the Cray platform which gains us access to the
power management features of the system. The combination
of the configuration file and XTPM plugin allow us to ab-
stract the mechanisms of measurement and control from the
specifics of the platform by mapping Power API attributes to
the underlying plugin sysfs exposed parameters. We gathered
data at a sample rate of 10Hz for each node of the system
using this facility. In this case data was saved to a shared
file system for post processing. In the future we will use
LDMS (Section III-D) to transport this data directly to the
Monitor for run-time processing.

Note that while Cray provides power monitoring capabil-
ities and a power management database (PMDB) for storing
and querying power utilization data, these are inadequate
for our purposes. The power monitoring capability collects
at lower frequencies than we are interested in investigating,
and even when higher frequency data can be obtained, it
is limited in its ability to handle large numbers of nodes
and long time periods [5]. Additionally, the power database
is located on the SMW, which has inherent limitations in
access and size, while we seek to enable continuous, near-
indefinite runtime and historical analysis integrated with
other data sources. For these reasons, we do not include
the power management database as source of data in this
work. For convenience, however, we do use RUR output for
some general, relative, overall application energy utilization.

D. Lightweight Distributed Metric Service (LDMS)

We use LDMS [6] for node level data collection and
transport via the High Speed Network (HSN). This informa-
tion, collected at 1Hz, includes HSN performance counters,
Lustre client activity, application memory utilization, and
other counters exposed by the OS. As of this writing LDMS
collects node level energy data from the sysfs interface at
1Hz. The LDMS energy sampler plugin will be upgraded to
collect 10Hz power/energy data via the Power API prototype
(see Section III-C) thus making this full fidelity (10Hz)
data available at 1Hz across the whole system. Use of the
Power API will enable platform independent development of

LDMS power data collection plugins that can take advantage
of new power related features as they are developed without
necessitating rewriting of the LDMS plugins.

The High Speed Network (HSN) performance counter
data is exposed via Cray’s gpcdr kernel module through the
sysfs interface. While this module has been utilized for over
a year on NCSA’s Blue Waters platform (Cray XE/XK),
this is our first use of it on a Cray XC. This exposed a
small problem with the default gpcdr configuration which
exposed 160 counters via a single sysfs file. While this
configuration is ok when the counter values are small, it
causes the aggregate size to exceed the 4KB limit imposed
on sysfs entries as the values become large. The author
at Cray quickly diagnosed the root cause of our apparent
counter corruption and provided us with a simple fix which
was to divide the initial set into 4 smaller sets based on
information type (traffic, stalls, receive link status, and send
link status) [7]. This required only a slight modification
of the gpcdr configuration file and a reload of the kernel
module.

We additionally collected the following non-HSN data via
LDMS:

• Lustre file system counters
• CPU load averages
• Current free memory
• LNet traffic counters
• ipogif counters
• power and energy metrics via sysfs

E. Facilities

The facilities infrastructure that provides cooling to Trini-
tite is composed of two main loops (Figure 4): the primary
and secondary cooling loops. These are separated by heat
exchangers. The primary loop consists of four cooling towers
and three pumps. The secondary loop consists of the three
heat exchangers and three pumps on variable frequency
drives (VFD).

The facility water supply temperature is 45oF at the inlet
to the heat exchangers. The secondary loop water supply
temperature to the machine and preconditioner is 75oF .

The building automation system that controls and mon-
itors the facility cooling equipment is manufactured by
Trane [8]. The Trinitite system and associated facility infras-
tructure installation was substantially completed in February
2015 and testing began in March 2015. Not all of the
building automation systems were operational for this testing
time frame.

The facilities data collected for this work was limited to
power. Facilities power data was collected at five second
intervals from the compute rack feeder breaker using a Fluke
meter 1730 Energy Logger. The Fluke meter was set to
sample at 5KHz. It calculates an average over a five second
interval as well as capturing the minimum and maximum
values over that interval.

Figure 4. The Underfloor Pipe Diagram for the Data Center that houses
Trinitite.

