
Large-scale Persistent Numerical Data Source Monitoring System Experiences

J. Brandt∗, A. Gentile∗, M. Showerman†, J. Enos†, J. Fullop† and G. Bauer†
∗Sandia National Laboratories

Albuquerque, NM.
Email: (brandt|gentile)@sandia.gov

†National Center for Supercomputing Applications
Champaign, IL.

Email: (mshow|jenos|jfullop|gbauer)@ncsa.illinois.edu

Abstract—Issues of High Performance Computer (HPC) sys-
tem diagnosis, automated system management, and resource-
aware computing, are all dependent on high fidelity, system
wide, persistent monitoring. Development and deployment of
an effective persistent system wide monitoring service at large-
scale presents a number of challenges, particularly when
collecting data at the granularities needed to resolve features
of interest and obtain early indication of significant events on
the system.

In this paper we provide experiences from our developments
on and two-year deployment of our Lightweight Distributed
Metric Service (LDMS) monitoring system on NCSA’s 27,648
node Blue Waters system. We present monitoring related
challenges and issues and their effects on the major func-
tional components of general monitoring infrastructures and
deployments: Data Sampling, Data Aggregation, Data Storage,
Analysis Support, Operations, and Data Stewardship. Based
on these experiences, we provide recommendations for effective
development and deployment of HPC monitoring systems.

Keywords-resource management, resource monitoring

I. INTRODUCTION

The operational environment of HPC systems continues
to grow in complexity, becoming larger and incorporating a
more diverse set of subsystems and support components.
Issues of interest in system management have expanded
beyond troubleshooting to encompass automated feedback
loops to enable more efficient and cost effective operation.
Such feedback loops can be diverse, including maintaining
operation within a specified power envelope, topology and
traffic aware resource scheduling and allocation, and en-
abling applications to be aware of and respond to impacts
of congestion. While all of the examples cited are currently
in research phase, they are all dependent on high fidelity,
system wide, persistent monitoring.

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

This research is part of the Blue Waters sustained-petascale computing
project, which is supported by the National Science Foundation (award
number ACI 1238993) and the state of Illinois. Blue Waters is a joint
effort of the University of Illinois at Urbana-Champaign and its National
Center for Supercomputing Applications.

The National Center for Supercomputing Applications
(NCSA) has been building an integrated infrastructure
(ISC) [1] for monitoring and analysis of its Blue Wa-
ters [2] system. With its 27,648 nodes, Blue Waters is
the largest Cray XE/XK platform in the world. The ISC
utilizes both text and numeric data from the platform and
support components including facilities and storage. While
access to some numerical platform information is enabled
by the vendor, a substantial amount of crucial information
(e.g., High Speed Network (HSN) bandwidth and congestion
data, Lustre traffic, and hardware performance counter data
(e.g., flops, memory bus bandwidth utilzation)) is not. This
can be a significant amount of data, particularly at the
granularities needed to resolve features of interest and obtain
early indication of significant events on the system.

Development and deployment of an effective persistent
system wide data monitoring service at this scale has pre-
sented a number of challenges. Some of these were antic-
ipated from the outset (e.g., nodes running data sampling
and/or aggregation services may unexpectedly fail and the
monitoring system must be robust to this). Others were
completely unexpected (e.g., attempts to communicate with
nodes in certain states could generate system level errors).
The monitoring infrastructure we have developed, deployed,
and modified to address problems as they emerged is the
Lightweight Distributed Metric Service (LDMS) [3].

This paper documents our experiences, including prob-
lems addressed/encountered, in the development and deploy-
ment of effective monitoring tools and methodologies on
NCSA’s Blue Waters system. While some of the experiences
presented here are platform specific, they are representative
of the kinds of problems that can emerge when applying a
generic monitoring system to any platform with specialized
hardware. Thus, understanding the reasons for the artifacts,
the ways in which they can adversely affect a system wide
persistent monitoring system, and possible mitigating ap-
proaches can provide valuable insight to anyone attempting
to apply such methods to new platforms. Additionally, these
experiences are pertinent to system designers and integrators
as they plan future platform architectures.

In particular we present monitoring related challenges

and issues that we have encountered over the past 2 years
and their effects on the major functional components of
our monitoring infrastructure and deployment methodolo-
gies. We have categorized these as follows: Data Sampling,
Aggregation, Storage, Analysis Support, Operations, and
Data Stewardship, as well as Platform Specific issues that
impact each of those. Each of these is subdivided into
generic categories (e.g., Scale Issues, Usability Features,
Environmental Issues) where appropriate.

This paper is organized as follows. In Section II we
present background on Blue Waters and highlights of the
LDMS architecture and deployment. Sections III through IX
present our experiences as they impact the major compo-
nents of the monitoring system. Recommendations, based
on our experiences, are provided in Section X.

II. BACKGROUND

Blue Waters is a Cray XE/XK system consisting of 27,648
hosts. Of these, there are 22,640 XE compute nodes with 2
AMD 6,276 Interlagos Processors and 64GB of RAM, 4,228
XK compute nodes with 1 Interlagos Processor, 32GB of
RAM, and 1 NVIDIA GK110 (K20X) GPU processor. The
balance of 780 service nodes utilize a single AMD Istanbul
6 core processor with 16GB of RAM. Some compute nodes
may be repurposed as service nodes. All hosts utilize a Cray
Gemini [4] interconnect configured in a 3D torus topology.

