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INTRODUCTION: In simulations of fluid flow through porous media it is frequently EXAMPLE 2: Tracer release 400 Analytical o
necessary to flex meshes to conform to geological features. However, the poor quality from a line source — flow direction l |
of the resulting mesh can negatively impact the accuracy of the simulation. Structured Batu (2006) presented an analytical &

meshes can also systematically bias the calculated flow field. One alternative is to solution for two-dimensional tracer ® ~

simulate using unstructured Voronoi meshes. Voronoi meshes have orthogonal fluxes transport from a line source with % § e e
between cells, and unstructured meshes do not bias the flow field, reducing two constant background fluid flow on a 5

sources of numerical error. Unfortunately, simulating on unstructured polyhedral domain that is finite y and infinite in  “ I
meshes can significantly increase simulation time. A series of analytical benchmark x. The domain isy = (0,2010)mand 600 ,— = les
problems are simulated on three-dimensional hexahedral, flexed-hexahedral, and tracer is released at constant rate _ ures'Tracerconcentr;‘ti(:lzatt_s D
Voronoi meshes using the finite volume simulator PFLOTRAN. The accuracy of from y = (1000,1010) m. begen nreased to approximate numericyal dispersion

simulated results and computation times are compared. Finally, simulations of

. Concentration on the hexahedral mesh (429K cells) shows systematic error,
experiments of unstable two-phase flow are compared.

overestimating plume extent and underestimating lateral diffusion, yet RMS,,,
error is similar in the simulations. RMS;, at observation points shows Voronoi

ERROR METRICS: Several L2 error metrics are used Q = pressure, concentration mesh simulation (426K cells) is the superior quality result for this error metric.
or saturation
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EXAMPLE 1: Pressure distribution for a five-spot well pattern ® T ~ - s
. . . . . . . X Z | C- ~ -
Two-dimensional single-phase flow of an incompressible fluid from a point source at = = >
(0,0) to a point sink at (1,1). Three meshes are considered. -
9 RMS,, = 1.7 x 105 [kg/m3 RMS,,. = 1.6 x 105 [kg/m?]
MPa MPa << 600 o = L7 107 gl I le-10 600 : & le-10
1. ~ 12 1. 1.4 Figure |.Left: Analytical 0. X (m) 1400 0. X (m) 1400
I w I solution for isotropic five- Figure 6. Top: Tracer concentration on hexahedral Figure 7. Top: Tracer concentration on Voronoi mesh
spot case. Right: Analytical mesh at t = 5 years. Bottom: Absolute pointwise error. at t = 5 years. Bottom: Absolute pointwise error.
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A Figure 2.- A) Hexahedljal Figure 8. Tracer concentration (kg/m3) and error on  Figure 9. Tracer concentration and error on Voronoi
mesh with 67,500 cubic hexahedral mesh as a function of time. Left: At  mesh as a function of time. Left: At (200,1005) m. Right:
elements. B) Hexahedral (200,1005) m. Right: At (200,1200) m. At (200,1200) m.
mesh flexed to a
fracture with 68,400 .
elements. C)Voronol EXAMPLE 3: Unstable gas flow experiment
mesh with interior Wang et al. (2013) conducted a series of experiments of CO, injection in a
Y Y fracture with 94,720. micromodel in capillary and viscous fingering flow regimes, a notoriously difficult
‘s ‘s Red boxes show detail problem to simulate using structured meshes. Three of the experiments are
of surface mesh. : . : : :
Viscous Transition Capillary simulated here on meshes with

Isotropic  simulations  Flexing  the Anisotropic simulations Flexed mesh has e AR e el e

; . ; . c hexahedral mesh simulations are
hexahedral mesh improves the simulated regions of high error near the source and v : ;
o : . . . £ unable to capture the fingering
result because it aligns grid cell faces with  sink. The Voronoi mesh has somewhat =
. S ; © phenomena, as expected.
the flow direction. Voronoi and Ilower RMS,,,, error than the hexahedral o : :
. . 05 Fingering patterns occur on the
hexahedral meshes have comparable mesh, but Voronoi simulation takes 27-32 : »
. : : Voronoi meshes, but the transition
RMS,,,, error, but the Voronoi simulation times longer. B 057 m/d : : . .
: © from viscous to capillary fingering
takes 23-38 times longer. 5
O appears to happen at a lower rate
Pressure (MPa) Error (Pa?) Pressure (MPa) Error (Pa?) S than in the experiment, likely due
_ "[0.153 min ) Fm 50.19 FIOOO 10219 min | . T to the relative permeability model
e . used or differences in CO,
P g 1 o35 density and/or viscosity
x c | [ between the experiment
T S | and simulation. This is an
ok ol = area of future work.
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0.251 min 0.266 min Figure 10. Gas saturation in Wang et al (2013) micromodel experiments with rate increasing to cause a transition
S . from viscous to capillary fingering. Top: Experimental results. Middle: Hexahedral mesh. Bottom:Voronoi mesh.
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O CONCLUSIONS AND FUTURE WORK:
o L l The example cases considered here indicate that there are simulations where it is
0. 0. Imperative to use unstructured meshes to obtain an accurate solution. However in
1. : 5 gl2 1000 1. : many cases, there is no one-size-fits-all solution. The most appropriate mesh
5.88 min 7.10 min ) )
. | depends on three considerations:
2 = | = 1) If the mesh must be distorted to capture geometric features of the domain.
S = 1o e B¢ 2) The physics and complexity of the particular simulation.
= | 3) The quantity of interest (e.g. global vs local error).
N iog | i 5 Quantitatively match Wang et al. (2013) experimental results.
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simulation time. Right: Pointwise and RMS,,,,, error. and simulation time. Right: Pointwise and RMS,,,, error.
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