IEEE International Conference on Rebooting Computing (ICRC 2022) San Francisco, California, USA, December 8-9, 2022 Reprised for International Symposium on Roadmapping Devices & Systems (ISRDS '23) May 3-4, 2023

Ballistic Asynchronous Reversible Computing in Superconducting Circuits

Thursday, May 4th, 2023

Michael P. Frank, Center for Computing Research

with Rupert Lewis (Quantum Phenomena Dept.)

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release, SAND2022-16982 C

Contributors to our Reversible Computing research program

- Full group of recent staff at Sandia:
 - Michael Frank (Cognitive & Emerging Computing)
 - Robert Brocato (RF MicroSystems) now retired
 - David Henry (MESA Hetero-Integration)
 - Rupert Lewis (Quantum Phenomena)
 - Terence "Terry" Michael Bretz-Sullivan
 - Nancy Missert (Nanoscale Sciences) now retired
 Matt Wolak (now at Northrop-Grumman)
 - Brian Tierney (Rad Hard CMOS Technology)

Thanks are due to Sandia's LDRD program, DOE's ASC program, and the DoD/ARO ACI (Advanced Computing Initiative) for their support of this line of research!

- Karpur Shukla (CMU → Flame U. → Brown U.)
 - Currently in Prof. Jimmy Xu's Lab for Emerging Techs.
- Hannah Earley (Cambridge U. → startup)
- Erik DeBenedictis (Sandia → Zettaflops, LLC)
- Joseph Friedman (UT Dallas)
 - with A. Edwards, X. Hu, B.W. Walker, F. Garcia-Sanchezy, P. Zhou, J.A.C. Incorviaz, A. Paler
- Kevin Osborn (LPS/JQI)
 - Liuqi Yu, Ryan Clarke, Han Cai
- Steve Kaplan (independent contractor)
- Rudro Biswas (Purdue)
 - Dewan Woods & Rishabh Khare
- Tom Conte (Georgia Tech/CRNCH)
 - Anirudh Jain, Gibran Essa
- David Guéry-Odelin (Toulouse U.)
- FAMU-FSU College of Engineering:
 - Sastry Pamidi (ECE Chair) & Jerris Hooker (Instructor)
 - 2019-20 students:
 - Frank Allen, Oscar L. Corces, James Hardy, Fadi Matloob
 - 2020-21 students:
 - Marshal Nachreiner, Samuel Perlman, Donovan Sharp, Jesus Sosa

Ballistic Asynchronous Reversible Computing in Superconducting Circuits

- Background: Why Reversible Computing?
 - Relevant classic results in the thermodynamics of computing
 - Recently generalized to guantum case
 - Two major types of approaches to reversible computing in superconducting circuits:
 - Adiabatic approaches Well-developed today.
 - Likharev's parametric quantron (1977); more recent QFP tech (YNU & collabs.) w. substantial demo chips.
 - Ballistic approaches Much less mature to date.
 - Fredkin & Toffoli's early concepts (1978–'81); much more recent work at U. Maryland, Sandia, UC Davis
- **Review:** The relatively new <u>asynchronous</u> ballistic approach to RC in SCE.
 - Addresses concerns w instability of the synchronous ballistic approach
 - Potential advantages of asynchronous ballistic RC (vs. adiabatic approaches)
 - Implementation w. superconducting circuits (BARCS effort).
- Focus of this Talk:
 - Presenting our recent work on enumerating/classifying possible BARCS functions w. \leq 3 ports and \leq 2 states.

Computing System (S),

total entropy $S(\Phi) = -\sum p \log p$

Non-Computational

Subsystem (M) non-computational /

conditional entropy

Computational Subsystem (C)

info. entropy $H(C) = -\sum P \log P$

Quantum Foundations

of Classical Reversible

Computing

MDPI mdpl.com/jou

Sandia National

Ballistic Reversible Computing

Can we envision reversible computing as a deterministic elastic interaction process?