F. Envdata Script

Because the SEDC data stream currently does not contain
the majority of the cooling water related data (see Sec-
tion III-B) we have augmented our data collection using
the envdata [9] script. From the SMW this script collects
water-related data directly from the cabinet. We called the
script at 10 second intervals and stored the output to disk for
post processing. Note that this is a stop-gap solution which
will be discontinued once this data is included in the SEDC
stream.

IV. WORKLOAD DESCRIPTION

For this work, we developed an application work package
to exercise the machine under a variety of conditions.
Multiple iterations of single and multiple node runs of a
combustion code, HPL, and HPCG were run as a group. This
group was first run normally and then in turbo mode. These
repeated cases we refer to as a Series. This Series was then
run 3 times, once under each of the following conditions: no
power capping (415 Watts), 50% node level power capping
(322 Watts), and 0% node level power capping (230 Watts).

HPL is the MPI implementation of the high perfor-
mance Linpack benchmark [10]. A highly regular dense
LU factorization, HPL is computationally intensive. High
Performance Conjugate Gradient (HPCG) [11] is a very
different benchmark, by design. HPCG comprises opera-
tions such as sparse matrix-vector products that stress the
memory subsystem and network communications, and its
performance may be uninhibited by modest reductions in
CPU resources or frequency. HPL and HPCG represent ex-
tremes in the spectrum of applications, from compute-bound
to memory-bound, with orders-of-magnitude differences in
Flops. In June 2014, Tianhe-2 reported the top numbers in
both benchmarks, with 33.9 Pflops on HPL but only 0.58
Pflops on HPCG [12]. In addition to these benchmarks, we
also included in our system evaluation an application code
for direct numerical simulations of turbulent combustion. It
uses an explicit Runga-Kutta method with mostly nearest
neighbor communications.

V. ANALYSIS AND RESULTS

In this work we combine information from log and
numeric data sources from both facilities and our ART
platforms to expose issues facing all large scale HPC host
sites as we move to pre- and exascale platforms. In this
section we first present the analysis methodologies used in
this work. We then present both visual and analytic results
of interest derived from data taken over a two day period
while running the workload as described in Section IV. The
results section first discusses power related understanding
obtained in our testing thus far. We then present cooling
related information. Finally we show traffic and congestion
related network metrics and briefly discuss their utility in
understanding performance variation as we move to larger
scale systems.

A. Analysis Methodologies

Our ultimate goal is to understand sub-systems and their
relationships and to characterize system behavior in order to
more optimally use the machine and to diagnose issues.

In this work we consider several methodologies for the
analysis of data. These are highlighted below, with specific
application in the following sections. It is important to
note that for the material discussed here, the complete
understanding relies on the integration of data from a variety
of sources and from a combination of analysis methods.

1) Log Analysis: Baler [13] is a log message processing
tool that extracts patterns from message streams, where a
pattern is deterministically extracted from each message
by marking pre-defined known words (like words in the
English dictionary) as static fields, and unknown words as
variable fields represented by a Kleen star (*) in the pattern.
Some patterns discovered by Baler relevant to this work are
presented in Figure 5.

Example patterns:

280 * * - - Node * interrupt *=*, *=*, *=* *[*]: * * *
Processor Hot

283 * * - - Node * power budget exceeded! Power=*,
Limit=*, * Correction Time=*

Example messages corresponding to patterns 280
and 283 respectively:

bcsysd 2080 - - Node 2 interrupt IREQ=0x20000,
USRA=0x0, USRB=0x80 USRB[7]: C0_PROCHOT CPU 0
Processor Hot

bcpmd 2140 - - Node 2 power budget exceeded!
Power=340, Limit=322, Max Correction Time=6

Figure 5. Example of log message patterns and their corresponding
messages.

We use Baler in this work to process all system logs,
browse for interesting patterns, count the occurrences of
patterns in time-node space, and generate plot files for
visualizing where and when events of interest occur.