The vendor-supplied monitoring and operational support
is based around the Cray System Management Workstation
(SMW). The SMW is responsible for collecting log files
from all hosts and System Environmental Data Collections
(SEDC) [5] data via an out-of-band network from all plat-
form components (e.g., hosts, blades, chassis).

There are, however, some important data sources which
are not made readily available, such as HSN bandwidth and
congestion data, Lustre traffic, and hardware performance
counter data (e.g., flops, memory bus bandwidth utilization).
For this reason, we have deployed an in-band monitoring
system, LDMS, to provide system wide access to this data.

In this role, LDMS runs as a persistent system service,
concurrent with applications and existing system software,
and must be robust to platform node, network, and sup-
port component failures, reboots, or questionable production
states. Architectural details of the LDMS architecture and
installation can be found in [3]. Highlights and additional
information about the operating and deployment environ-
ment necessary to enable correct and effective operation in
our large scale HPC environment are provided below.

A. LDMS Architecture and Configuration Highlights
The Lightweight Distributed Metric Service (LDMS) is

a plugin based infrastructure which utilizes a core daemon,
ldmsd, to sample, transmit, and store numeric data. LDMS
does not include large-scale analysis and visualization, al-
though the data collected by LDMS is intended to be used
by such tools.

The LDMS daemon functionality is defined by what plu-
gins are loaded and configured. LDMS plugins are compiled
C code. Thus, on-the-fly changes to the sample set are
not possible beyond stop, start and sampling rate changes.
Flexibility, if desired, of what metrics to collect must be
coded to be configurable in the plugin configuration step.
Sampler plugins support three functions which must be
executed in order. These are load, configure, and start/stop.

The system configuration is shown in Figure 1 [3]. LDMS
daemons run on each compute node with collection plugins.
LDMS daemons configured for aggregation run on 4 service
nodes. While the platform support for fan-in (Section IV-B)
would enable aggregation from the whole system by only
2 aggregators, we use 4 with redundant connections for
failover.

Figure 1. Initial LDMS configuration on Blue Waters (from [3]). LDMS
collector daemons run on each node. LDMS aggregator daemons pull data
from the collector daemons; these run on 4 service (non-compute) nodes.
Redundant connections (dashed arrows) exist to each sampler ldmsd for
fast failover capability. Initially, the aggregators each wrote a CSV file to
a local named pipe; Data from this pipe was forwarded by syslog-ng to
the ISC where it was bulk loaded into a database. Revisions to the storage
configuration are discussed in this paper.

The LDMS aggregators use a pull model to periodically
fetch data from the collectors. This was a design choice
in order to minimize the impact and complexity of the
samplers running on compute nodes and for better support
of load balance and failover. In a pull model using the
Remote Distributed Memory Access (RDMA) protocol, the
compute nodes do not have to include functionality and
the related overhead of sending messages and knowing and
maintaining the locations of the aggregators and failover
paths. With RDMA there is no additional compute node

CPU involvement in the data transport. We chose to place
this additional complexity on the aggregators which run on
service nodes. Additional CPU and/or memory overhead
on the aggregators has no adverse affect on running appli-
cations. Reconfiguration of the overall collection topology
in the event of an aggregator failure is done entirely at
the aggregator level. In our initial deployment, rather than
writing directly to local stable storage, the aggregators each
wrote a CSV file to a local named pipe. Data from this
pipe was forwarded by syslog-ng to the ISC where it was
bulk loaded into a database. Due to observed inadequacies
of this approach, revisions have since have been made to the
storage configuration and capabilities. These are discussed
in Sections V and VI.

B. Size Considerations

Cray XE/XK systems utilize a “diskless” model where the
root image is pushed out to the platform hosts at boot time
and resides in the hosts’ memory. The Blue Waters image is
about 400MB in size. Since this must be sent across the HSN
to every host, maintaining a small boot image is essential to
maintaining reasonable boot times.

Because we want to monitor host-related data of interest
from the time each host boots, the monitoring programs,
including support libraries, must be in the boot image. Thus
an important consideration in the deployment of LDMS on
Blue Waters was the additional size of the boot image.

Memory on a compute host is a shared and scarce re-
source, thus it is important to minimize the memory footprint
of the monitoring infrastructure component that is deployed
on the compute hosts. While the base ldmsd only occupies
∼2.3MB of space, there are also considerations to be taken
into account with respect to data metric set sizes.

The current metric sets being collected from Blue Waters
compute node hosts are comprised of 1.4KB data and 12KB
of meta-data. The reason for the size difference is that the
meta-data contains an 8 byte pointer and string labels per
datum as well as various other information about the set
itself. The data is typically just an 8 byte value per datum.
Because of storage and processing constraints, the sampling
is currently being performed at one minute intervals with
corresponding pulls of the data by an aggregator.

As mentioned previously, CPU overhead and hence OS
Noise on the compute nodes and network contention of
monitor data traffic with user applications must also be kept
as low as possible. OS Noise testing results are given in [3].
In this testing, no statistically significant adverse impact to
application run-time was observed.

III. NUMERIC DATA SAMPLING

In this section we present experiences with our sampling
methodology, giving detail on what was successful, what
was not, and how we addressed problems encountered.
While some of these experiences are related to platform type

and/or sampling mechanisms and methodologies, many are
generally applicable and all are relevant to those undertaking
a similar endeavor.

