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ABSTRACT

The purpose of our report is to discuss the notion of entropy and its relationship with statistics. Our
goal is to provide a manner in which you can think about entropy, its central role within information
theory and relationship with statistics. We review various relationships between information theory
and statistics—nearly all are well-known but unfortunately are often not recognized.

Entropy quantifies the “average amount of surprise” in a random variable and lies at the heart
of information theory, which studies the transmission, processing, extraction, and utilization of
information. For us, data is information. What is the distinction between information theory and
statistics? Information theorists work with probability distributions. Instead, statisticians work
with samples. In so many words, information theory using samples is the practice of statistics.
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1. INTRODUCTION

The purpose of our report is to discuss the notion of entropy and its relationship with statistics. Our
goal is to provide a manner in which you can think about entropy, its central role within information
theory and overlap with statistics. We review various relationships between information theory and
statistics—nearly all are well-known but unfortunately are often not recognized. A good example is
that the log likelihood ratio converges to the relative entropy as the number of samples increases.

Entropy quantifies the “average amount of surprise” in a random variable. Consider the three
distributions shown in the leftmost graphic of Figure 1-1. If you randomly sample from each
of the distributions and create a histogram as depicted in the rightmost graphic of Figure 1-1,
which distribution (or histogram) surprises you the most? The least? And why? Our question
assumes that the notion of surprise is well-defined—the purpose of an entropy definition is to
quantify average surprise. Because the three distributions range from flat to more concentrated,
the samples, will tend to cluster as the spread decreases. Hence there is less surprise among the
samples associated with less spread. Equivalently, as the distribution concentrates about some
point, then sampling the distribution results in less spread, hence less surprise.

Entropy lies at the heart of information theory, which studies the transmission, processing, extrac-
tion, and utilization of information. For us, data is information. What is the distinction between
information theory and statistics? The two graphics in Figure 1-1 provide the answer. Information
theorists work with probability distributions. Instead, statisticians work with samples. Indeed,
statistics is the practice of describing the population (i.e., the probability distribution) in terms of
a random sample (e.g., the histogram). In so many words, information theory using samples is the
practice of statistics.

The origins of information theory lie in statistical mechanics, which attempts to connect the move-
ment of molecules to observable physical phenomena. Entropy, as introduced by Boltzmann, is a
measure of molecular disorder. Shannon observed that entropy is a general principle with appli-
cation outside of physics and could be applied to the transmission of digital bits, or limits on the
transmission of bits. Both for Boltzmann and Shannon, entropy quantifies the amount of infor-
mation in a collection of objects (e.g., molecules and bits). And so information theory provides a
framework to understand what is available in the data. For Boltzmann and Shannon, the popula-
tions are the molecular trajectories and the (uncompressed) signal, respectively. Hence information
theory and statistics are intimately related.

Chapter 2 introduces entropy via definitions and examples. Chapter 3 reviews “p-value” based
hypothesis testing and the relationship with a max-entropy distribution. Chapter 4 reviews the
relationship between Neyman-Pearson hypothesis testing and relative entropy. Chapter 5 reviews
Fisher Information and its uses within mathematical statistics. Chapter 6 reviews the relationship

9
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Figure 1-1. Left: Probability density functions of three probability distributions with different spread.
Right: Histograms of 500 samples from the three distributions sorted into 15 bins.

between random variables including the concept of a statistical copula. Our report concludes with
a discussion of the Wasserstein metric in §7 including a comparison with relative entropy.

1.1. Notes and References

Our report makes no claims that the material presented is original. Instead, our report documents
well-known relationships in a conversational tone as we struggled to clarify them and apply to our
work. We have few references, a limitation we hope to address in revisions to our report. One ob-
vious reference is the excellent book [Cover and Thomas, 2012], in particular Chapter 7 reviewing
relationships between information theory and statistics. Our report lists several references helpful
to us along the way. If you the reader are compelled to search the internet to better understand the
topic at hand, then at some level our report has met one of its goals. We welcome pointers to other
useful references, suggestions for additional topics and improving our discussion, in particular our
inevitable errors.
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2. ENTROPY

The (differential) entropy of a continuous random variable 𝑋 distributed with respect to the prob-
ability density function (pdf) 𝑝 is

ℎ(𝑋) = −
∫ ∞

−∞
𝑝(𝑥) log 𝑝(𝑥) 𝑑𝑥 (2.1a)

while the (discrete) entropy of a discrete random variable 𝑋 distributed with respect to the proba-
bility mass function (pmf) 𝑝 is

𝐻 (𝑋) = −
𝑛∑
𝑖=1

𝑝(𝑥𝑖) log 𝑝(𝑥𝑖) . (2.1b)

where 𝑛 denotes the number of elements in the support of 𝑝 where log 𝑝 denotes the logarithm
of the function 𝑝. The case of the letter “h” denotes whether the entropy under discussion is
differential or discrete, i.e., whether the random variable 𝑋 is continuous or discrete. In a slight
abuse of notation, 𝑝 denotes the distribution for a continuous or discrete random variable given the
context.

Entropy quantifies the “average amount of surprise” in a random variable. Let’s parse the words
“average” and “surprise”. Both entropies can be rewritten as

−E log 𝑝(𝑋) (2.2)

where the context specifies whether the expectation is with respect to (pdf or pmf) 𝑝. And so the
entropy of 𝑋 is an average, namely the expectation of a function of 𝑋 with respect to the probability
density or mass function 𝑝.

Figure 2-1 shows a comparison of differential entropy for normally distributed random variables
with different standard deviations first depicted in Figure 1-1. The entropy increases with the
standard deviation 𝜎. This formalizes our intuition that if we were to observe outcomes of the
random variables in the figure, we would, on average, be surprised by observations of 𝑍 and less
so by observations of 𝑋 .

Why the function logarithm? To quantify the amount of surprise I of an event 𝐸 , it is reasonable
to require the following properties:

1. I(𝐸1) > I(𝐸2) when 𝑝(𝐸1) < 𝑝(𝐸2), i.e., I is monotonically decreasing; a larger proba-
bility of an event is associated with a decrease in the surprise.