Because of the deterministic nature of the patterns, we can
easily compare messages and their occurrences at different
times and even between both Trinitite and Mutrino. Further,
Baler functions without requiring any input from the user
about patterns, format, or content. This is particularly valu-
able for entirely new systems where the exact message text
and location may be unknown.

In this case there were 1.8 million lines of log files,
collected over a 29 hour interval, that Baler distilled into
251 unique patterns. This reduction enables a system ad-
ministrator to easily search for key issues in a manageable
list and then drill down on a time interval or node set for
greater detail.

A visualization of the pattern occurrences from Figure 5
in node-time space is presented in Figure 9 in order to
help analyze where and when particular events occur. This
is described in greater detail in Section V-A. It is inter-
esting to note that pattern 283 (power budget exceeded),
was discovered in the controller directory logs and not in
the power management log, as might have been expected.
(Note: Baler reserves the first 128 pattern IDs for internal
use. Thus pattern numbering begins at 128).

2) Numeric and Visual Analysis: In addition to the log
analysis, we use visualizations of integrated data and simple
numerical analyses. We examine data time-series in relation
to events in order to get an overview and understanding of
system and variable behaviors and to discover and further
refine our analyses of situations of interest. We examine data
in the physical machine layout in order to detect physical
system relationships. Finally we consider numerical analysis
in order to determine abnormal behaviors.

Figure 6. Power information from Facilities (green (max), blue (ave)),
System measured at a cabinet level on the DC side of the rectifier (red),
and Node Level data (gold).

B. Perspectives in Power Use: Facilities vs. Machine

In order to perform effective power management at a
platform level it is necessary to understand the relationships
between the platform’s view of power draw and that of the
physical plant (facilities). Thus we not only collected power
and energy data from a variety of sources including in-band
on the compute nodes at 10Hz, via SEDC at 1Hz, and energy
from Cray’s Resource Utilization Reporting (RUR) facility.
But we also collected the facilities view (what really matters)
using the methods described in Section III-E.

Figure 6 (top) shows a combination of three power views.
PowerS Total avg (blue) is plotted as a time series of 5
second averages of the total for PowerS (this is the complex
sum of PowerS over all three power phases and represents
what the Utility company sees). PowerS Total Max (green)
represents the maximum power draw over the past 5 second
window. The 5 second data was obtained at the facilities
level as described in Section III-E. The platform view of
the average power draw over the previous 1 second window
is represented by Rectifier Total PO (red). The discrepancy
between facilities average power (blue) and peak power
(green) over the time our applications (Section IV) were
being run on Trinitite varies as the amount of fluctuation
of power draw by the compute nodes (see Figure 7) i.e.,

the higher the peaks in the system data, the greater the
discrepency between average and peak in the facilities data.
As can be seen in the figure (top) the platform’s view
of power draw is about 20% lower than the data center
infrastructure view. Some of this discrepency comes from
loss in the rectifiers themselves. This power is not recorded
in the SEDC data. This must of course be taken into
account by the power management software. Additionally
the power factor variation can skew this discrepancy. Under
normal conditions (85 percent utilization) the power factor
is satisfactory; however, if the utilization runs below these
parameters, overall power utilization can be less efficient.

We call out Features A, B, and C in Figure 6 as time
windows of interest over which we also plot 10Hz power
data taken from the 100 compute nodes during a series of
application runs. We chose these regions because they are
wide enough and stable enough to be able to discern obvious
differences in the behavioral characteristics of data center
and machine based perspectives on power both within a
region and between similar regions where power capping
is the difference. Additionally the behaviors of the compute
nodes with respect to the power caps for each region are
clear (See Figures 7 and 8).

Figure 6 (bottom) shows compute node power data col-
lected at 10 Hz and summed over all compute nodes for each
100ms collection period (gold) vs. the same Rectifier Total
PO (red) plotted on the top trace. As expected the summed
power draw as seen by the compute nodes is less than the
total for the platform (by about 10%). Note that this system
is only 2/3rds populated and this discrepancy will change
on a fully populated rack.