Historical origin of this concept:

- Fredkin & Toffoli's *Billard Ball Model* of computation ("Conservative Logic," IJTP 1982).
 - Based on elastic collisions between moving objects.
 - Spawned a subfield of "collision-based computing."
 - Using localized pulses/solitons in various media.

No power-clock driving signals needed!

- Devices operate when data signals arrive.
- The operation energy is carried by the signal itself.
 - Most of the signal energy is preserved in outgoing signals.

However, all (or almost all) of the existing design concepts for ballistic computing invoke implicitly *synchronized* arrivals of ballistically-propagating signals...

- Making this work in reality presents some serious difficulties, however:
 - Unrealistic in practice to assume precise alignment of signal arrival times.
 - Thermal fluctuations & quantum uncertainty, at minimum, are always present.
 - Any relative timing uncertainty leads to chaotic dynamics when signals interact.
 - Exponentially-increasing uncertainties in the dynamical trajectory.
 - Deliberate *re*synchronization of signals whose timing relationship is uncertain incurs an inevitable energy cost.

Can we come up with a new ballistic model that avoids these problems?

Ballistic Asynchronous Reversible Computing (BARC)

Asynchronous Ballistic

Rotary

(Circulator)

Toggled Barrier

Example BARC device functions

Problem: Conservative (dissipationless) dynamical systems generally tend to exhibit chaotic behavior...

- This results from direct nonlinear interactions between multiple continuous dynamical degrees of freedom (DOFs), which amplify uncertainties, exponentially compounding them over time...
 - *E.g.*, positions/velocities of ballistically-propagating "balls"

8

• Or more generally, any localized, cohesive, momentum-bearing entity: Particles, pulses, quasiparticles, solitons...

Core insight: In principle, we can greatly reduce or eliminate this tendency towards dynamical chaos...

We can do this simply by avoiding any direct interaction between continuous DOFs of different ballistically-propagating entities

Require localized pulses to arrive asynchronously-and furthermore, at clearly distinct, nonoverlapping times

- Device's dynamical trajectory then becomes *independent* of the precise (absolute *and* relative) pulse arrival times
 - As a result, timing uncertainty per logic stage can now accumulate only *linearly*, not exponentially!
 - Only relatively occasional re-synchronization will be needed
- For devices to still be capable of doing logic, they must now maintain an internal discrete (digitallyprecise) state variable—a stable (or at least metastable) stationary state, e.g., a ground state of a well

No power-clock signals, unlike in adiabatic designs!

- Devices simply operate whenever data pulses arrive
- The operation energy is carried by the pulse itself
 - Most of the energy is preserved in outgoing pulses
 - Signal restoration can be carried out incrementally

Goal of current effort at Sandia: Demonstrate BARC principles in an implementation based on fluxon dynamics in SuperConducting Electronics (SCE)

(BARCS B effort)

Simplest Fluxon-Based (bipolarized) BARC Function

One of our early tasks: Characterize the simplest nontrivial BARC device functionalities, given a few simple design constraints applying to an SCE-based implementation, such as:

• (1) Bits encoded in fluxon polarity; (2) Bounded planar circuit conserving flux; (3) Physical symmetry.

Determined through theoretical hand-analysis that the simplest such function is the *1-Bit, 1-Port Reversible Memory Cell (RM):*

• Due to its simplicity, this was then the preferred target for our subsequent detailed circuit design efforts...

RM Transition Table

Input Syndrome		Output Syndrome
+1(+1) +1(-1) -1(+1) -1(-1)	$\stackrel{\uparrow}{\rightarrow}\stackrel{\uparrow}{\rightarrow}\stackrel{\rightarrow}{\rightarrow}$	(+1)+1 (+1)-1 (-1)+1 (-1)-1

Some planar, unbiased, reactive SCE circuit w. a continuous superconducting boundary

• Only contains L's, M's, C's, and unshunted JJs

- Junctions should mostly be *subcritical* (avoids R_N)
- Conserves total flux, approximately nondissipative

Desired circuit behavior (NOTE: conserves flux, respects T symmetry & logical reversibility):

- If polarities are opposite, they are swapped (shown)
- If polarities are identical, input fluxon reflects back out with no change in polarity (not shown)
- (Deterministic) elastic 'scattering' type interaction: Input fluxon kinetic energy is (nearly) preserved in output fluxon

RM—First working (in simulation) implementation!

