Ballistic Asynchronous Reversible Computing in Superconducting Circuits

Michael P. Frank, Center for Computing Research

with Rupert Lewis (Quantum Phenomena Dept.)
Contributors to our Reversible Computing research program

- Full group of recent staff at Sandia:
 - Michael Frank (Cognitive & Emerging Computing)
 - Robert Brocato (RF MicroSystems) – now retired
 - David Henry (MESA Hetero-Integration)
 - Rupert Lewis (Quantum Phenomena)
 - Terence “Terry” Michael Bretz-Sullivan
 - Nancy Missert (Nanoscale Sciences) – now retired
 - Matt Wolak (now at Northrop-Grumman)
 - Brian Tierney (Rad Hard CMOS Technology)

- Thanks are also due to the following colleagues & external research collaborators:
 - Karpur Shukla (CMU → Flame U. → Brown U.)
 - Currently in Prof. Jimmy Xu’s Lab for Emerging Techs.
 - Hannah Earley (Cambridge U. → startup)
 - Erik DeBenedictis (Sandia → Zettaflops, LLC)
 - Joseph Friedman (UT Dallas)
 - Kevin Osborn (LPS/JQI)
 - Liuqi Yu, Ryan Clarke, Han Cai
 - Steve Kaplan (independent contractor)
 - Rudro Biswas (Purdue)
 - Dewan Woods & Rishabh Khare
 - Tom Conte (Georgia Tech/CRNCH)
 - Anirudh Jain, Gibran Essa
 - David Guéry-Odelin (Toulouse U.)
 - FAMU-FSU College of Engineering:
 - Sastry Pamidi (ECE Chair) & Jerris Hooker (Instructor)
 - 2019-20 students:
 - Frank Allen, Oscar L. Corces, James Hardy, Fadi Matloob
 - 2020-21 students:
 - Marshal Nachreiner, Samuel Perlman, Donovan Sharp, Jesus Sosa

Thanks are due to Sandia’s LDRD program, DOE’s ASC program, and the DoD/ARO ACI (Advanced Computing Initiative) for their support of this line of research!
Ballistic Asynchronous Reversible Computing in Superconducting Circuits

Background: Why Reversible Computing?
- Relevant classic results in the thermodynamics of computing
 - Recently generalized to quantum case
- Two major types of approaches to reversible computing in superconducting circuits:
 - Adiabatic approaches – Well-developed today.
 - Likharev’s parametric quantron (1977); more recent QFP tech (YNU & collabs.) w. substantial demo chips.
 - Ballistic approaches – Much less mature to date.
 - Fredkin & Toffoli’s early concepts (1978–’81); much more recent work at U. Maryland, Sandia, UC Davis

Review: The relatively new asynchronous ballistic approach to RC in SCE.
- Addresses concerns w instability of the synchronous ballistic approach
- Potential advantages of asynchronous ballistic RC (vs. adiabatic approaches)
- Implementation w. superconducting circuits (BARCS effort).

Focus of this Talk:
- Presenting our recent work on enumerating/classifying possible BARCS functions w. ≤3 ports and ≤2 states.
Can we envision reversible computing as a deterministic elastic interaction process?

Historical origin of this concept:
- Fredkin & Toffoli’s *Billiard Ball Model of computation* (“Conservative Logic,” IJTP 1982).
 - Based on elastic collisions between moving objects.
 - Spawned a subfield of “collision-based computing.”
 - Using localized pulses/solitons in various media.

No power-clock driving signals needed!
- Devices operate when data signals arrive.
- The operation energy is carried by the signal itself.
 - Most of the signal energy is preserved in outgoing signals.

However, all (or almost all) of the existing design concepts for ballistic computing invoke implicitly *synchronized* arrivals of ballistically-propagating signals…
- Making this work in reality presents some serious difficulties, however:
 - Unrealistic in practice to assume precise alignment of signal arrival times.
 - Thermal fluctuations & quantum uncertainty, at minimum, are always present.
 - Any relative timing uncertainty leads to chaotic dynamics when signals interact.
 - Exponentially-increasing uncertainties in the dynamical trajectory.
 - Deliberate resynchronization of signals whose timing relationship is uncertain incurs an inevitable energy cost.