In this set of application runs there was a node (nid00176)
that did not change its power cap correctly and remained un-
capped the whole time. Figure 8 shows a plot of the power
usage of nid00176 versus another compute node plotted
for comparison over region B. The failure to change caps
was reported in the logs and would need to be taken into
account by the resource manager in order to do appropriate
power management on a large scale system where many
such failures would be expected. While nid00176 was stuck
in the no-cap state in this case, it seems equally probable
that a node could get stuck in a lower power cap state. In
such a case, if the resource manager naively handed the
node out to a job that was running with no-cap the reduced
performance of this node would adversely impact the whole
job and could even cost more energy overall.

The plots in Figure 7 show an overlay of time-history plots
of the 10Hz power data collected, using PowerAPI, over all
compute nodes during time intervals labeled as Feature A,
B, and C in Figure 6. These plots correspond to: 50 percent
node level power cap (top) (Feature A in Figure 6 (top)), 0
percent node level power cap (middle) (Feature B in Figure 6
(top)), no power cap (bottom) (Feature C in Figure 6 (top)).
The maximum power defined by the cap level is shown

as a horizontal yellow line in each figure. The 10Hz data
shows values that exceed the cap. Note that nid00176, which
did not respond to the cap command is not included in the
figures but is shown separately in Figure 8. Generally, data
centers have to account for the fact that power capping is
not an absolute.

Figure 7. Plots of compute nodes’ 10Hz power profiles for the cases of
50% node level (Feature A), 0% node level (Feature B), and no (Feature
C) power cap from top to bottom respectively. Significant usage above the
power cap is exhibited and has to be taken into consideration in power and
performance decisions.

It is interesting to note that the noisiest of the three

features is A in which there is a 50% power cap and in
which compute nodes regularly exceed the cap by up to 25%.
This can also be seen in the Baler plots of Figure 9 which
shows many more ”power budget exceeded” log message
occurrences (red) than in the 0% cap region. In fact in region
A the compute nodes regularly spike to the same levels seen
in region C which has no cap though Figure 6 (top) clearly
shows both the average and peak from the data center are
higher (and less noisy).

Figure 8. Non-capped behavior of nid00176 vs an arbitrary nid with 0%
node level power cap (Feature B).

Figure 9 shows the time and location of occurrences of
Baler [13] patterns representing ”power budget exceeded”
(pattern 283) messages (red) and ”processor hot” (pattern
280) messages (green). The P283 messages are mostly seen
during our application runs at a 50% power cap while the
P280 messages were all during no-cap application runs. Note
that though the P280 messages indicate a hot processor,
there was no indication of corresponding temperature related
throttling events. (Thermal distributions are considered in
more detail in Section V-E).

C. Applications, Power, and Performance Perspectives

In this section we concentrate on the single-node runs,
described in Section IV, in order to better understand the
node to node performance variability that occurs when
operating under a power cap. Due to part-to-part manu-
facturing variability, the power required to operate at a
given performance level will be different from processor to
processor, and hence node to node. Operating under a power
cap should fix the maximum power used by a node, at least
in theory, while allowing performance to vary. This is in
contrast to setting a P-state, which results in a relatively
fixed performance level across nodes, but with a variable
power usage.

For each run we recorded the performance of the bench-
mark (i.e., HPL, HPCG) as reported in the benchmark’s
normal output, as well as the average power used by the

Figure 9. Baler error patterns relating to power (280 - Processor Hot,
283 - power budget exceeded, see Figure 5 for full patterns and example
messages). Power budget is exceeded when the cap is set. Some processors
are reported hot when no cap is applied.

run over its entire execution, as reported by Cray’s power
measurement infrastructure. Each benchmark was run five
times on each node for each of the three power cap config-
urations tested, 0%, 50% and 100%. Additionally, we tested
with Intel’s turbo boost feature on and off for each power
cap configuration. For the Intel Xeon E5-2698 v3 (Haswell)
processors used on Trinitite, the base non-turbo frequency
is 2.3 GHz. Enabling turbo boost allows the processor’s
frequency to scale up to 3.6 GHz based on the number of
cores being used and thermal headroom.