2. I(𝐸) = 0 when the event 𝐸 always occurs, for instance 𝑝(𝑋 = 𝑥𝑖) = 𝛿𝑖, 𝑗 where 𝛿𝑖, 𝑗 is the
Kronecker delta function, which is zero except at the one event 𝑥𝑖.

11
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Figure 2-1. Left: The pdfs for three normally distributed random variables with different standard
deviations first depicted in Figure 1-1. Right: The differential entropy of a normally distributed
random variable as a function of 𝜎. For 𝑋 with 𝜎 = 1

2 , ℎ(𝑋) ≈ 0.725791. For 𝑌 with 𝜎 = 1, ℎ(𝑌 ) ≈ 1.41894.
For 𝑍 with 𝜎 = 5, ℎ(𝑍) ≈ 3.02838. As 𝜎 increases, so does the expected surprise.

3. I(𝐸1 and 𝐸2) = I(𝐸1) +I(𝐸2) when 𝐸1 and 𝐸2 are independent events.

The choice I(𝐸) = − log 𝑝(𝐸) satisfies these properties (and in fact is the only function possible)
and its average is the entropy 𝐻.

An important distinction between ℎ and 𝐻 is that the former takes on values in the interval (−∞,∞)
while the latter is non-negative and bounded by log𝑛. In the next section, we consider the relation-
ship between ℎ and 𝐻 for an important class of probability measures.

2.1. Maximum entropy

The entropy of a random variable varies with choice of parameter. Consider, for example, the
entropy of a Bernoulli random variable with probability of success 𝑝, as shown in Figure 2-2. A
Bernoulli random variable models a coin flip, where 𝑝 is the probability of the coin displaying a
head. Note that if 𝑝 = 0 or 1, there is no surprise in the outcome. The entropy is maximized when
𝑝 = 1

2 .

A related concept is that of a maximum entropy distribution. Instead of maximizing the entropy of
a random variable by varying its parameters, we seek the distribution of maximum entropy within
a class of distributions. Such distribution is the basis for the principle of maximum entropy: if
nothing is known about a distribution, then the distribution with the largest entropy is the least-
informative.

12
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Figure 2-2. The entropy of a Bernoulli random variable.

For instance, consider the class of distributions continuous over the interval (0, 𝑎) for positive 𝑎. Is
there a maximum entropy distribution? Yes—the uniform distribution over (0, 𝑎), i.e., (1/𝑎)1(0,𝑎)
where

1(0,𝑎) (𝑥) =
{

1 𝑥 ∈ (0, 𝑎)
0 𝑥 ∉ (0, 𝑎)

(2.3)

is an indicator function. The differential entropy of (1/𝑎)1(0,𝑎) is easily computed to be

ℎ
(
(1/𝑎)1(0,𝑎)

)
= (1/𝑎) ℎ

(
1(0,𝑎)

)
= log𝑎 . (2.4)

By varying 𝑎, the differential entropy varies over the interval (−∞,∞). Intuitively, as 𝑎 → 0+, the
differential entropy decreases to −∞ and the resulting uniform distribution is nearly a point mass
and so contains little surprise. As 𝑎 → ∞, the differential entropy increases without bound and
the resulting uniform distribution contains substantial surprise. We now glean the idea behind the
principle of maximum entropy because the uniform distribution favors all outcomes equally, i.e.,
is least-informative.

The choice of 𝑎 = 1 results in the standard uniform distribution, i.e.,

1(0,1) (𝑥) =
{

1 𝑥 ∈ (0,1)
0 𝑥 ∉ (0,1)

(2.5)

is involved in the universality of the uniform, also referred to as the probability integral transform.
Both phrases encapsulate the significant conclusion that when 𝐹 is the continuous cumulative dis-
tribution function (cdf) for a real-valued random variable 𝑋 , then the distribution for the random

13
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Figure 2-3. Left: The continuous indicator function 1(0,5) . Right: The discrete indicator function
1{𝑖 (5/10) }10

𝑖=1

variable 𝐹 (𝑋) is (2.5). In other words, the distribution for the random variable 𝐹 (𝑋) is the maxi-
mum entropy distribution among all continuous distributions supported over the unit interval and
by (2.4) has value zero.

The maximum entropy pmf corresponding to 𝑛 points distributed uniformly over (0, 𝑎] (i.e., the
uniform discrete distribution) (1/𝑛)1{𝑖(𝑎/𝑛)}𝑛

𝑖=1
where

1{𝑖(𝑎/𝑛)}𝑛
𝑖=1
(𝑥) =

{
1 𝑥 ∈ {𝑖(𝑎/𝑛)}𝑛𝑖=1
0 𝑥 ∉ {𝑖(𝑎/𝑛)}𝑛𝑖=1

(2.6)

with

𝐻
(
(1/𝑛)1{𝑖(𝑎/𝑛)}𝑛

𝑖=1

)
= (1/𝑛)𝐻

(
1{𝑖(𝑎/𝑛)}𝑛

𝑖=1

)
= log𝑛 .

Figure 2-3 shows an example of continuous and discrete indicator functions with 𝑎 = 5 and 𝑛 =
10.

A limiting relationship between the differential and discrete entropy is available. In terms of con-
tinuous and discrete uniform distributions, the limiting relationship holds for all 𝑛 and so becomes
an identity. When 𝑎 > 0, a straight forward derivation shows that

𝐻
(
(1/𝑛)1{𝑖(𝑎/𝑛)}𝑛

𝑖=1

)
+ log(𝑎/𝑛) = ℎ

(
(1/𝑎)1(0,𝑎)

)
. (2.7)

The identity (2.7) explains that the entropies of the continuous and discrete uniform distributions
over the interval (0, 𝑎) and the 𝑛 points {𝑎/𝑛,2(𝑎/𝑛), . . . , 𝑎}, respectively are related via the spacing
𝑎/𝑛 between points. In so many words, the differential entropy is the sum of the discrete entropy
on the points and the spacing between the points. Note that the relationship is true for all 𝑛 but
we cannot take limit 𝑛 → ∞ since the lefthand side approaches −∞ while the righthand side is
independent of 𝑛.
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Figure 2-4. Approximating entropy using samples from the normal distributions in Figure 2-1. Left:
Histograms of 500 samples from the distributions sorted into 15 bins. Right: Boxplots of the esti-
mated entropy of the distributions over 100 trials of 500 samples each. The average entropy esti-
mates for 𝜎 = 0.5, 1, and 5 were around 0.8002, 1.3914, and 2.6339, respectively.