The Cray XE/XK platform provides a variety of interfaces
for collection of pertinent numeric data. Among these are the
/proc and /sys pseudo file systems, NVIDIA’s nvml
interface [6], and the Gemini network ASIC which are only
accessible from the host (in-band).

A. Source Related

Cache and Clock Skew Effects: While using our data
to analyze the characteristics of HSN congestion, we dis-
covered cases in which we had multiple sets of data for
a given time interval for some components. One series of
redundant data had unchanging values. Root cause analysis
showed that this would occur following a host clock reset
performed due to significant forward clock skew (e.g., host
clock ahead by more than a sample interval). In this case,
the problem was that the timestamp that the kernel module
(gpcdr [7]) supplying the HSN data used to determine if
the cache time had expired was not also set back in time.
The effect was that the cached values of the counters were
used until the node’s time exceeded the valid cache time.
The time handling of cache in the kernel module has since
been fixed by Cray. However significant clock skew will still
cause erroneous analysis as we currently do not check data
timestamps against aggregator clocks. Additionally clock
reset after significant clock skew still has ramifications with
respect to use of the apparent double data as there is no way
to know which came from the erroneous vs. the reset time
from a historic processing perspective (see Section IX).

Data Availability: Even with Cray providing data about
bandwidth counts for network links, some pertinent data
with respect to link bandwidth capacity was missing. We
discovered, after conferring with Cray engineers, that the
pertinent data was only available from the SMW and the
file size for this data on Blue Waters was ∼ 40MB (or
10% of the image). Since this was deemed unacceptable, we
developed an algorithm that exploited the regularity of the
interconnect to device mapping to parse this file and extract
and encode the pertinent information; the result required
only 30KB and was well within our memory budget.

Data Source Component Failure: The LDMS design
is robust to components failing, rebooting, etc. However, in
general, within the samplers we chose to keep filehandles
open when possible to avoid the overhead of opening and
closing the filehandles each time. For sources such as in
/proc/meminfo, the sources and the associated filehandle
remain viable as long as the node is up. However, for some
sources, such as file system mounts (e.g., Lustre), if the
resource is unmounted the filehandle becomes invalid. For
such sources, we had to implement a more robust error path
in order to enable them to come and go and have the sampler
re-establish the filehandle correctly.

When User Space and System Space Collide: There is
a growing interest in system wide collection of hardware
performance counters which have traditionally been used
by application profilers to provide fine grained insight into
application performance. We collect data (e.g., memory
bandwidth utilization) from the Interlagos Model-Specific
Registers (MSRs) [8]. Writing control registers defines
which counters are being accumulated in the corresponding
data registers.

Unlike the majority of our /proc data sources, these
are dynamic sources, which may be modified by a user via
application profiling tools. To handle this case, and give
preferential use of these registers to the user we included
additional functionality for checking if the counters have
been reprogrammed prior to collection of each sample, and
for changing and re-enabling the desired counters once
a user job which reprogrammed our registers completes.
We further implemented a command-line interface to be
triggered by the epilog script to reset the counters to the
desired value.

B. Environment

Boot time environment: The system administrators of
Blue Waters wanted the monitoring system to come up as
early as possible using an init script just after a node was
booted. Because of this all dependencies for the monitoring
infrastructure had to be included in the image. Interestingly,
bash is not included in the system image. While this wasn’t
a show stopper, it was an inconvenience as we had written
the init.d script in bash and there were some functionalities
that would not work and had to be changed.

System Management Processes: The Out Of Memory
(OOM) killer process is designed to kill non-system pro-
cesses if the host memory utilization becomes too high.
We had assumed that since we were running LDMS as a
root process it would not be targeted by the OOM killer.
However, over tens of thousands of nodes and a few days,
we started having LDMS daemons unexpectedly die. Upon
performing a root cause analysis it turned out that the OOM
killer was killing our monitoring process even though it was
owned by root and occupied <3MB of memory. To prevent
this we set the oom_score_adj to −1000 for the ldmsd
in the init script that starts it.

C. Platform Specific Considerations

In the Cray XE/XK environment, when performing small
RDMA data transfers, a process must use a Fast Memory
Access (FMA) descriptor. While there are only 256 FMAs
available per node, a process can use a floating descriptor
which a cursory read of the documentation indicates does not
consume an FMA. However, upon a more careful read, this
is only true within a process group. A particular application
running on the Blue Waters machine was trying to use all
256 FMAs with the result being that if LDMS were running,

then the application would fail and if the application were
running, then LDMS could not be started. The resolution for
this was to talk to the conflicting code user and have them
change how they were utilizing FMAs. This resolved the
problem but points out how engineering a system without
planning for such a system service can cause resource
problems when you suddenly need one. Thus encouraging
vendors to provision future systems to natively host a system
wide monitoring service that can utilize an RDMA transport
and appropriate access protections would be of enormous
benefit.

IV. DATA AGGREGATION

This section presents our data aggregation methodology,
impediments of scale, problems encountered, and solutions.