Results for the single node experiments are plotted in
Figures 10 and 11, for HPL and HPCG respectively. In these
plots each point represents the average value for the five
trials and error bars (on both x and y axis) represent the
minimum and maximum values recorded. HPL in the 100%
power cap configuration (no power cap) results in a node-
to-node performance spread of 767 to 812 GFLOPS and a
power spread of 331 to 367 Watts. Since there is no cap in
this configuration, each node is operating at the maximum
speed it is able to, which depends on the energy efficiency of
the processors in the nodes, environmental conditions, and
other factors. In contrast, the 50% and 0% power cap levels
result in a more vertical profile, indicating that the power
cap is being hit. Each node uses as much power as it can,
up to the power cap limit, and achieves a performance level
based on the energy efficiency of the particular processors
used in the node.

HPCG results, shown in Figure 11 show a much narrower

 500

 550

 600

 650

 700

 750

 800

 850

 220 240 260 280 300 320 340 360 380 400

G
F

L
O

P
S

Average Power (Watts)

100% / 415 Watts
50% / 322 Watts
0% / 230 Watts

(a) No Turbo

 500

 550

 600

 650

 700

 750

 800

 850

 220 240 260 280 300 320 340 360 380 400

G
F

L
O

P
S

Average Power (Watts)

100% / 415 Watts
50% / 322 Watts
0% / 230 Watts

(b) Turbo On

Figure 10. Performance vs. power for HPL with different power caps and
turbo off (top) and turbo on (bottom). nid00176 failed to implement the
power cap.

band of performance for the different power cap levels.
The 100% and 50% configurations result in essentially the
same performance levels, indicating that the power cap is
not being reached. The 0% configuration leads to a sharply
vertical profile due to the power cap being reached, and
performance drops by approximately 17% compared to the
other configurations. The HPCG 100% turbo on configu-
ration is interesting because the processor is choosing to
operate at a higher power level, even though it does not result
in improved performance. This indicates that the processor’s
power management policy could be improved for HPCG,
and likely other memory bandwidth bound codes as well
(e.g., operate at the lowest frequency needed to saturate the
memory subsystem). In both figures, nid00176 is the extreme
outlier entity, coincident with the no cap group, since it did
not respond to the cap command.

Figures 12 and 13 show histogram distributions of energy

 8

 8.5

 9

 9.5

 10

 10.5

 11

 220 240 260 280 300 320 340 360 380 400

G
F

L
O

P
S

Average Power (Watts)

100% / 415 Watts
50% / 322 Watts
0% / 230 Watts

(a) No Turbo

 8

 8.5

 9

 9.5

 10

 10.5

 11

 220 240 260 280 300 320 340 360 380 400

G
F

L
O

P
S

Average Power (Watts)

100% / 415 Watts
50% / 322 Watts
0% / 230 Watts

(b) Turbo On

Figure 11. Performance vs. power for HPCG with different power caps
and turbo off (top) and turbo on (bottom). nid00176 failed to implement
the power cap.

utilization of the nodes in the 0% and no-cap cases shown in
Figure 11. The number of nodes is binned by percent of the
average per-node energy for the application run (excluding
nid00176) with the bin width being 1%. Both distributions
look relatively normal but given the spread, a power aware
resource manager should be able to take advantage of this
when assigning nodes to applications. Knowledge of the
run-time characteristics of an application could increase this
advantage.

D. Machine Environmental Data and Facilities Interest

In this section we examine the cooling environmental
data associated with the platform. This section delves into
how platform information can be used for problem diag-
nosis and to gain facility infrastructure efficiencies. Data is
presented from both Mutrino and Trinitite for comparison.
For Trinitite, time ranges associated with applications during
the work package in the non-turbo phase are marked. Times

Figure 12. Distribution of number of nids vs. energy binned by percent of
the average energy (average does not include nid00176, but the distribution
does) for one set of the single nid runs HPCG with (bottom) and without
turbo (top) and 0% node level power capping. Knowledge of variation of
energy utilized for the same workload can be used in resource allocation
decisions.