2.2. Approximate entropy

Computing the entropy of a random variable requires knowledge of the probability density or mass
function, quantities typically estimated from a sample so that the entropy is approximated. Because
the entropy is an expectation and we assume the sample is random, Monte Carlo approximation
is natural choice. The number of samples needed to achieve a prescribed level of approximation
depends upon the problem at hand and the use of entropy. Our report will review several situa-
tions where the Monte Carlo approximation of entropy can by replaced by a standard statistical
procedure.

Figure 2-4 shows histograms and estimated entropy based on samples taken from the distributions
in Figure 2-1. The discrete entropy was estimated with 500 samples sorted into 15 bins with the
probability of a bin given by normalizing the histogram counts by the sample size.
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3. ENTROPY AND FISHER’S HYPOTHESIS TEST

Suppose we have a samples of some continuous distribution. Can we make a principled decision
whether the samples are associated with a specific distribution 𝑓 ? Hypothesis testing represents
such a principled approach and we’ll review the relationship with entropy. In a sense we’ll make
precise, hypothesis testing is a decision procedure equivalent to determining whether the average
surprise, i.e., the entropy, is maximized over the unit interval. Either hypothesis testing or check-
ing whether entropy is maximized are decision procedures for associating the samples with the
distribution 𝑓 .

In the hypothesis testing approach advocated by Fisher [1925] a p-value is the probability of ob-
taining test results at least as extreme as the results actually observed, under the assumption that
the null hypothesis holds. A small p-value implies that the observed outcome is unlikely under the
null hypothesis. Given a threshold, if the p-value is less than the threshold, then the null hypothesis
is rejected.

Let’s consider an example. Suppose we sample a distribution 𝑛 times and denote each one by
𝑥𝑖. We decide that the null hypothesis is that the samples are drawn from a normal distribution
with mean 𝜇 and standard deviation 𝜎, in other words the null distribution is 𝑓 . We’ll use the test
statistic

1
𝑛

∑𝑛
𝑖=1(𝑥𝑖 − 𝜇)

𝜎√
𝑛

(3.1)

i.e., the z-test to determine whether the 𝑛 samples are distributed with mean 𝜇 and standard devia-
tion 𝜎. The law of large numbers implies that the z-test is distributed with respect to the standard
normal distribution when the distribution for the samples has finite variance. Hence the p-value is
computed by determining the probability that the null distribution, in this case the standard normal
distribution, achieves a value at least as extreme of the test statistic. In other words, as the magni-
tude of the test statistic increases, the p-value decreases since it represents the area under the tails
of the standard normal distribution.

This example illustrates that the p-value is a function of the z-test (the chosen test statistic), which
summarizes the sample. Both the p-value and test statistic are random variables since they are
functions of the random sample. The probability distribution for the test statistic is referred to
as the sampling distribution and must be calculable under the null hypothesis. In the example,
the law of large numbers implies that the z-test is distributed with respect to the standard normal
distribution as the number of samples increases.

An important observation is that when the null hypothesis is true and the underlying random vari-
able is continuous, then the probability distribution of the p-value is uniform on the unit interval
because the z-test transforms a standard normal random variable to a uniform random variable;
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see the discussion following (2.5). This is well understood but typically not recognized and de-
mystifies the somewhat subtle notion of a p-value; see e.g., Murdoch et al. [2008] for an insightful
discussion. The differential entropy of the p-value distribution is zero by (2.4) under the assump-
tion that the null is true. Hence, if the null is false, then the entropy of the p-value distribution is
negative.

Recall that the null hypothesis is rejected if the p-value is smaller than a prescribed (positive)
threshold. For instance, when the threshold is set at one percent, we’ll incorrectly reject the null
hypothesis (when it is true) with probability one-hundredth. This is an unavoidable error and occurs
because there are numerous subsets of the unit interval with area less than one-hundredth—area
under the uniform distribution. In contrast, the entropy requires the distribution for the random
variable transformed by test statistic random variable—there is no error. The entropy is either
negative or zero, however, a threshold to determine whether the entropy is “sufficiently” close to
zero can be determined. If we modify the uniform distribution on subsets of the unit interval with
area less than the threshold, the entropy of the modified distribution is a negative number within a
threshold of zero.

In practice, however, we have samples of the random variable so that sampling error plays a role.
Care must be taken to select a threshold that is on the same order or larger than sampling error.
For example, we assumed that the sample size was sufficiently large so that the standard normal
approximation is a good approximation for the z-test. We can check whether the approximation
to the differential entropy approximated via the samples 𝑥𝑖 is “sufficiently” negative or compute a
p-value. The latter is typically more expedient than approximating the entropy.

Figure 3-1 displays the results of four experiments with different sets of parameters used for the
samples drawn from a normal distribution. The equality between the differential and discrete
entropies (2.7) for a uniform distribution suggests that a histogram generated by sampling the test
statistic is a simple approximation to the p-value distribution and its entropy is easily calculated
using (2.1b). The four plots support the assertion that only when the samples are drawn from
the standard normal distribution (𝜇 = 0 and standard deviation 𝜎 = 1) is the p-value distribution
(approximated by the histogram) of maximum entropy.
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50 normal samples with mean 0.00 and std 1.00
100 p-values, entropy 1.61 and histogram entropy is 1.60
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(a) (𝜇,𝜎) = (0,1) normal sampling and the p-value
entropy is 1.6.