A. Scale Issues

Configuration Time: The first scale related issue we ran
into in deployment of LDMS on Blue Waters was the time it
initially took to configure an aggregator. The systems we had
run LDMS on previous to deployment on Blue Waters were
thousand node clusters which ran a first level aggregator for
every 128 hosts. Our aggregator configuration init scripts
executed seemingly instantaneously. However, when we first
deployed on Blue Waters it took multiple minutes to issue
13,324 add host commands to an LDMS aggregator. We
solved the problem by streamlining the configuration related
activities being performed in the init scripts and were able
to reduce the time to ∼45 seconds.

Component Death: The second scale related issue we
encountered was collector thread starvation. LDMS origi-
nally had a single thread pool that supported both connec-
tion maintenance and periodic data collection from sampler
LDMS daemons. On a system the size of Blue Waters it
is possible to have thousands of nodes down concurrently.
Thus, even setting the connection timeout to one second and
retrying to establish a connection every 20 seconds resulted
in all threads in the thread pool spending the majority of
their time waiting on connection timeouts and very little in
data collection when there were significant host outages. We
solved this by creating a separate thread pool dedicated to
connection setup and dedicating the previous thread pool
solely to data collection.

B. Platform Specific Considerations

In this section we present problems encountered that
are particular to the Cray XE/XK platform and the kernel
version being run.

Inadequate Support for 3rd Party System Software:
Cray never envisioned the possibility of a customer-owned
system wide program running and communicating across
their Gemini HSN fabrics other than user applications. An
associated expectation was that a failure in a node included
in an application resource pool would trigger application

failure and preclude further communication with the node
until it was repaired and rebooted. Since our system wide
monitoring application runs as root and aggregators peri-
odically poll sampler daemons running on compute nodes
for information, this expectation is no longer valid. We
discovered that communication with a compute node in the
process of booting can trigger annoying “b2b” warning
messages in system log files. While we were at first inclined
to just ignore these messages as there was no evidence of
harmful effects, we were informed by Cray that in their
follow-on Aries network router chip the effects can be much
more catastrophic as network quiesce events will result. The
fix for this was to utilize a Cray library and query for node
state before each communication with a host. If a node is
not in an up state then we don’t attempt any communication
with that node.

Constraints on the Architecture: When initially testing
fan-in ratios (i.e., how many sampler hosts an aggregator
can aggregate from) we were unable to go above 16,000:1
even though we had set our open file descriptor limit to
be unlimited. We were told by Cray that this was a known
bug/limitation of the particular kernel they were running and
that newer kernels had a patch for it. The fix was to utilize
four daemons to support the system (with redundancy)
instead of two.

C. Usability Features

Timing: We originally envisioned that the data collec-
tion on each node would occur independently. Because our
target collection frequency was 1Hz, We reasoned that a few
lost data points here and there would be inconsequential.
When we started collaborating with NCSA staff on LDMS
deployment on Blue Waters, their target sampling rate was
once a minute. Figure 2 (top) shows a set of one minute
collection samples across 10,000 nodes of Blue Waters.
The y-axis in the figure indicates a unique node id, the x-
axis indicates time. Due to staggering in the start time of
each ldmsd on each node, a “wave-like” structure is seen
in the sample times. What became readily apparent was
that analysis of the data would be impossible as there was
no time coherence across the resources. From an analysis
perspective, we required a coherent system “snapshot”. for
the data to be of much use. Thus we implemented a syn-
chronized collection mechanism whereby all nodes would
attempt to collect data at as close to the same time relative
to their own system clocks as possible. With synchronized
collection implemented, Figure 2(bottom) [9], all nodes’
ldmsd’s collect at the same time (empirically within 4ms)
once the processes have been started. (There is data for a
shorter time range in the top figure, however the data for
both figures has been plotted on the same range to enable
visual comparison.)

Error Diagnosis: Due to the number of hosts on Blue
Waters, sampler ldmsd’s are run in quiet mode (i.e., no log

Figure 2. Collection occurrences on each node (y-axis) through time
(x-axis) Top: unsynchronized collection results in varying collection times
for the ldmsd’s on each node. Bottom: with synchronization, ldmsd’s are
scheduled to collect at the same time on all nodes (relative to their own
system clock), enabling analysis of coherent system “snapshots”.

file output) to preclude the possibility of widespread errors
causing a glut of log messages on the SMW or filling up
host memory. Due to the additional complexity of aggregator
operation, we want to be able to diagnose problems when
they arise. Thus they are run with logging turned on. Early
in our deployment of LDMS we had included extensive
instrumentation at the debug level in order to ensure things
were running properly. The log level defined when starting
an ldmsd could not be modified without restarting the dae-
mon. However, due to the large number of connections, and
logging of even normal activity about them, we experienced
unacceptable log file growth. To minimize log file growth
while still enabling troubleshooting we incorporated the
ability to perform dynamic log level modification. We now
normally run with logging set to the critical level (only log
issues resulting in daemon failure) and dynamically change
to debug (log everything that is instrumented) or another
appropriate level when problems arise.

V. DATA STORAGE METHODOLOGIES AND
CONSIDERATIONS

In this section we present our experiences with Data
Storage. Note that storage includes both active storage in
support of run time analysis as well as longer term storage
for historical analyses and records.

A. Scale Issues

Database Insertion Implications: Sandia’s previous
database schemas supporting monitoring data on smaller
systems (e.g., ∼1000’s nodes) used one table per metric
in order to flexibly support multi-metric analyses [10].
Therefore, in LDMS we initially implemented a data storage

system that could write out a single file per-metric and/or
insert single or multiple values of individual metrics into a
database.