Figure 13. Distribution of number of nids vs. energy binned by percent of
the average energy (average does not include nid00176, but the distribution
does) for one set of the single nid runs HPCG with (bottom) and without
turbo (top) and no Power capping.

in the figures are in HH:MM:SS format to facilitate easy
assessment of the timescales of change.

Figure 14 (top) shows the valves opening in response
to the jobs. The preconditioner valve position is calculated
based on the inlet ambient temperature and dew point. The
cabinet valve position maintains room neutral discharge air.
The water line pressure varies during normal operation (mid-
dle). When the valve opens this results in lower pressure.
This data can be used to determine pressure differential
control and can also be used to calculate pump horsepower.
Water outlet temp (bottom) is lower during the job because
of the valve position. Facility personnel use these inlet and
outlet temperatures to ensure the 75oF water specification
has not been exceeded. Monitoring the delta temperature
helps to validate the coil is working effectively.

This type of information is not only a good indicator of
data center conditions, but also could be used as input to data
center building automation systems. In a tightly integrated
system there is potential for automated control of pumps
based on feedback from the platform environmental data.
This type of automated control would allow for significant
efficiency gains in the data center.

Figures 15 are from before and going into an HPL
run on Mutrino that started at approximately 9:45. They
are included to provide higher resolution insight into the
behavior when a job is started and the temperature rises
accordingly. In addition, they show some differences due to
the water temperatures and differences in the blowers in the
two systems.

In order to compensate for a higher altitude Trinitite was
equipped with high volume fans, while Mutrino was not. Fan
speed data can be used to proactively predict fan failures
since the RPMs decrease as the fan reaches end of life. As
can be seen in Figure 16 the Trinitite fans are set at constant
75 percent of max speed due to a software issue identified
during facility acceptance testing. Mutrino fans are at the
“normal” setting. Facilities fan data also shows that for both
systems the fan power does not change.

E. Thermal Irregularities

Thermal issues are of interest for a number of reasons,
including data center cooling, performance impact, and
device degradation and aging. Issues in the components,
machine, and the machine room environment may all be
causes of such irregularities.

Numerical analysis of the SEDC data shows significant
temperature variation across the CPU’s of both systems
when each was independently supposed to be running a
similar workload across the nodes. Visual analysis of the
numeric data in a physical layout (Figure 17) gives insight
into this issue, as well as giving rise to further investigation.

The layout of compute nodes is generally as follows.
On a blade, compute nodes are ordered {2, 1, 3, 0} front to
back. There are 2 CPU’s per compute node. with CPU’s 0/1

Figure 14. Trinitite machine data over the Series: Flow Rates and
Valves (top) (Preconditioner water valve position is always 0.), Water Line
Pressures (middle), Water Outlet Temp (bottom). We seek understanding
of the response of the machine to workloads to enable automated control
of the facilities as a whole.

Figure 15. Mutrino data for comparison, going into an HPL run that
started at approximately 9:45. Flow Rates and Valves (top), Water Line
Pressures (middle), Water Outlet Temp (bottom).

Figure 16. Blower Speed: Trinitite data over the Series (top). Mutrino
going into an HPL run (bottom).

alternating left/right with each node. There are two service
nodes per blade. Within the rack, chassis are vertically
stacked. Two slots can be populated left and right in a
chassis.

Figure 17 shows the layout for the two machines (Trinitite
(top), Mutrino (bottom)). Slots with Service Nodes are
located on the bottom left slots of each chassis; diffuser slots
are located at the tops of the chassis; either are indicated by
the small blue dots (color not indicative of temperature for
non-compute nodes).