50 normal samples with mean -0.50 and std 1.50
100 p-values, entropy 1.61 and histogram entropy is 0.56
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(b) (𝜇,𝜎) = (−.5,1.5) normal sampling and the p-
value entropy is .56.

50 normal samples with mean -0.10 and std 1.10
100 p-values, entropy 1.61 and histogram entropy is 1.49
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(c) (𝜇,𝜎) = (.1,1.1) normal sampling and the p-
value entropy is 1.49.

150 normal samples with mean 0.01 and std 1.01
500 p-values, entropy 2.71 and histogram entropy is 2.69
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(d) (𝜇,𝜎) = (.01,1.01) normal sampling and the p-
value entropy is 2.69.

Figure 3-1. Investigating the relationship between entropy and the uniform distribution. Plots (a)-(c)
depict a histogram of 100 p-values each of which is a z-test using 50 samples drawn from a normal
distribution. A histogram approximation to the p-value entropy can then be compared to the entropy
of the uniform pmf or log5 ≈ 1.61. Each histogram has 5 bins. Plot (d) depicts the histogram of 500
p-values each of which is a z-test using 150 samples drawn from a normal distribution. The p-value
entropy can then be compared to the entropy of the uniform pmf or log15 ≈ 2.71. The histogram has
15 bins.
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4. RELATIVE ENTROPY AND NEYMAN-PEARSON
HYPOTHESIS TESTING

The KL divergence, or relative entropy [Kullback and Leibler, 1951] of the probability density of
𝑞 from 𝑝 is defined to be

𝜅(𝑝, 𝑞) B
∫

𝑝(𝑥) log
𝑝(𝑥)
𝑞(𝑥) 𝑑𝑥 ⩾ 0 with equality only when 𝑝 = 𝑞 (4.1a)

where 𝑞(𝑥) = 0 implies 𝑝(𝑥) = 0. If we recall that the log likelihood is given by the expression
log(𝑝/𝑞), then

𝜅(𝑝, 𝑞) = E𝑝 log
𝑝

𝑞
. (4.1b)

In words, the relative entropy is the average, or expectation, of the log likelihood with respect to
the distribution 𝑝. Relative entropy is an example of an 𝑓 -divergence that quantifies the difference
between two distributions.

We also remark that 𝜅(𝑝, 𝑞) is a pre-metric and not a metric since 𝜅(𝑝, 𝑞) does not in general equal
𝜅(𝑞, 𝑝). An important conclusion is that relative entropy is not a distance between 𝑝 and 𝑞. How-
ever, relative entropy does distinguish between the distributions 𝑝 and 𝑞 if properly understood.

4.1. Relative entropy and hypothesis testing

Relative entropy is an idealization because knowledge of 𝑝 and 𝑞 is assumed. In practice, we have
samples of 𝑝 or 𝑞 and want a principled procedure to select 𝑝 or 𝑞. Can we decide in a statistically
defensible manner whether the samples are drawn from 𝑝 or 𝑞? One approach is to approximate the
distributions 𝑝 and 𝑞 from the samples and then compute the relative entropy. Another approach
is to use hypothesis testing, which allows us to work with the samples directly. This is an advan-
tage since this does not require the distributions 𝑝 and 𝑞 or their approximation. An important
consideration of Neyman-Pearson [Neyman and Pearson, 1933] hypothesis testing is the relation-
ship between sample size and the probabilities of false negative and false positives. Quantifying
the size of these two probabilities can be addressed by considering the relative entropy between
the underlying distributions. The smaller the relative entropy, the larger the sample size needed.
Relative entropy represents the best possible false positive and false negative rate achievable.
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4.2. Hypothesis testing

Suppose we assume that 𝑋1, 𝑋2, . . . , 𝑋𝑛 are distributed with respect to the distribution 𝑓 . Consider
the two simple hypotheses

𝐻𝑝 : 𝑓 = 𝑝

𝐻𝑞 : 𝑓 = 𝑞 .
(4.2)

We will denote 𝐻𝑝 and 𝐻𝑞 the null and alternate hypothesis, respectively. Hypothesis testing is a
principled manner in which to accept or reject that the samples 𝑋1, 𝑋2, . . . , 𝑋𝑛 are drawn from 𝑝.
There are two primary errors

• Rejecting the null hypothesis 𝐻𝑝 when it is true. This is deemed a type I error or a false
positive. The probability of a type I error is the significance level of the test and is typically
denoted by 𝛼.

• Accepting the alternate hypothesis 𝐻𝑞 when it is false. This leads to a type II error or a false
negative. The probability of a type II error is typically denoted by 𝛽.

• The power of the test is the probability of rejecting 𝐻𝑝 when it is false and is equal to 1− 𝛽.

When the significance level 𝛼 is prescribed, the log likelihood ratio, i.e., the test,

Λ𝑛 = log
𝑝(𝑋1) · · · 𝑝(𝑋𝑛)
𝑞(𝑋1) · · ·𝑞(𝑋𝑛)

=
𝑛∑
𝑗=1

log
𝑝(𝑋 𝑗 )
𝑞(𝑋 𝑗 )

(4.3)

is well-known to be the optimal test with respect to the significance level 𝛼 where we have assumed
that 𝑋1, 𝑋2, . . . , 𝑋𝑛 are independent and identically distributed. When 𝑝(𝑋 𝑗 ) > 𝑞(𝑋 𝑗 ) then the
sample 𝑋 𝑗 is more likely to be associated with 𝑝 since the ratio of 𝑝(𝑋 𝑗 ) to 𝑞(𝑋 𝑗 ) exceeds one so
that the logarithm of the ratio is positive. Hence depending upon the sign of Λ𝑛, we’ll accept or
reject the null hypothesis.