On Blue Waters, due to the volume of data, which was
initially 55GB/day, we found it to be more practical to
write the data to a file and then bulk load the file into the
database. In order to do this as a single file load the database
schema must then be one table with all associated metrics
defined (including NULL defines) in the file. We had initially
implemented a separate collector per data source. In order to
support the file load, we modified the collector to produce a
single metric set for the system, regardless of source (e.g.,
the single metric set contains all the HSN, GPU, CPU load,
etc, data). Further, we modified the store to write a single file
per metric set (this has additional benefits for the timestamp,
discussed in Section VI-A).

However, there was an additional ramification to this
approach. Not all nodes produce the same data, for example
not all Lustre filesystems are mounted everywhere; there
are some different metrics for service and compute nodes;
and only about 1/7 of the system produce GPU-based
metrics. For efficiency’s sake we have found it expedient to
implement a consistent data set for all nodes, with the ability
to specify non-existent data sources for a host which then
are populated with 0-valued data. This is an insignificant
additional amount of data to transport relative to the overall
HSN and storage bandwidth. However, as our desire for new
sources and rates increases, and the storage necessary to
support non-existent data sources correspondingly increases,
this priority may change.

ISC Database: One major goal of the monitoring sys-
tem is to support run time operational analysis (in addition
to supporting longer-term historical analysis and retaining a
comprehensive data archive).

For many of the operational questions we focus on either
job-centric time series or a drill down on full system
behavior to isolate the cause of unique features. For these
analyses, the monitoring data needs close integration with
run time job and log data and rarely involves consideration
for very long time series data. In order to support a variety
of datatypes and support a wide variety of queries, the ISC
utilizes a relational database. This has limits in fast response
time for large datasets and is impractical for storage of the
entire dataset. We have settled on storing a few days of
data for run time queries. Further, we reduce the latency to
meaningful analysis by transforming the raw data into rate
or difference information before being stored. (Features that
we have implemented within LDMS to support computing
derived data and considerations with respect to processing
location are described in Section VI.) This type of storage
and retrieval targets answers in the seconds to multiple
minute timeframe.

Forwarding Data to Storage: The full metric set with-
out MSR data is about 55 GB/day. Writing that to syslog-

ng [11] over a socket resulted in data losses, despite sig-
nificant configuration tuning. We have identified a subset of
derived metrics as those of greater first-order interest, and
we write only this derived data, which is about 15 GB/day,
to syslog-ng for insertion into the ISC database. This has
eliminated the transfer-related data loss.

The full dataset is written in a separate stream via
syslog-ng to a mounted Lustre filesystem. Since there are
4 aggregators, there are 4 separate output files, which are
combined via a cron job at the end of the day. We intend for
the MSR data, which is 93 GB/day to be handled similarly.
The full dataset is currently written to the Lustre filesystem.
We are currently identifying the first-order derived data
and functions of interest, such as a subset that enables
computation of full machine and per-job flop rates, to be
stored in the ISC database.

For the full dataset, a database, particularly a relational
database, is not appropriate for long-term storage. Binary
flatfiles may be useful for this, however without a reasonable
investment in a binary format with guaranteed long-term
support, text based CSV is still the safest, universal option.
For these, we have found that human-readability is less of
a concern, since they are typically processed by code, and
reducing filesize by removing extra whitespace (such as after
commas) is desirable.

VI. NUMERIC DATA ANALYSIS SUPPORT

LDMS does not inherently include numerical analysis
capabilities, however we intend that our data collection
framework support the needs of the data analysis.

We had several initial design philosophies that had impli-
cations for the support of analysis. We initially envisioned
that the sampling could occur as fast as would result in no
adverse impact and that occasionally missed data samples
would be immaterial. We further believed that high fidelity
resolution (e.g., microsecond resolution) in the timestamps
was desired, since the sample time was of order of 100
microseconds per set. Finally, in order to minimize the
processing on the compute nodes, we transported all raw
data, with the intent that all analysis would be done later in
a pipeline approach and/or off-cluster.

As we collected data and performed analysis, we realized
that for our data size our original philosophy put too much
burden on the backend analysis and storage components. In
this section, we discuss enhancements that we made to the
infrastructure in order to better support analysis.

A. Scale Issues

Timestamp Accuracy and Resolution: As described in
Section V-A, we initially implemented a per-metric focused
data storage system. This not only had poor insertion rates
into a relational database, but also required discovery of con-
current samples in either multiple files or multiple database
tables, which was time intensive for large systems.

In practice we found post-processing to be greatly simpli-
fied by grouping all concurrent data samples into a single set
with a single timestamp independent of source (e.g, network
counter data and /proc/meminfo data all get put into one
LDMS set). The time between the first and last sample of
our current set is ∼0.5ms or ∼0.0008% of our one minute
snapshot time. We consider this difference negligible.

Also, though we retain the high resolution timeval
time stamp, we store the second and microsecond parts as
unsigned integer values as well. This enables faster searches
for times based on comparison with the integer value for
seconds, rather than searching for values which include
microseconds within a time range.