Maximum CPU temperatures for each compute node over
the workload for each case are shown, with the exception of
Trinitite’s c0-0c2s12n0, as discussed below. The workloads
were not the same for each machine. For Trinitite, the
workload was the entire set of runs discussed in this work
(3 Series). For Mutrino, the workload was the entire HPL
run (approx 3 hours) pertaining to the Mutrino figures in
Section V-D. While it is not expected for the values to be
comparable, certain similarities occur in both.

Figure 17. Thermal distributions on Trinitite (top) and Mutrino (bottom)
shown in the layout of the rack (not to scale). Air flows left to right. There
is significant temperature variation across the system and across CPUs on
a slot. Temperatures are markedly higher when the left and right slots are
both populated (overlap rows labeled in top figure). c0-0c2s12n0/nid00176
is of interest in both systems.

There is a significant overall variation in CPU temperature
(25-30oC). These large differences could lead to differences
in component aging, performance, and failure rates. In
addition, there can be a greater than 10oC temperature
variation across CPUs in the same blade. In general, the
hotter nodes are seen to be those for which the left and right
slots are both populated. In addition, c0-0c2s12n0, which
is nid00176, has issues in both systems: in Mutrino this
node has been exhibiting temperature related throttling; in

Trinitite the SEDC data included error codes for all attempts
at collecting temperature related data for this run and in
the log data this nid was the only nid reporting an error
when attempting to apply the power capping profiles. After
further discussion with Cray [14], we believe these Trinitite
issues may be related as the same communications channel
is used to issue the power capping command and to obtain
the SEDC data. As of this writing, the occurrence of this
communications failure remains unresolved. We do not have
enough information to determine if the situation might be
thermally related.

As a result we seek further understanding of the common
positional dependence of the problem nid, of the overall
expectations of temperature within the partially populated
racks, and of how we can expect the results to extrapolate
to fully populated systems.

F. Network

While the workload did not target investigation of net-
work performance and Aries environmental data profiling,
the Aries does consume energy and understanding when
contention for network resources (congestion) is affecting
performance can aid in root cause analysis of performance
variability and help in optimization of job placement that
minimizes congestion. We briefly present a first look at this
data in the form of link bandwidth used and associated stalls
(a measure of congestion).

Figure 18 plots network traffic (top) and stalls (middle)
data for each of the 40 outward facing Aries router tiles.
This data was gathered from the gpcdr interface via LDMS
(Section III-D) during the course of the same application
runs previously presented. As expected there are no traffic
or stall values during the single node jobs and highest
values occur during the 100 node combustion code run.
(Only the times in the first set of runs in the Series (non-
turbo) are marked.) The bottom figure shows related SEDC
environmental data on the Aries associated with the entire
blade associated with that node. Note all nodes of a blade
share an Aries router and the data shown here, though
collected by one node, is for all traffic and stalls associated
its Aries router. For this workload, there is only a slight, but
noticeable, effect on the current (bottom) during the runs.
Future work involves consideration of more communication
intensive workloads.

VI. CONCLUSIONS AND FUTURE WORK

Integration of data from a variety of sources is necessary
for system understanding, improving system performance,
and problem diagnosis. This becomes increasingly necessary
as we continue to push the boundaries of the data center
infrastructure supporting HPC systems.

In this paper we have considered information integration
and analysis functionalities currently deployed and under
development on the ACES ART systems for Trinity. Data

Figure 18. Integrating Network traffic and environmental data. Traffic
(top), stalls (middle) collected on an arbitrary nid during the no capping
case. Aries SEDC values for the slot of that same nid (bottom).

sources include facilities, machine, and node level data and
include both numeric and log data types. Our monitoring
architecture is intended to support run-time analysis and
decision-making based on the data. We presented actual
cases of analysis of the integrated data relating to power,
cooling, and thermal issues and areas of interest. In partic-
ular, as we have targeted enabling more advanced facilities
operation, our integration and analysis of this data has been
key in identifying the need for a more clear understanding
of the differences between machine and data center power
reporting.