If 𝑓 = 𝑝, then the weak law of large numbers implies that the estimator

Λ̂𝑛 B
1
𝑛
Λ𝑛 → 𝜅(𝑝, 𝑞) in probability as 𝑛→∞ . (4.4)

In words, the sample average of the random variables log
(
𝑝(𝑋 𝑗 )/𝑞(𝑋 𝑗 )

)
converges in probability1

to the KL divergence of 𝑞 from 𝑝. Recall that (4.1b) states that 𝜅(𝑝, 𝑞) represents the average
of the likelihood ratio. And so the weak law of large numbers asserts that with large probability
the sample average Λ̂𝑛 approximates the average of the likelihood ratio as the number of samples
increases.

1More precisely, the weak law implies that for all positive 𝜖

lim
𝑛→∞
P
(
|Λ̂𝑛 − 𝜅(𝑝, 𝑞) | > 𝜖

)
= 0
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Because 𝜅(𝑝, 𝑞) is zero only when 𝑝 = 𝑞, the probability (the significance level) that the samples
are distributed with respect to 𝑝 is

𝛼𝑛 = P(Λ̂𝑛 < 0 |𝐻𝑝 is true) . (4.5)

Let’s unpack this a bit. First,

Λ̂𝑛 < 0 if and only if 𝑒Λ𝑛/𝑛 < 1 . (4.6a)

We then have by (4.3) that

Λ𝑛

𝑛
= log

(
𝑝(𝑋1) · · · 𝑝(𝑋𝑛)
𝑞(𝑋1) · · ·𝑞(𝑋𝑛)

)1/𝑛
so that when

𝑒Λ𝑛/𝑛 =

(
𝑝(𝑋1) · · · 𝑝(𝑋𝑛)
𝑞(𝑋1) · · ·𝑞(𝑋𝑛)

)1/𝑛
< 1

=

(
𝑝(𝑋1)
𝑞(𝑋1)

)1/𝑛
· · ·

(
𝑝(𝑋𝑛)
𝑞(𝑋𝑛)

)1/𝑛
< 1 (4.6b)

so that we may reexpress the type I error (4.5) as

𝛼𝑛 = P

{(
𝑝(𝑋1)
𝑞(𝑋1)

)1/𝑛
· · ·

(
𝑝(𝑋𝑛)
𝑞(𝑋𝑛)

)1/𝑛
< 1 |𝐻𝑝 is true

}
. (4.6c)

This indicates that a type I error occurs when the samples 𝑋 𝑗 are distributed according to 𝑝 but

𝑒Λ𝑛/𝑛 < 1 (4.6d)

holds.

For instance, consider the 𝑝 and 𝑞 in Figure 4-1a. A small probability event is when a sufficient
number of the 𝑋 𝑗 ’s are within one standard deviation of 𝜇𝑞 so that (4.6d) holds. Because the two
distributions in Figure 4-1a are so disparate, 𝛼𝑛 is extremely small because the probability of such
an event is extremely small. In contrast, Figure 4-2a depicts two distributions that are nearly the
same so that 𝑛 must be sufficiently large to achieve a prescribed level. However, in both cases,
𝛼𝑛 > 0, i.e., the significance level is positive so that false positives are inevitable. In fact, the
limit (4.4) explains that as the number of samples increases without bound, the normalized log
likelihood ratio converges to the relative entropy, a positive number unless 𝑝 = 𝑞.

An important question is whether we can estimate 𝛼𝑛 in terms of the number of samples. Let’s
once again reexpress the type I error (4.5) as

𝛼𝑛 = P
(
𝜅(𝑝, 𝑞) − Λ̂𝑛 > 𝜅(𝑝, 𝑞) |𝐻𝑝 is true

)
. (4.6e)

We may now invoke Hoeffding’s inequality to provide a non-asymptotic bound on the type I er-
ror

𝛼𝑛 ⩽ exp
(
−𝐶 𝑛𝜅2(𝑝, 𝑞)

)
→ 0 as 𝑛→∞ (4.6f)
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for a positive constant2 𝐶. The value of 𝐶 and 𝜅(𝑝, 𝑞) determine the rate of decay, which is
inevitable with an increasing number of samples. The significance level decreases when either
𝐶 and 𝜅(𝑝, 𝑞) increases. When 𝐶 is not small, then the likelihood ratio 𝑝/𝑞 takes on a range of
values and when the KL divergence of 𝑞 from 𝑝 is not small, sampling one of the distributions
is typically not a random sample of the other distribution. Both cases confirm our intuition that a
negative estimator Λ̂𝑛 is a rare occurrence when the KL divergence of 𝑞 from 𝑝 or 𝐶 are not small.
However, when the product of the square of the divergence and 𝐶 are small, a large number of
samples may be necessary to achieve a prescribed significance level.

In a similar fashion, the probability of a type II error, (accepting the alternate hypothesis when it is
false)

𝛽𝑛 = P(Λ̂𝑛 > 0 |𝐻𝑞 is true)
= P(Λ̂𝑛−

(
− 𝜅(𝑞, 𝑝)

)
> 𝜅(𝑞, 𝑝) |𝐻𝑞 is true)

⩽ exp
(
−𝐶 𝑛𝜅2(𝑞, 𝑝)

)
→ 0 as 𝑛→∞ . (4.6g)

In contrast with the bound on the significance level (4.6f) that involves 𝜅(𝑝, 𝑞), the type II error
instead involves 𝜅(𝑞, 𝑝).

Hoeffding’s inequality is an example of a concentration inequality, the purpose of which is to
quantify how a function of random variables cluster about its mean (in our case the sum of random
variables Λ̂𝑛 about the mean 𝜅(𝑝, 𝑞) or 𝜅(𝑞, 𝑝)). The upper bound is non-asymptotic because it
bounds the significance 𝛼𝑛 or 𝛽𝑛 for each 𝑛 in contrast to the classical limit theorems of probabil-
ity.