Processing Location Tradeoffs: Our initial approach
was to collect and store only the raw data. This has the
least impact on node performance and provides the most
flexibility for analysis. However, computations using the
raw data require multiple queries to get the data of interest
and may not produce timely results especially with large
data volumes. Analysis on rates of changes of raw counter
data, for example, require multiple passes in post-processing.
In order to enable lower latency to results, we insert a
subset of derived data into the ISC database (Section V-A).
We implemented a derived store plugin for the aggregator,
which performs derived computations on the data in transit
The derived store supports simple functional forms, where
we capitalize on the fact that the store can most easily
retain the previous timestamp’s data for rate calculations and
that computing it on the aggregator means that we do not
negatively impact compute nodes for processing.

Here we summarize processing tradeoffs with respect to in
situ vs. in transit vs. post-processing. Post-processing gives
the greatest flexibility, but may be hardest to implement,
since it may require multiple passes through the data, and
therefore have the highest latency to solution. In situ, which
in our case is at the point of collection, incurs CPU overhead
which takes away from useful cycles on compute hosts. In
addition, while such filtering can reduce the amount of data
to handle at the end point, it is at the expense of losing data
which might prove to be useful later. The savings in network
bandwidth isn’t necessarily significant, since the required
bandwidth is very small relative to the total available for
the HSN links. In transit simple analysis is very useful for
calculating simple forms and also splitting off some data for
more immediate processing. We support both the in transit
filtering and post-processing on the full dataset.

Long-term Analyses: Doing any system based analysis
that may span many days or years requires the processing
of large volumes of data. A recent calculation required pro-
cessing in excess of 60 TB of numeric data (in conjunction
with additional job and log data).

For long term analysis, the full dataset with raw counter
data is stored in a large parallel filesystem. For answering
questions that are not immediate, this is more practical

because we can split the access and processing of the
data over many compute nodes. The types of questions we
solve with file archive data are long term memory trends
by application or code team, and investigations of system
behavior as a function of job location within the system.
Parallel analysis and data reduction tools using the compute
system itself is effective for answering queries that produce
results in the hours to days timeframe.

B. Usability Features

Functional Forms and Resolution: In transit implemen-
tation of a small subset of functions can reduce the latency to
getting usable data. In most cases, the main functional forms
we have to represent are: raw, rates, sums, ratios, threshold
comparisons. These may be for a given component, or across
the set of cores of a node, or across nodes in a job. Currently,
we perform rate calculations and apply scale factors to these
and the raw data within LDMS store plugins. Additional
analyses are performed using the database or flat files.

Note that writing a general analysis library even for these
small set of functions is an endeavor unto itself. Compu-
tations have to be able to resolve fidelity of interest and
overflow and rollover have to be handled. As we primarily
store data in the database in integer form for efficiency, some
rate data requires multipliers to avoid roundoff loss. Initially
we failed to implement a multiplier for low rate events such
as file open/close/seek events and thus recorded those as
zero valued occurrences.

VII. CRAY XE/XK SPECIFIC ISSUES

In this section we discuss issues not addressed in other
sections that are specific to the target Cray XE/XK platform
and not HPC in general.

Inadequate Support for 3rd Party System Software:
Protection Domains [12] are the mechanism Cray has im-
plemented on their platforms to ensure that one user cannot
gain access to another user’s data. In practice, the Appli-
cation Level Placement Scheduler (ALPS) entity allocates
resources to an application and also assigns to it an identifier
pair, called a “pTag” and a “cookie”; processes are prevented
from communicating outside their “pTag” domain. This pair
is set up in the user’s program environment and on every
resource allocated to a job. When the job finishes the pTag
is reclaimed by the system.

Since LDMS was to be run by root as a system service,
we were initially told by Cray that we needed to set up
a “system” pTag that we could then have dedicated to the
LDMS application. While this seemed to work in our first
testing, we found that when we started some testing just
after a system reboot we were not able to run using our
system pTag. Because of a bug in how system pTags are
managed by the system and in particular, after a boot, a
“system” pTag may not be recognized any longer. The fix
was to generate a “user” pTag from a privileged account

(e.g., system administrator) to be used instead which can
then never also be used by a standard user.

Quiesce Events: After we had been collecting data
for some months, during an analysis we discovered that
some data points timestamps were tens of seconds later than
expected. Upon discussion with Cray engineers we found
out that in periods of high HSN congestion the network, or
portions thereof, can be issued a “quiesce” which prevents
any traffic from being injected into the network. In such
cases, if a processor tries to send data it will also be quiesced
and LDMS sampling will stop until the congestion has
passed. While this explained our displaced data points, there
is no fix or workaround for this behavior.

VIII. OPERATIONS

In this section we discuss some issues in HPC operations
that impact support for a persistent monitoring service.

Agile Changes in a Static Environment: Cray XE/XK
systems utilize a “diskless” model where the root image
is pushed out to the compute node hosts at boot time and
resides in the hosts memory.

While there was a well developed set of requirements at
the outset of this deployment, initial testing and deployment
success rapidly resulted in additional desired enhancements.
Those that came up during the testing phase (e.g., synchro-
nized sampling) were incorporated into the initial deploy-
ment image. However, subsequent enhancements requiring
modifications to the in-image code could take months to
be included into a new image and for that image to be
booted in production. In contrast, changes to the aggregator,
which were largely additional functionality to support data
management (Section VI) could be installed more quickly,
since they involved service and not compute nodes.