Erik DeBenedictis: "Try just strapping a JJ across that loop."

• This actually works!

10

"Entrance" JJ sized to = about 5 LJJ unit cells ($\sim 1/2$ pulse width)

• I first tried it twice as large, & the fluxons annihilated instead...

• "If a 15 μ A JJ rotates by 2π , maybe $\frac{1}{2}$ that will rotate by 4π "

Loop inductor sized so ±1 SFQ will fit in the loop (but not ±2) • JJ is sitting a bit below critical with ± 1

WRspice simulations with ± 1 fluxon initially in the loop

- Uses ic parameter, & uic option to .tran command
 - Produces initial ringing due to overly-constricted initial flux
 - Can damp w. small shunt G

Polarity mismatch \rightarrow Exchange

Polarity match \rightarrow Reflect (=Exchange)

11 Resettable version of RM cell—Designed & Fabricated!

Apply current pulse of appropriate sign to flush the stored flux (the pulse here flushes out positive flux)
To flush either polarity → Do both (±) resets in succession

Fabrication at SeeQC with support from ACI

<u>RM Cell & SQUID</u>

barc tool for enumerating/classifying BARCS device functions

Custom Python program with 16 modules.

Tool is now complete; will be open-sourced.

Layer-cake view of software architecture:

• Modules only import modules from lower-numbered layers.

12

Symmetry group #38 has 6 functions: Function #155. Function #340. Function #481. Function #285. Function #365. Function #185. Example: Function #155 = [1] * 3(L,R): 1(L) -> (R)21(R) -> (L)32(L) -> (R)12(R) -> (R) 33(L) -> (L)23(R) -> (L)1Function #155 has the following symmetry properties: It is D-dual to function #481 It is S-dual to function #481 It is E(1,2)-dual to function #340 It is E(1,3)-dual to function #185 It is E(2,3)-dual to function #481 It R(-1)-transforms to function #365 It R(1)-transforms to function #285

Layer	Module Names & Descriptions				
4	barc (top-level program)				
3	deviceType – Classification of devices with given dimensions.				
2	deviceFunction – Device with a specific transition function.				
	stateSet – Identifies a set of accessible device states.				
1	pulseAlphabet – Sets of pulse types.				
	pulseType – Identifies a specific type of pulse.				
	state – Identifies an internal state of a device.				
	symmetryGroup – Equivalence class of device functions.				
	transitionFunction – Bijective map, input \rightarrow output syndromes.				
0	characterClass – Defines a type of signal characters.				
	deviceDimensions – Defines size parameters of devices.				
	dictPermuter – Used to enumerate transition functions.				
	signalCharacter – Identifies I/O event type (pulse type & port).				
	symmetryTransform – Invertibly transforms a device function.				
	syndrome – An initial or final condition for a device transition.				
	utilities – Defines some low-level utility functions.				

← Example description of a symmetry-equivalence group as output by the **barc** tool.