4.3. Example: Two normal distributions

Suppose we assume that 𝑋1, 𝑋2, . . . , 𝑋𝑛 are normally distributed. The hypothesis test (4.2) then
specializes to

𝐻𝑝 : 𝜇 = 𝜇𝑝 ,𝜎 = 𝜎𝑝

𝐻𝑞 : 𝜇 = 𝜇𝑞 ,𝜎 = 𝜎𝑞 .
(4.7)

Let’s establish (4.4) for the case of 𝑝 and 𝑞 normal distributions. A tedious calculation estab-
lishes

log
𝑝(𝑋1) · · · 𝑝(𝑋𝑛)
𝑞(𝑋1) · · ·𝑞(𝑋𝑛)

= log
𝜎𝑛
𝑞

𝜎𝑛
𝑝
−
∑𝑛

𝑖=1(𝑋𝑖 − 𝜇𝑝)2

2𝜎2
𝑝

+
∑𝑛

𝑖=1(𝑋𝑖 − 𝜇𝑞)2

2𝜎2
𝑞

= 𝑛 log
𝜎𝑞

𝜎𝑝
−𝑛𝑋̄2

(
1

2𝜎2
𝑞

− 1
2𝜎2

𝑝

)
+𝑛𝑋̄

(
𝜇𝑝

𝜎2
𝑝

−
𝜇𝑞

𝜎2
𝑞

)
+𝑛

(
𝜇2
𝑞

2𝜎2
𝑞

−
𝜇2
𝑝

2𝜎2
𝑝

)
(4.8)

2If we assume that the 𝑛 samples satisfy 𝑚 ⩽ 𝑋 𝑗 ⩽ 𝑀 , then 𝐶 = 4log(𝑀/𝑚). We conclude that 𝐶 quantifies the range
of values that the likelihood ratio 𝑝/𝑞 achieves.
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where 𝑋̄ and 𝑋̄2 are the sample mean and sample second moment. We can then write the estima-
tor

Λ̂ = log
𝜎𝑞

𝜎𝑝
− 𝑋̄2

(
1

2𝜎2
𝑞

− 1
2𝜎2

𝑝

)
+ 𝑋̄

(
𝜇𝑝

𝜎2
𝑝

−
𝜇𝑞

𝜎2
𝑞

)
+

𝜇2
𝑞

2𝜎2
𝑞

−
𝜇2
𝑝

2𝜎2
𝑝

→ log
𝜎𝑞

𝜎𝑝
+
𝜎2
𝑝 + (𝜇𝑞 − 𝜇𝑝)2

2𝜎2
𝑞

− 1
2

in probability as 𝑛→∞ (4.9)

where we used the two relations that 𝑋̄ → 𝜇𝑝 and 𝑋̄2 → 𝜎2
𝑝 + 𝜇2

𝑝 in probability as 𝑛 → ∞. We
established (4.4) since the limit is the relative entropy between two normal distributions.

Figures 4-1a–4-1c depicts the use of the estimator

Λ̂𝑛 =
1
𝑛

𝑛∑
𝑗=1

log
𝑝(𝑋 𝑗 )
𝑞(𝑋 𝑗 )

where 𝑋 𝑗 are random numbers distributed with respect to 𝑝 for the specific case

𝐻𝑝 : 𝜇𝑝 = 2 ,𝜎𝑝 = 1/10
𝐻𝑞 : 𝜇𝑞 = 1 ,𝜎𝑞 = 2/10 .

(4.10)

The type I and type II errors 𝛼𝑛 are not displayed because they are extremely small and underflow
the matlab computation. Let’s instead modify the hypothesis test to be

𝐻𝑝 : 𝜇𝑝 = 1 ,𝜎𝑝 = 1/10
𝐻𝑞 : 𝜇𝑞 = 1 ,𝜎𝑞 = 9/100 .

(4.11)

Figures 4-2a–4-2d provides an interesting contrast. In particular, Figure 4-2c depicts the con-
vergence of the type I and type II errors 𝛼𝑛 and 𝛽𝑛 via the use of the bounds (4.6f) and (4.6g),
respectively.

4.4. Notes and References

The discussion of this section is based upon the lecture note https://nowak.ece.wisc.
edu/ece830/ece830_spring15_lecture7.pdf due to Robert Nowak.
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(a) Depicting the normal distributions. (b) Log likelihood convergence of Λ𝑛.

(c) Relative error of Λ𝑛 including the conver-
gence rate of Monte Carlo sampling.

Figure 4-1. Relative entropy analysis on two normal distributions with parameters 𝜇𝑝 = 2 ,𝜎𝑝 = 1/10
and 𝜇𝑞 = 1 ,𝜎𝑞 = 2/10
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(a) Depicting the normal distributions. (b) Log likelihood convergence of Λ𝑛.

(c) Convergence of the Type I and Type II errors
(𝛼𝑛, 𝛽𝑛).

(d) Relative error of Λ𝑛 including the conver-
gence rate of Monte Carlo sampling.

Figure 4-2. Entropy analysis on two normal distributions where 𝑝 has parameters 𝜇𝑝 = 1 ,𝜎𝑝 = 1/10
and 𝑞 has parameters 𝜇𝑞 = 1 ,𝜎𝑞 = 9/100.
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5. FISHER INFORMATION

The score random variable is defined to be

𝑠(𝜗) = ∇𝜗 log𝐿 (𝜗) (5.1a)

where ∇𝜗 is the gradient1 and 𝐿 (𝜗) = 𝑝(𝑥;𝜗) is the likelihood function. The Fisher information is
defined to be the variance of the score

𝐼 (𝜗) B E 𝑠2(𝜗) =
∫ (

∇𝜗 log 𝑝(𝑥;𝜗)
)2

𝑝(𝑥;𝜗) 𝑑𝑥 . (5.1b)

Fisher information quantifies the relationship between a random variable 𝑋 and the parameter 𝜗 of
the log-likelihood function 𝐿 (𝜗). While the score and Fisher information are functions of 𝜗, the
former holds fixed the sample 𝑥 and the latter integrates over all possible samples 𝑥. The definition
of the Fisher information entailed the introduction of two fundamental quantities—the score and
the likelihood—in mathematical statistics; we’ll return to the likelihood shortly. Finally note that
the Fisher information is positive unless 𝐼 does not depend upon 𝜗. We’ll explain in § 5.3, the
Fisher information quantifies the mapping to the parameter from the sample. The intuition here is
that the Fisher information increases with the amount of information in the sample to parameter
mapping. When the Fisher information is small, many samples will be necessary to estimate the
parameter.