Our approach to this has been to test changes to our
aggregation code and deploy as soon as it is tested. Initially,
this put an additional burden on the design as we had to be
prepared to guarantee interaction of mixed-versions of code.
Our current approach is to, after testing and validation on a
smaller test system, push the new sampler code to a directory
in /tmp on all hosts. We then stop all the samplers being run
out of the image and start them running the new code. This
accomplishes two things: 1) if problems of scale arise, it is
simple to roll back and 2) the code stays in sync between
host samplers and aggregators. The new validated code is
then rolled into the working image at the next opportunity.

Sampler Configuration: For a particular data source
one may not know apriori what data will eventually be
wanted. For the hardware performance counters, we started
off with an expected set of counters of interest and, for
implementation ease, initially hardwired those into the code.
We quickly realized that we wanted a more flexible way to
investigate which counters to collect.

Although code changes for different counters were simple
to implement, instantiating code changes in our environment

is non-trivial (Section VIII). Thus we re-implemented the
sampler to take counter specification and associated register
address data from a configuration file and expanded the
sampler plugin command set to support dynamic changes
to the counters being collected. More configuration files
and options incurs complexity but the overall flexibility has
provided substantial benefits.

IX. DATA STEWARDSHIP

In this section we discuss the complexities of long term
maintenance data from an evolving system.

While we print out a header with the output data (either
in the same file or as separate files), we currently have
built no facility for recording meta-data that would allow
us to track changes in the system, the datasource, or our
collection implementation that might be relevant. For ex-
ample, data from before the fix for the cached gpcdr data
values (Section III-A), has different and erroneous reporting
of values of which a user seeking to compare these values
should be aware. Units of a metric have changed over
time. For example, the change in scale factor in order to
resolve low rate events such as file open/close/seek events
(Section VI-B), resulted in a discontinuity in the meaning
of the values as they are now stored with respect to the
multiplier.

System operating changes have occurred that have ram-
ifications on later interpretation of the data. For instance,
a topologically-aware scheduling algorithm was instantiated
on Blue Waters over various periods of time during the
course of this work. The goal of that allocation assignment
was to alleviate cross-application congestion in the HSN;
thus characterizations drawn from the data during these
different time periods are expected to be different and the
data should not be blindly combined.

In general we seek to develop an approach for defining
metadata and/or quality metrics for raw and derived data.
This also requires an implementation for tagging both at the
time of collection as well as afterwards for later discovered
events and a means of propagating them into subsequent
analyses.

Currently, in the in transit derived store, where rates and
deltas between timesteps are the primary analyses, we have
implemented an additional flag in the output to indicate
when the change in time is either negative or greater than
some user specified value. The latter is to account for lost
data values and resulting delta values that may be greater
than anticipated for the expected collection frequency. This
flag also helps us to discover missed collections.

Figure 3 is a heatmap based on the collected data from
early in our deployment. Missing data points here are
explictly colored as blue. Here missing data is primarily
due to data loss while attempting to send the entire data set
through syslog-ng to the database. We resolved this issue by

forwarding only the derived data to the database via syslog
(Section V-A).

Figure 3. Heatmap based on the collected data early in our deployment
process. Values for component id (y axis) through time are shown. Missing
data here is colored in blue and is principally due to data loss while
attempting to send the entire set through syslog-ng to the database.

We have had periods where storage of data for a subset of
the system had failed after a system reboot. As previously
mentioned, data loss has occurred prior to when the daemon
was excluded from OOM killer actions (Section III-B) and
when the result of network quiesce events on the processor
prevented data from being collected at a given wall time
(Section VII). Finally, we have had missing data when a
system configuration changed, for example, after an upgrade
to the nvidia-ml library which resulted in the failure to
collect GPU data properly.

Missing data may go undiscovered if there is not an imme-
diate need for the data. Even while the data is undergoing
analysis, missing data might be overlooked when analysis
results are an aggregation of values across many nodes, as
occurs for metrics across large jobs or the full machine. We
handle this in part by trying to characterize the data quality
within plots. A simple quality indicator we use is including
a count of datapoints used in each aggregated value.

We have found that it is important to document as early
as possible anomalies within our long term data. Simple
examples include dates and times that the file formats
change as the collection evolves. This can include changes
in data indicies and addition or removal of metrics. Such
changes make it challenging to navigate through seemingly
simple requests to describe long term trends when the exact
meaning of the data transforms.

X. RECOMMENDATIONS

In the above we have presented some particular challenges
in the development and deployment of an effective persis-
tent system-wide monitoring service at scale. While some
of those are particular to the platform, they each impact
functional components of a monitoring system in general
and serve as insights into the large-scale HPC experience.

In this section, based on our experiences, we present
recommendations for effective development of a monitoring
system (beyond the obvious implementation details).

• Numeric Data Sampling
– Widely varying sources of data with different un-

derlying acquisition mechanisms can imply differ-
ent CPU overhead properties – always measure the
impact.

– One cannot infer impact on actual large scale
applications based on CPU overhead as measured
by benchmark codes such as PSNAP.

– It is necessary to understand caching policies and
mechanisms.

– Look for possibilities of collisions between moni-
toring service and users utilizing the same mecha-
nisms.

– Just because it isn’t documented doesn’t mean
there isn’t an interface. Connect with the engineers.

– There are persistency issues beyond the obvious.
The optimization of keeping a pseudo file system
handle open and re-reading didn’t work when it
was Lustre stats for a file system that got un-
mounted and re-mounted.