3 Symmetry Relations of Interest

The following symmetry relations on BARC functions are considered in this work:

- \circ *Direction-reversal symmetry* \mathcal{D}
 - Symmetry under exchange of input & output syndromes (involution of transition func.)
- State-exchange symmetry S
 - Symmetry under an exchange of state labels (and fluxes, for flux-polarized states).
- \circ *Flux-negation symmetry* \mathcal{F}
 - Symmetry under negation of all (I/O flux & internal state) flux polarities.
- *Moving-flux negation symmetry* \mathcal{M} Symmetry under negation of all moving (I/O) flux polarities.
 - Input flux negation symmetry \mathcal{I} Symmetry under negation of all input flux polarities.
 - Output flux negation symmetry O Symmetry under negation of all output flux polarities.
- **Port-relabeling symmetries** \mathcal{R}_P Symmetry under a particular permutation P of the port labels.
 - Port exchange symmetry $\mathcal{E}(p_i, p_j)$ Symmetry wrt an exchange of labels between a particular pair of ports.
 - Rotational symmetry \mathcal{R}_r Relevant for $n \geq 3$ ports. Symmetry under (planar) rotation of port labels.
 - Reflection across port axis $\mathcal{R}_{\{p_i\}}$ Symmetry under reflection of ports on either side of port p_i .
 - *Mirror symmetry* \mathcal{M}_2 , \mathcal{M}_3 Symmetry under port exchange for a 2-port device, or any reflection for a rotationally symmetric 3-port device.
 - Complete port symmetry $\mathcal{R}(n)$ Symmetry under all possible relabelings of the ports.

¹⁴ Equivalence Groups For the 24 One-Port, Two-State Elements:

 $2 \cdot 1 \cdot 2 = 4$ I/O syndromes $\rightarrow 4! = 24$ permutations (raw reversible transition functions).

(Neither flux-negation symmetric nor flux-conserving)

Two-Port, Two-State, Flux-Polarized Elements

There are $2^3 = 8$ I/O syndromes, thus 8! = 40,320 raw reversible transition functions.

- But only 96 of them satisfy the flux conservation constraint.
- And only 10 of these are nontrivial primitives satisfying all constraints.

These 10 functions sort into 7 equivalence groups as follows:

Self-Symmetry Group Size	Equivalence Group Size	Number of Equiv. Groups	Total # of Raw Trans. Funcs.
4	1	4	4
2	2	3	6
тот	ALS:	7	10

The corresponding functional behaviors can be described as:

- 1. Reversible Shift Register (RSR) More on this one later.
- 2. Directed Reversible Shift Register (DRSR)
- 3. Filtering RM Cell (FRM)
- 4. Directed Filtering RM Cell (DFRM).
- 5. Polarized Flipping Diode (PFD). Also has a flux-neutral equivalent.
- 6. Asymmetric Polarity Filter (APF).
- 7. Two-Port Reversible Memory Cell (RM2). Implemented.

⁽Osborn & Wustmann '22)

¹⁶ Illustrations of 2-port, 2-state, flux-polarized elements:

Input syndrome

↑)A(↑)

↓)A(1)

1)B(1)

↓)B(↑)

↓)B(↑)

(Table Rows Shown for ↑ Initial State Only)

1. Reversible Shift Register (RSR): (Implemented by Osborn & Wustmann '22)

2. Directed Reversible Shift Register (DRSR):

Input Output syndrome syndrome 1)A(1) $(\uparrow)B \uparrow$ ↓)A(1) $(\downarrow)B\rangle\uparrow$ 1)B(1) $(\uparrow)A \uparrow$ $(\uparrow)A)\downarrow$ ↓)B(1) Output Input syndrome syndrome 1)A(1) (1)B) 1 ↓)A(1) $(\downarrow)A)\uparrow$ ↑)B(↑) (1)A) 1

3. Filtering RM Cell (FRM):

¹⁷ Illustrations of 2-port, 2-state, flux-polarized elements, cont.:

S

4. Directed Filtering RM Cell (DFRM):

5. Polarized Flipping Diode (PFD):

5. Asymmetric Polarity Filter (APF):

Input	Output	m
yndrome	syndrome	
1)A(1)	(↑)B) ↑	A
↓)A(↑)	$(\downarrow)A\rangle\uparrow$	
1́)Β(1)	$(\uparrow)A \uparrow$	
↓)B(↑)	$(\uparrow)B angle\downarrow$	mismatch
Input	Output	mis
yndrome	syndrome	
1)A(1)	(↑)A) ↑	<u> </u>
↓)A(↑)	(↓)B) ↑	
1)B(1)	(↑)B) ↑	
↓)B(1)	$(\downarrow)A\rangle\uparrow$	match
		·
Input	Output	mismatcl
yndrome	syndrome	misi
1)A(1)	$(\uparrow)A \uparrow$	A
↓)A(↑)	$(\downarrow)B\rangle\uparrow$	
1́)B(1)	(↑)B) ↑	
↓) B(↑)	$(\uparrow)A \downarrow$	match

(Not shown: 2-port RM cell)

Two-Port, Two-State, Flux-Neutral Elements

There are $(2^2)! = 24$ raw flux-symmetric transition functions. • 14 of these are nontrivial, atomic functional primitives.

These sort into 4 equivalence groups as follows:

	Self-Symmetry Group Size	Equivalence Group Size	Number of Equiv. Groups	Total # of Raw Trans. Funcs.	
	4	2	3	6	
1 8		1	8		
	TOTALS:		4	14	

There are 5 distinct functional behaviors (described in forwards time direction):

- 1. Alternating Barrier (AB), 2 representations See next slide.
- 2. Polarized Flipping Diode (PFD), 2 reps..
- 3. Variant Polarized Flipping Diode (VPFD), 2 reps..
- 4. Asymmetric Polarized Flipping Diode (APFD), 4 reps., (and this one is *D*-dual to:)
- 5. Selectable Barrier (SD), 4 reps.

Ex: Polarized Flipping Diode (PFD)

67

Polarity-Dependent Flipping Diode (PFD)

۱/	O Syndron	ne	
Port	State	Fluxon	
Left	$\uparrow \downarrow$	\uparrow	
Left	$\uparrow \downarrow$	\downarrow	-
Left	$\downarrow\uparrow$	\uparrow	~
Left	$\downarrow\uparrow$	\downarrow	
Right	$\uparrow \downarrow$	\uparrow	~
Right	$\uparrow\downarrow$	\downarrow	
Right	$\downarrow\uparrow$	\uparrow	
Right	$\downarrow\uparrow$	\downarrow	~

¹⁹ Ex. 2-port, 2-state neutral element: **Alternating Barrier (AB)**

Flux-conserving, flux-negation symmetric element.

- Also has mirror (\mathcal{M}_2) symmetry.
- Has two \mathcal{D}, \mathcal{S} dual representations.

Flux-neutral internal states \rightarrow Doesn't change fluxon polarity.

State descriptions:

- S_{-B}^{+W} : Positive-wire, negative-barrier.
 - Transmits positive (\uparrow) fluxons, reflects negative (\downarrow) fluxons.
- S^{+B}_{-W}: Positive-Barrier, negative-wire.
 - Reflects positive (1) fluxons, transmits negative (1) fluxons.

Transition function description:

- Fluxons arriving at either port are routed as per the state descriptions above.
- State toggles with every interaction.

Input	Output
Syndrome	Syndrome
$\uparrow p_1(S^{+W}_{-B})$	$(S^{+B}_{-W})p_2\rangle\uparrow$
$\downarrow p_1(S^{+W}_{-B})$	$(S^{+B}_{-W})p_1\rangle\downarrow$
$\uparrow p_2(S^{+W}_{-B})$	$(S^{+B}_{-W})p_1\rangle\uparrow$
$\downarrow p_2(S^{+W}_{-B})$	$(S^{+B}_{-W})p_2\rangle\downarrow$
$\uparrow p_1(S^{+B}_{-W})$	$(S_{-B}^{+W})p_1\rangle\uparrow$
$\downarrow p_1(S^{+B}_{-W})$	$(S_{-B}^{+W})p_2\rangle\downarrow$
$\uparrow p_2(S^{+B}_{-W})$	$(S_{-B}^{+W})p_2\rangle\uparrow$
$\downarrow p_2(S^{+B}_{-W})$	$(S_{-B}^{+W})p_1\rangle\downarrow$