A careful reader might recall that the variance of a random variable subtracts the square of the
random variable from the second moment of the random variable. Therefore the variance of the
score is E 𝑠2(𝜗) −

(
E 𝑠(𝜗)

)2. However by using the identity

𝑝(𝑥;𝜗) ∇𝜗 log 𝑝(𝑥;𝜗) = ∇𝜗𝑝(𝑥;𝜗) , (5.1c)

we can show that the mean score is zero, i.e.,

E 𝑠(𝜗) =
∫ ∞

−∞
∇𝜗 log 𝑝(𝑥;𝜗) 𝑝(𝑥;𝜗) 𝑑𝑥

=
∫ ∞

−∞
∇𝜗𝑝(𝑥;𝜗) 𝑑𝑥

= ∇𝜗

∫ ∞

−∞
𝑝(𝑥;𝜗) 𝑑𝑥 = ∇𝜗1 = 0

(5.1d)

1When 𝜗 is a vector of parameters then the gradient of the score is a vector and(
∇𝜗 log 𝑝(𝑥;𝜗)

)2
=
(
∇𝜗 log 𝑝(𝑥;𝜗)

)⊤
∇𝜗 log 𝑝(𝑥;𝜗) = ∇𝜗 log 𝑝(𝑥;𝜗) · ∇𝜗 log 𝑝(𝑥;𝜗) .

where ∇𝜗 =
(

𝜕
𝜕𝜗1

𝜕
𝜕𝜗1

· · · 𝜕
𝜕𝜗𝑘

)
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where we assumed that differentiation and integration can be interchanged. The aforementioned
identity can also be used to show that

E
(
∇𝜗 log 𝑝(𝑋;𝜗)

)2
= E

(∇𝜗𝑝(𝑋;𝜗)
𝑝(𝑋;𝜗)

)2
= −E∇2

𝜗 log 𝑝(𝑋;𝜗) , (5.1e)

formulations you might encounter in the literature. The last equality, which we will use below,
integrates by parts the first expression, assuming that two derivatives of log 𝑝(𝑋;𝜗) with respect to
𝜗 exist. If 𝜗 is a scalar, then ∇2

𝜗 = Δ𝜗, i.e., the Laplacian.

5.1. Information content

Fisher information maps 𝜗 to a non-negative real number. The mapping quantifies the variability
between 𝑋 and 𝜗. If 𝑋 , or equivalently 𝑝, is sensitive to changes in 𝜗, then the Fisher information
will be “large”. If 𝑋 is not sensitive to changes in 𝜗, then the Fisher information will be “small”.
The derivative with respect to 𝜗 then encapsulates the sensitivity of 𝑋 to 𝜗. We have also learned
that the differential entropy (2.1a) of 𝑋 quantifies the average amount of surprise of 𝑋 using the
density 𝑝. So both notions are attempting to quantify the behavior of the random variable 𝑋 via its
density. Why do we need both notions of information? Let’s first understand the question Fisher
information helps to answer.

The likelihood, a fundamental quantity in mathematical statistics, was defined in (4.6b) and is used
to emphasize that the parameter 𝜗, which we’ll assume is a scalar for simplicity of notation, is the
variable of interest. Given independent samples 𝑥1, 𝑥2, . . . , 𝑥𝑚 distributed according to 𝑝(𝑥;𝜃), the
log likelihood becomes

log𝐿 (𝜃) = logΠ𝑚
𝑖=1𝑝(𝑥𝑖;𝜃) =

𝑚∑
𝑖=1

log 𝑝(𝑥𝑖;𝜃) . (5.2)

But suppose we don’t know the parameter value 𝜃 and denote this ignorance by using the variable
𝜗. Now note that the log likelihood is also a random variable because it is a function of the samples
and so the sample average is of interest. The law of large numbers then implies that

1
𝑚

𝑚∑
𝑖=1

log 𝑝(𝑥𝑖;𝜗) → E log 𝑝(𝑋;𝜗) =
∫

log 𝑝(𝑋;𝜗) 𝑝(𝑥;𝜃) 𝑑𝑥 (5.3)

as 𝑚 →∞.

So let’s first understand the case of an extremely large number of samples 𝑚 so that the sample
average is an excellent approximation to the differential entropy for 𝑝(𝑥;𝜃). Let’s interchange
expectation and the gradient followed by the use of the identity (5.1c) to obtain

∇𝜗E log 𝑝(𝑋;𝜗) = E∇𝜗 log 𝑝(𝑋;𝜗) = E∇𝜗𝑝(𝑋;𝜗)
𝑝(𝑋;𝜗) . (5.4a)
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Because the mean of the score is zero (recall (5.1d)), then

E
∇𝜗𝑝(𝑋;𝜗)
𝑝(𝑋;𝜗)

���
𝜗=𝜃

= E
∇𝜃 𝑝(𝑋;𝜃)
𝑝(𝑋;𝜃) =

∫
∇𝜃 𝑝(𝑥;𝜃) 𝑑𝑥 = 0 (5.4b)

so that the parameter 𝜃 associated with the samples is a critical or stationary point for the expecta-
tion in (5.3). Now recall from elementary differential calculus that in order to show that the critical
point 𝜃 is a maximum, we need to establish that the second derivative of the mean score is negative,
i.e.,

∇2
𝜗E log 𝑝(𝑋;𝜗)

���
𝜗=𝜃

< 0 . (5.4c)

Assuming that we can interchange expectation with differentiation, the alternate formulations for
the Fisher information (5.1e) imply that the critical point 𝜃 is a (local) maximum when the inequal-
ity

𝐼 (𝜃) = E
(
∇𝜃 log 𝑝(𝑋;𝜗)

)2���
𝜗=𝜃

> 0 (5.4d)

is satisfied. Hence the amount of Fisher information explains the efficacy in estimating 𝜃 given
samples of 𝑋 that is postulated to be modeled by 𝑝(𝑥;𝜃).