Future work includes the deployment of these monitoring
capabilities on Trinity and further analysis and understand-
ing of system behaviors and abnormalities particularly as
they relate to power, thermal, and networking issues. We
seek to capture metrics from the platform which can then
drive infrastructure efficiencies through automating dynamic
facility control. We seek to enable capabilties such as
power capping and load shedding from the platform to
respond to facility power and cooling constraints. We plan
to characterize behaviors in order to predict optimal curve
ratios from pump and tower perspectives. We will analyze
ratios of power usage of components within compute hosts
(power supplies, DIMMS, and CPUs) in order to drive
more specifications for more efficient architectures in future
procurements. Ultimately, our long term goal is to use
our enhanced understanding to enable advanced operations
of the site facilities in concert with the site’s machines
operations.

ACKNOWLEDGMENTS

The authors would like to thank Jason Repik (Cray) for
configuration, advice, and diagnostics; Paul Casella (Cray)
for information and fixes to Cray’s gpcdr module; Joshi Ful-
lop (NCSA) and Victor Kuhns (Cray) for useful discussions
on the forwarding of SEDC and log data; Adam DeCon-
inck (LANL), Kathleen Kelly (LANL), and Jim Williams
(LANL) who administer the platforms and facilitated the
runs used in this work. and Alynna Montoya-Wuiff (LANL)
and Eloy Romero (LANL) for access to facilities data.

REFERENCES

[1] J. Kim, W. J. Dally, S. Scott, and D. Abts,
“Technology-driven, highly-scalable dragonfly topology,”
SIGARCH Comput. Archit. News, vol. 36, no. 3,
pp. 77–88, Jun. 2008. [Online]. Available: http:
//doi.acm.org/10.1145/1394608.1382129

[2] “Using and Configuring System Environment Data
Collections (SEDC) Cray Doc S-2491-7001,” 2012.
[Online]. Available: http://docs.cray.com/books/S-2491-7001/
S-2491-7001.pdf

[3] P. Falde, private communication.

[4] J. Laros, D. DeBonis, R. Grant, S. Kelly, M. Levenhagen,
S. Olivier, and K. Pedretti, “High Performance Computing -
Power Application Programming INterface Specification, Ver-
sion 1.0,” Sandia National Laboratories, Albuquerque, New
Mexico 87185 and Livermore, California 94550, Technical
report SAND2014-17061, 2014.

[5] “Monitoring and Managing Power Consumption on
the Cray XC System Cray Doc S-0043-7202,” 2014.
[Online]. Available: http://docs.cray.com/books/S-0043-7202/
S-0043-7202.pdf

[6] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos,
J. Fullop, A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden,
M. Rajan, M. Showerman, J. Stevenson, N. Taerat, and
T. Tucker, “Lightweight Distributed Metric Service: A Scal-
able Infrastructure for Continuous Monitoring of Large Scale
Computing Systems and Applications,” in Proc. IEEE/ACM
International Conference for High Performance Storage, Net-
working, and Analysis (SC14), 2014.

[7] P. Cassella, private communication.

[8] “Trane.” [Online]. Available: http://trane.com

[9] C. McMurtrie, L. Gilly, and T. Belotti, “Cray Hybrid XC30
Installation - Facilities Level Overview,” in Cray User’s
Group, 2014.

[10] “HPL.” [Online]. Available: http://www.netlib.org/
benchmark/hpl/

[11] “HPCG.” [Online]. Available: http://www.hpcg-benchmark.
org

[12] “HPCG Performance.” [Online]. Available: https://software.
sandia.gov/hpcg/2014-06-hpcg-list.pdf

[13] N. Taerat, J. Brandt, A. Gentile, M. Wong, and
C. Leangsuksun, “Baler: deterministic, lossless log message
clustering tool,” Computer Science - Research and
Development, vol. 26, no. 3-4, pp. 285–295, 2011. [Online].
Available: http://dx.doi.org/10.1007/s00450-011-0155-3

[14] S. Martin and D. Rush, private communication.