Can we come up with a new ballistic model that avoids these problems?
Ballistic Asynchronous Reversible Computing (BARC)

Problem: Conservative (dissipationless) dynamical systems generally tend to exhibit chaotic behavior...
- This results from direct nonlinear *interactions* between multiple continuous dynamical degrees of freedom (DOFs), which amplify uncertainties, exponentially compounding them over time...
 - E.g., positions/velocities of ballistically-propagating "balls"
 - Or more generally, any localized, cohesive, momentum-bearing entity: Particles, pulses, quasiparticles, solitons...

Core insight: In principle, we can greatly reduce or eliminate this tendency towards dynamical chaos...
- We can do this simply by avoiding any direct interaction between continuous DOFs of different ballistically-propagating entities

Require localized pulses to arrive *asynchronously*—and furthermore, at clearly distinct, *non-overlapping* times
- Device’s dynamical trajectory then becomes *independent* of the precise (absolute and relative) pulse arrival times
 - As a result, timing uncertainty per logic stage can now accumulate only *linearly*, not exponentially!
 - Only relatively occasional re-synchronization will be needed
 - For devices to still be capable of doing logic, they must now maintain an internal discrete (digitally-precise) state variable—a stable (or at least metastable) stationary state, e.g., a ground state of a well

No power-clock signals, unlike in adiabatic designs!
- Devices simply operate whenever data pulses arrive
- The operation energy is carried by the pulse itself
 - Most of the energy is preserved in outgoing pulses
 - Signal restoration can be carried out incrementally

Goal of current effort at Sandia: Demonstrate BARC principles in an implementation based on fluxon dynamics in SuperConducting Electronics (SCE) ([BARCS effort](#))
One of our early tasks: Characterize the simplest nontrivial BARC device functionalities, given a few simple design constraints applying to an SCE-based implementation, such as:

- (1) Bits encoded in fluxon polarity; (2) Bounded planar circuit conserving flux; (3) Physical symmetry.

Determined through theoretical hand-analysis that the simplest such function is the **1-Bit, 1-Port Reversible Memory Cell (RM):**

- Due to its simplicity, this was then the preferred target for our subsequent detailed circuit design efforts…

![RM Transition Table](image)

<table>
<thead>
<tr>
<th>Input Syndrome</th>
<th>Output Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1(+1)</td>
<td>(+1)+1</td>
</tr>
<tr>
<td>+1(−1)</td>
<td>(+1)−1</td>
</tr>
<tr>
<td>−1(+1)</td>
<td>(−1)+1</td>
</tr>
<tr>
<td>−1(−1)</td>
<td>(−1)−1</td>
</tr>
</tbody>
</table>

Some planar, unbiased, reactive SCE circuit w. a continuous superconducting boundary:
- Only contains L’s, M’s, C’s, and unshunted JJ’s
- Junctions should mostly be subcritical (avoids R_N)
- Conserves total flux, approximately nondissipative

Desired circuit behavior (NOTE: conserves flux, respects T symmetry & logical reversibility):
- If polarities are opposite, they are swapped (shown)
- If polarities are identical, input fluxon reflects back out with no change in polarity (not shown)
- *(Deterministic) elastic ‘scattering’* type interaction: Input fluxon kinetic energy is (nearly) preserved in output fluxon
RM—First working (in simulation) implementation!

Erik DeBenedictis: “Try just strapping a JJ across that loop.”
 ◦ This actually works!

“Entrance” JJ sized to = about 5 LJJ unit cells (~1/2 pulse width)
 ◦ I first tried it twice as large, & the fluxons annihilated instead…
 ◦ “If a 15 μA JJ rotates by 2π, maybe ½ that will rotate by 4π” 😊

Loop inductor sized so ±1 SFQ will fit in the loop (but not ±2)
 ◦ JJ is sitting a bit below critical with ±1

WRspice simulations with ±1 fluxon initially in the loop
 ◦ Uses ic parameter, & uic option to .tran command
 ◦ Produces initial ringing due to overly-constricted initial flux
 ◦ Can damp w. small shunt G

Polarity mismatch → Exchange

Polarity match → Reflect (=Exchange)
Resettable version of RM cell—Designed & Fabricated!