– There is always the need for more flexibility as
the system changes and heterogeneity increases.
Where possible, utilize configuration files with
reasonable defaults. Flexible configuration options
are invaluable, even if they require more up-front
understanding and time to code.

• Data Aggregation
– Even low probability events do occur over a large

enough collection of components.
– Pay attention to use of timeout mechanisms. At

large enough scale all resources can be tied up in
timeout and incur resource starvation with respect
to operational resources.

– Configuration via shell script, at large scale, can
be a non-starter. On Blue Waters it took about a
minute to add 14,000 hosts to an aggregator via
shell script.

– Utilizing resources in a non-standard way can
create unintended consequences. Cray did not en-
vision a continuous system service that maintained
long lived connections to all components. Their as-
sumption that only user applications would utilize
the HSN fabric required painful workarounds for

a monitoring system.
– You will always want more data with respect to

both number of metrics and complexity. Estimate
your architecture requirements with this in mind.

• Data Storage
– A single data set across a heterogeneous system

has some advantages for processing but doesn’t
scale with data disparity (lots of storage space
wasted on null data).

– Transformation of data before storing in a database
is good for rapid processing but should be done at
aggregation points to minimize CPU footprint on
compute nodes.

– Processing data differences per time interval in a
database for large data is a mistake.

– Use multiple storage methodologies that support
the way the data is intended to be used: Utilize
tiered storage with well-known data manipulations
for fast access, short term data vs. full, raw long
term data; prioritize storage space over human-
readability (e.g, no blank space after a comma) for
data that will be mostly processed by code.

• Numeric Data Analysis Support
– As the variety and volume of data increases, so

does the need for streaming processing to provide
functional combinations of data that make it im-
mediately useful for insight.

– Single time attribution for all data on a node is
a good idea for searchability and fast ”snapshot”
processing.

• Platform Specific Issues
– There may be obscure or wrong documentation as

to how mechanisms work – in this case the security
mechanisms provided by the protection domains.

– There may be proprietary mechanisms which in-
duce issues that cannot be overcome – e.g., quiesc-
ing network traffic in a high congestion situation
and the resultant impact on the processor.

• Operations
– Design configuration and installation methodolo-

gies that can work within the HPC operational
environment, which may not support agile changes.

– Beware port scan/network garbage issues and how
they might affect a monitoring system listening for
a connection with no enforcement of appropriate
handshake protocols.

• Data Stewardship
– Data of interest, including name to source bind-

ings, will change over time causing changes in
metric names and sets. Relatedly, there will be
changes to an implementation or a data source or
a platform that will need to be known about in

subsequent short and long-term analysis attempts.
A methodology and implementation are needed
for data to metadata binding and propagating that
binding through all phases of the collection, stor-
age, analysis, and visualization process.

– Monitoring data should be treated as long term
resource in the same way that application code
results are, with intended long-term and post-
processing analysis of interest. There is increasing
interest both for more complex analysis by system
administrators and by researchers for this data.
Long term format and storage support is necessary.

REFERENCES

[1] B. Semeraro, R. Sisneros, J. Fullop, and G. Bauer, “It Takes
a Village: Monitoring the Blue Waters Supercomputer,” in
1st Wrk. on Monitoring and Analysis for High Performance
Computing Systems Plus Applications (HPCMASPA) Proc.
IEEE Int’l Conf. on Cluster Computing (CLUSTER), 2014.

[2] “Blue Waters.” [Online]. Available: https://bluewaters.ncsa.
illinois.edu

[3] A. Agelastos et al., “Lightweight Distributed Metric Service:
A Scalable Infrastructure for Continuous Monitoring of Large
Scale Computing Systems and Applications,” in Proc. Int’l
Conf. for High Performance Storage, Networking, and Anal-
ysis (SC), 2014.

[4] R. Alverson, D. Roweth, and L. Kaplan, “The Gemini System
Interconnect,” in Proc. 2010 IEEE 18th Annual Symposium
on High Performance Interconnects (HOTI), 2010.

[5] Cray Inc., “Using and Configuring System Environment Data
Collections (SEDC),” Cray Doc S-2491-7001, 2012.

[6] NVIDIA, “NVIDIA Management Library (NVML),”
https://developer.nvidia.com/nvidia-management-library-
nvml.

[7] Cray Inc., “Managing System Software for the Cray Linux
Environment,” Cray Doc S-2393-5202axx, 2014.

[8] Advanced Micro Devices (AMD), “BIOS and Kernel Devel-
oper’s Guide (BKDG) for AMD Family 15h Models 00h-0Fh
Processors,” Technical report 42301 Rev 3.14, January 2013.

[9] M. Showerman et al., “Large Scale System Monitoring and
Analysis on Blue Waters using OVIS,” in Proc. Cray User’s
Group, 2014.

[10] J. Brandt et al., “OVIS-2: A Robust Distributed Architecture
for Scalable RAS,” in 4th Wrk. on System Management Tech-
niques, Processes, and Services (SMTPS) Proc. IEEE Int’l.
Parallel and Distributed Processing Symposium (IPDPS),
2008.

[11] “The Foundation of Log Management (syslog-ng).” [On-
line]. Available: https://www.balabit.com/network-security/
syslog-ng

[12] Cray Inc., “Using the GNI and DMAPP APIs,” Cray Doc
S-2446-4003, 2012.