Summary of Results for Three-Port, Two-State Elements:

(Still assuming flux conservation & flux negation symmetry)

Devices with flux-polarized states:

- $2 \cdot 3 \cdot 2 = 12$ I/O syndromes
- 12! = 497,001,600 raw reversible funcs.
- 25,920 of these are flux-conserving.
- 288 of those are flux-negation symmetric.
- 245 of those are atomic (primitives).
- 219 of those use the state non-trivially.
- $\,\circ\,$ Sort into 39 equiv. groups as follows $\rightarrow\,$

Devices with flux-neutral states:

- $1 \cdot 3 \cdot 2 = 6$ I/O syndromes (for \uparrow inputs)
- 6! = 720 permutations.
- $\circ~653$ of them are atomic primtives.
- $\circ~600$ of those use the state non-trivially.
- Sort into 45 equiv. groups as follows:

Summary of (3,2) flux-polarized behaviors

Equivalence Class Size:		2	3	6	12	
Self-Symmetry Group Size:	12	6	4	2	1	Tot.
No. of Equivalence Classes:	1	4	6	24	4	39
Total number of Functions:	1	8	18	144	48	219

Summary of (3,2) flux-neutral behaviors

Equivalence Class Size:	2	4	6	12	24	
Self-Symmetry Group Size:	12	6	4	2	1	Tot.
No. of Equivalence Classes:	1	1	9	23	11	45
Total number of Functions:	2	4	54	276	264	600

21 Illustrations of some 3-port, 2-state flux-neutral elements

Recall there are 45 different non-trivial, atomic functional behaviors (counting \mathcal{D} -duals as equivalent). Of these, only a few exemplar behaviors are illustrated here.

Still seeking implementations of any of these....

Polarized Controlled Flipping Diode (PCFD)

[NOTE: All behaviors shown here are for (+) fluxons only; (-) fluxons interact oppositely with states]

Behavior in Positive Barrier State (B)

²² Some Next Steps for the BARCS effort

- 1. Document classification results more fully (in progress).
- 2. Finish developing **SCIT** (Superconducting Circuit Innovation Tool) tool to facilitate discovery of circuit-level implementations of BARCS functions.
 - Including training an AI/ML model to quickly solve the inverse (circuit design) problem.
- 3. Better understand role of physical symmetries in the circuit design of BARCS elements.
 - What, if any, functions are ruled out by the symmetries?
 - Must we consider including additional SCE device types to break the symmetries?
- 4. Identify a computation-universal set of primitive elements that we also know how to implement!
 - Or, show that this is impossible using the present set of devices.
- 5. Additional work on fabrication & empirical validation of BARCS circuit designs.
- 6. Gain a better understanding of the limits of the energy efficiency of this approach.

Clearly, much work along these lines remains to be done!

• We would be very happy to recruit new collaborators

3 Conclusion

The long-neglected *ballistic* mode of reversible computing has recently attracted renewed interest.

- Classic problems with synchronization & chaotic instability in ballistic computing schemes appear to be resolvable via the asynchronous approach.
- The new method seems to hold some promise for possibly achieving improved energy-delay products and/or more compact circuit designs vs. adiabatic approaches.

Also, note that ballistic approaches are not viable at all in CMOS!

- ° CMOS has nothing like a ballistic flux soliton, & has no nonlinear reactive elements like JJs...
- Thus, we are leveraging unique advantages of superconducting electronics in this approach.

In this paper & talk, we reported our progress on enumerating & classifying the possible BARCS functions...

° Given constraints of full logical reversibility, flux conservation, & flux negation symmetry.

Multiple US-based research groups in superconductor physics & engineering are now making early progress along this line of work...

• We invite additional domestic & international colleagues to join us in investigating this interesting line of research!