Apply current pulse of appropriate sign to flush the stored flux (the pulse here flushes out positive flux)

- To flush either polarity → Do both (±) resets in succession
barc tool for enumerating/classifying BARCS device functions

Custom Python program with 16 modules.

Tool is now complete; will be open-sourced.

Layer-cake view of software architecture:
- Modules only import modules from lower-numbered layers.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Module Names & Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>barc (top-level program)</td>
</tr>
<tr>
<td>3</td>
<td>deviceType – Classification of devices with given dimensions.</td>
</tr>
<tr>
<td>2</td>
<td>deviceFunction – Device with a specific transition function. stateSet – Identifies a set of accessible device states.</td>
</tr>
<tr>
<td>1</td>
<td>pulseAlphabet – Sets of pulse types. pulseType – Identifies a specific type of pulse. state – Identifies an internal state of a device. symmetryGroup – Equivalence class of device functions. transitionFunction – Bijective map, input→output syndromes.</td>
</tr>
<tr>
<td>0</td>
<td>characterClass – Defines a type of signal characters. deviceDimensions – Defines size parameters of devices. dictPermuter – Used to enumerate transition functions. signalCharacter – Identifies I/O event type (pulse type & port). symmetryTransform – Invertibly transforms a device function. syndrome – An initial or final condition for a device transition. utilities – Defines some low-level utility functions.</td>
</tr>
</tbody>
</table>

Symmetry group #38 has 6 functions:
- Function #155.
- Function #340.
- Function #481.
- Function #285.
- Function #365.
- Function #185.

Example: Function #155 = [1]*3(L,R):
- 1(L) → (R)2
- 1(R) → (L)3
- 2(L) → (R)1
- 2(R) → (R)3
- 3(L) → (L)2
- 3(R) → (L)1

Function #155 has the following symmetry properties:
- It is D-dual to function #481
- It is S-dual to function #481
- It is E(1,2)-dual to function #340
- It is E(1,3)-dual to function #185
- It is E(2,3)-dual to function #481
- It R(-1)-transforms to function #365
- It R(1)-transforms to function #285

Example description of a symmetry-equivalence group as output by the **barc** tool.
Symmetry Relations of Interest

The following symmetry relations on BARC functions are considered in this work:

- **Direction-reversal symmetry** \mathcal{D} – Symmetry under exchange of input & output syndromes (involution of transition func.)

- **State-exchange symmetry** \mathcal{S} – Symmetry under an exchange of state labels (and fluxes, for flux-polarized states).

- **Flux-negation symmetry** \mathcal{F} – Symmetry under negation of all (I/O flux & internal state) flux polarities.

- **Moving-flux negation symmetry** \mathcal{M} – Symmetry under negation of all moving (I/O) flux polarities.
 - **Input flux negation symmetry** \mathcal{I} – Symmetry under negation of all input flux polarities.
 - **Output flux negation symmetry** \mathcal{O} – Symmetry under negation of all output flux polarities.

- **Port-relabeling symmetries** \mathcal{R}_P – Symmetry under a particular permutation P of the port labels.
 - **Port exchange symmetry** $\mathcal{E}(p_i, p_j)$ – Symmetry wrt an exchange of labels between a particular pair of ports.
 - **Rotational symmetry** \mathcal{R}_r – Relevant for $n \geq 3$ ports. Symmetry under (planar) rotation of port labels.
 - **Reflection across port axis** \mathcal{R}_{p_i} – Symmetry under reflection of ports on either side of port p_i.
 - **Mirror symmetry** $\mathcal{M}_2, \mathcal{M}_3$ – Symmetry under port exchange for a 2-port device, or any reflection for a rotationally symmetric 3-port device.
 - **Complete port symmetry** $\mathcal{R}(n)$ – Symmetry under all possible relabelings of the ports.
Equivalence Groups For the 24 One-Port, Two-State Elements:

2 \cdot 1 \cdot 2 = 4 \text{ I/O syndromes} \Rightarrow 4! = 24 \text{ permutations (raw reversible transition functions).}

Stateful Reflector

(State Unused—Not Atomic)

Configurable Inverter

(Doesn’t Change State)

Toggle

(Doesn’t Use State)

Toggle & Conditional Invert

(Neither flux-negation symmetric nor flux-conserving)

Exchange (RM)

(Doesn’t Use State)

Conditional Toggle

Type 4

Type 5

(Neither flux-negation symmetric nor flux-conserving)
Two-Port, Two-State, Flux-Polarized Elements

There are $2^3 = 8$ I/O syndromes, thus $8! = 40,320$ raw reversible transition functions.

- But only 96 of them satisfy the flux conservation constraint.
- And only 10 of these are nontrivial primitives satisfying all constraints.

These 10 functions sort into 7 equivalence groups as follows:

<table>
<thead>
<tr>
<th>Self-Symmetry Group Size</th>
<th>Equivalence Group Size</th>
<th>Number of Equiv. Groups</th>
<th>Total # of Raw Trans. Funcs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>TOTALS:</td>
<td></td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

The corresponding functional behaviors can be described as:

1. Reversible Shift Register (RSR) – More on this one later.
2. Directed Reversible Shift Register (DRSR)
3. Filtering RM Cell (FRM)
4. Directed Filtering RM Cell (DFRM).
5. Polarized Flipping Diode (PFD). – Also has a flux-neutral equivalent.
6. Asymmetric Polarity Filter (APF).

(Osborn & Wustmann ‘22)
Illustrations of 2-port, 2-state, flux-polarized elements:

(Table Rows Shown for \uparrow Initial State Only)

1. Reversible Shift Register (RSR):

 (Implemented by Osborn & Wustmann ‘22)

<table>
<thead>
<tr>
<th>Input syndrome</th>
<th>Output syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>\uparrowA(\uparrow)</td>
<td>(\uparrow)B \uparrow</td>
</tr>
<tr>
<td>\downarrowA(\uparrow)</td>
<td>(\downarrow)B \uparrow</td>
</tr>
<tr>
<td>\uparrowB(\uparrow)</td>
<td>(\uparrow)A \uparrow</td>
</tr>
<tr>
<td>\downarrowB(\uparrow)</td>
<td>(\downarrow)A \uparrow</td>
</tr>
</tbody>
</table>

2. Directed Reversible Shift Register (DRSR):

<table>
<thead>
<tr>
<th>Input syndrome</th>
<th>Output syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>\uparrowA(\uparrow)</td>
<td>(\uparrow)B \uparrow</td>
</tr>
<tr>
<td>\downarrowA(\uparrow)</td>
<td>(\downarrow)B \uparrow</td>
</tr>
<tr>
<td>\uparrowB(\uparrow)</td>
<td>(\uparrow)A \uparrow</td>
</tr>
<tr>
<td>\downarrowB(\uparrow)</td>
<td>(\downarrow)A \downarrow</td>
</tr>
</tbody>
</table>

3. Filtering RM Cell (FRM):

<table>
<thead>
<tr>
<th>Input syndrome</th>
<th>Output syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>\uparrowA(\uparrow)</td>
<td>(\uparrow)B \uparrow</td>
</tr>
<tr>
<td>\downarrowA(\uparrow)</td>
<td>(\downarrow)A \uparrow</td>
</tr>
<tr>
<td>\uparrowB(\uparrow)</td>
<td>(\uparrow)A \uparrow</td>
</tr>
<tr>
<td>\downarrowB(\uparrow)</td>
<td>(\downarrow)B \uparrow</td>
</tr>
</tbody>
</table>
Illustrations of 2-port, 2-state, flux-polarized elements, cont.:

4. Directed Filtering RM Cell (DFRM):

<table>
<thead>
<tr>
<th>Input syndrome</th>
<th>Output syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑)A(↑)</td>
<td>(↑)B↑</td>
</tr>
<tr>
<td>↓)A(↑)</td>
<td>(↓)A↑</td>
</tr>
<tr>
<td>↑)B(↑)</td>
<td>(↑)A↑</td>
</tr>
<tr>
<td>↓)B(↑)</td>
<td>(↓)B↓</td>
</tr>
</tbody>
</table>

5. Polarized Flipping Diode (PFD):

<table>
<thead>
<tr>
<th>Input syndrome</th>
<th>Output syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑)A(↑)</td>
<td>(↑)A↑</td>
</tr>
<tr>
<td>↓)A(↑)</td>
<td>(↓)B↑</td>
</tr>
<tr>
<td>↑)B(↑)</td>
<td>(↑)B↑</td>
</tr>
<tr>
<td>↓)B(↑)</td>
<td>(↓)A↑</td>
</tr>
</tbody>
</table>

5. Asymmetric Polarity Filter (APF):

<table>
<thead>
<tr>
<th>Input syndrome</th>
<th>Output syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑)A(↑)</td>
<td>(↑)A↑</td>
</tr>
<tr>
<td>↓)A(↑)</td>
<td>(↓)B↑</td>
</tr>
<tr>
<td>↑)B(↑)</td>
<td>(↑)B↑</td>
</tr>
<tr>
<td>↓)B(↑)</td>
<td>(↑)A↓</td>
</tr>
</tbody>
</table>
Two-Port, Two-State, Flux-Neutral Elements

There are \(2^2\)! = 24 raw flux-symmetric transition functions.
1. 14 of these are nontrivial, atomic functional primitives.

These sort into 4 equivalence groups as follows:

<table>
<thead>
<tr>
<th>Self-Symmetry Group Size</th>
<th>Equivalence Group Size</th>
<th>Number of Equiv. Groups</th>
<th>Total # of Raw Trans. Funcs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

TOTALS: 4 14

There are 5 distinct functional behaviors (described in forwards time direction):
1. Alternating Barrier (AB), 2 representations – See next slide.
2. Polarized Flipping Diode (PFD), 2 reps..
3. Variant Polarized Flipping Diode (VPFD), 2 reps..
4. Asymmetric Polarized Flipping Diode (APFD), 4 reps.,
 (and this one is \(D\)-dual to:)
5. Selectable Barrier (SD), 4 reps.
Ex. 2-port, 2-state neutral element: **Alternating Barrier (AB)**

Flux-conserving, flux-negation symmetric element.
- Also has mirror (\mathcal{M}_2) symmetry.
- Has two D, S dual representations.

Flux-neutral internal states \rightarrow Doesn’t change fluxon polarity.

State descriptions:
- S_{WB}^+: *Positive-wire, negative-barrier*.
 - Transmits positive (\uparrow) fluxons, reflects negative (\downarrow) fluxons.
- S_{WB}^-: *Positive-Barrier, negative-wire*.
 - Reflects positive (\uparrow) fluxons, transmits negative (\downarrow) fluxons.

Transition function description:
- Fluxons arriving at either port are routed as per the state descriptions above.
- State toggles with every interaction.

<table>
<thead>
<tr>
<th>Input Syndrome</th>
<th>Output Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\uparrow)p_1(S_{WB}^+)$</td>
<td>$(S_{WB}^+)_p_2)$ \uparrow</td>
</tr>
<tr>
<td>$\downarrow)p_1(S_{WB}^+)$</td>
<td>$(S_{WB}^+)_p_1)$ \downarrow</td>
</tr>
<tr>
<td>$\uparrow)p_2(S_{WB}^+)$</td>
<td>$(S_{WB}^-)_p_1)$ \uparrow</td>
</tr>
<tr>
<td>$\downarrow)p_2(S_{WB}^+)$</td>
<td>$(S_{WB}^-)_p_2)$ \downarrow</td>
</tr>
<tr>
<td>$\uparrow)p_1(S_{WB}^-)$</td>
<td>$(S_{WB}^+)_p_1)$ \uparrow</td>
</tr>
<tr>
<td>$\downarrow)p_1(S_{WB}^-)$</td>
<td>$(S_{WB}^+)_p_2)$ \downarrow</td>
</tr>
<tr>
<td>$\uparrow)p_2(S_{WB}^-)$</td>
<td>$(S_{WB}^-)_p_2)$ \uparrow</td>
</tr>
<tr>
<td>$\downarrow)p_2(S_{WB}^-)$</td>
<td>$(S_{WB}^-)_p_1)$ \downarrow</td>
</tr>
</tbody>
</table>
Summary of Results for Three-Port, Two-State Elements:
(Still assuming flux conservation & flux negation symmetry)

Devices with flux-polarized states:
- $2 \cdot 3 \cdot 2 = 12$ I/O syndromes
- $12! = 497,001,600$ raw reversible funcs.
- 25,920 of these are flux-conserving.
- 288 of those are flux-negation symmetric.
- 245 of those are atomic (primitives).
- 219 of those use the state non-trivially.
- Sort into 39 equiv. groups as follows:

Devices with flux-neutral states:
- $1 \cdot 3 \cdot 2 = 6$ I/O syndromes (for ↑ inputs)
- $6! = 720$ permutations.
- 653 of them are atomic primitives.
- 600 of those use the state non-trivially.
- Sort into 45 equiv. groups as follows:

Summary of (3,2) flux-polarized behaviors

<table>
<thead>
<tr>
<th>Equivalence Class Size:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>Tot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Symmetry Group Size:</td>
<td>12</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No. of Equivalence Classes:</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>24</td>
<td>4</td>
<td>39</td>
</tr>
<tr>
<td>Total number of Functions:</td>
<td>1</td>
<td>8</td>
<td>18</td>
<td>144</td>
<td>48</td>
<td>219</td>
</tr>
</tbody>
</table>

Summary of (3,2) flux-neutral behaviors

<table>
<thead>
<tr>
<th>Equivalence Class Size:</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>12</th>
<th>24</th>
<th>Tot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Symmetry Group Size:</td>
<td>12</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No. of Equivalence Classes:</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>23</td>
<td>11</td>
<td>45</td>
</tr>
<tr>
<td>Total number of Functions:</td>
<td>2</td>
<td>4</td>
<td>54</td>
<td>276</td>
<td>264</td>
<td>600</td>
</tr>
</tbody>
</table>
Illustrations of some 3-port, 2-state flux-neutral elements

Recall there are 45 different non-trivial, atomic functional behaviors (counting \mathcal{D}-duals as equivalent).

Of these, only a few exemplar behaviors are illustrated here.

Still seeking implementations of any of these….

- Polarized Neutral Toggle Rotary (PNTR)
- Polarized Toggle Controlled Barrier (PTCB)
- Polarized Controlled Flipping Diode (PCFD)
- Polarized Throw Switch, Type A (PTSA)
- Polarized Throw Switch, Type B (PTSB)
- Polarized Knock-twice Toggle Controlled Barrier (PKTCB)

[NOTE: All behaviors shown here are for (+) fluxons only; (−) fluxons interact oppositely with states]
Some Next Steps for the BARCS effort

1. Document classification results more fully (in progress).

2. Finish developing **SCIT** (Superconducting Circuit Innovation Tool) tool to facilitate discovery of circuit-level implementations of BARCS functions.
 - Including training an AI/ML model to quickly solve the inverse (circuit design) problem.

3. Better understand role of physical symmetries in the circuit design of BARCS elements.
 - What, if any, functions are ruled out by the symmetries?
 - Must we consider including additional SCE device types to break the symmetries?

4. Identify a computation-universal set of primitive elements that we also know how to implement!
 - Or, show that this is impossible using the present set of devices.

5. Additional work on fabrication & empirical validation of BARCS circuit designs.

6. Gain a better understanding of the limits of the energy efficiency of this approach.

Clearly, much work along these lines remains to be done!
- We would be very happy to recruit new collaborators
Conclusion

The long-neglected *ballistic* mode of reversible computing has recently attracted renewed interest.

- Classic problems with synchronization & chaotic instability in ballistic computing schemes appear to be resolvable via the asynchronous approach.
- The new method seems to hold some promise for possibly achieving improved energy-delay products and/or more compact circuit designs vs. adiabatic approaches.

Also, note that ballistic approaches are not viable *at all* in CMOS!

- CMOS has nothing like a ballistic flux soliton, & has no nonlinear reactive elements like JJs…
- Thus, we are leveraging unique advantages of superconducting electronics in this approach.

In this paper & talk, we reported our progress on enumerating & classifying the possible BARCS functions…

- Given constraints of full logical reversibility, flux conservation, & flux negation symmetry.

Multiple US-based research groups in superconductor physics & engineering are now making early progress along this line of work…

- We invite additional domestic & international colleagues to join us in investigating this interesting line of research!