5.2. Entropy and Fisher information

The equality in (5.3) defines a mapping 𝜑 that satisfies

𝜑(𝜗) = E log 𝑝(𝑋;𝜗) =
∫

log 𝑝(𝑥;𝜗) 𝑝(𝑥;𝜃) 𝑑𝑥 . (5.5)

This leads to a relationship between differential entropy and Fisher information because 𝜑(𝜃) =
E log 𝑝(𝑋;𝜃) is the differential entropy for the random variable 𝑋 . Whereas the differential entropy
quantifies the “average amount of surprise” in the random variable 𝑋 by considering the value
E log 𝑝(𝑋;𝜃), the Fisher information describes the sensitivity of the mapping 𝜑 to changes in 𝜗.
This sensitivity is useful for statisticians who are typically interested in describing the population
parameter 𝜃 given samples of 𝑋 .

5.3. Maximum Likelihood

The Maximum Likelihood Estimate (MLE) is defined to be

𝜗MLE B argmax
𝜗

𝑚∑
𝑖=1

log 𝑝(𝑥𝑖;𝜗) . (5.6)

As its name suggests, the solution of this maximization problem results in an estimator that it is
most “likely” for the samples. But can we explain why the MLE is a good estimate? In particular,
because the MLE is a random variable, what is its distribution and variance?
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In fact, a standard result is that

𝜃̂MLE ∼ 𝑁
(
𝜃,

1
𝑚 𝐼 (𝜃)

)
as 𝑚 →∞ . (5.7)

In words, the MLE random variable is normally distributed about the parameter 𝜃 with a variance
that decreases with the product of the Fisher information 𝐼 (𝜃) and the number of samples. The
estimate explains that the MLE is asymptotically unbiased, i.e.,

E 𝜃̂MLE → 𝜃 . (5.8)

Large Fisher information implies that the MLE is concentrated about the mean 𝜃 and the number
of samples needed to reach a prescribed threshold on the variance is reduced. Conversely, small
Fisher information implies that many samples are needed so that the MLE is concentrated about
the mean 𝜃. This discussion supports our contention that the Fisher information quantifies the
mapping to the parameter from the sample. Recall that the Fisher information is positive; if larger
than one, then it amplifies the amount of information per sample. Conversely, if less than one then
the Fisher information constricts the amount of information per sample.

When the product of the number of samples and the Fisher information is sufficiently large, then
𝜃̂MLE ≈ 𝜃 so that the conclusions reached in (5.4) suggest that

E∇𝜗 log 𝑝(𝑋;𝜗)
���
𝜗=𝜃̂MLE

≈ 0 (5.9a)

and

𝐼 (𝜗)
���
𝜗=𝜃̂MLE

> 0 (5.9b)

are plausible. This is useful because the parameter 𝜃 is unknown and so 𝐼 (𝜃̂MLE) can be used to
construct confidence intervals.

5.4. Cramer-Rao bound

The asymptotic distribution for the MLE (5.7) quantifies that the Fisher information is inversely
proportional to the variance. This begs the questions of whether there are better estimators and
what is the best possible variance given a sample. The latter question is addressed by the Cramér-
Rao bound, which in the case of a scalar parameter states that

E(𝜃 − 𝜃̂)2 ⩾
1

𝐼 (𝜃) (5.10)

for an unbiased estimator 𝜃̂ for 𝜃. The latter implies that E(𝜃 − 𝜃̂) = 0 so that the inequality (5.10)
explains that the variance of the estimator 𝜃̂ is bounded from below by the inverse of the Fisher
information 𝐼 (𝜃). Hence a large Fisher information explains that the variance of an unbiased
estimator may be small. Whether an estimator can be determined satisfying the bound is another
matter but no unbiased estimator can be smaller than the inverse of the Fisher information.
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Given 𝑚 independent samples, the maximum likelihood estimate (5.7) satisfies the lower bound

E(𝜃 − 𝜃̂MLE)2 ⩾
1

𝑚𝐼 (𝜃) (5.11)

which explains that the bound for the MLE estimator decreases with the number of samples.

5.5. Fisher information and relative entropy

How close is the density 𝑝(𝑥;𝜗) to 𝑝(𝑥;𝜃)? One way to quantify this closeness is via the rela-
tive entropy 𝜓(𝜗) = 𝜅(𝑝(𝑥;𝜗), 𝑝(𝑥;𝜃)). If we assume that the relative entropy is a differentiable
function of 𝜗 then

𝜓(𝜃) = 0 = 𝜓′(𝜃)

By (4.1a), the first equality follows since the relative entropy is only zero when the two densities
are the same, i.e., 𝜗 = 𝜃, so that the function 𝜓 is minimized at 𝜗 = 𝜃, i.e., the second equality.
Hence the Taylor series expansion

𝜓(𝜗) = 𝜓(𝜃) +𝜓′(𝜃) (𝜗− 𝜃) + 1
2
𝜓′′(𝜃) (𝜗− 𝜃)2 +𝑂 (𝜗− 𝜃)3

=
1
2
𝜓′′(𝜃) (𝜗− 𝜃)2 +𝑂 (𝜗− 𝜃)3

grants

𝜅
(
𝑝(𝑥;𝜗), 𝑝(𝑥;𝜃)

)
=

1
2

𝜕2

𝜕𝜗2 𝜅
(
𝑝(𝑥;𝜗), 𝑝(𝑥;𝜃)

) ��
𝜗=𝜃 (𝜗− 𝜃)2 +𝑂 (𝜗− 𝜃)3

=
1
2
𝜅
( 𝜕2

𝜕𝜗2 𝑝(𝑥;𝜗)
��
𝜗=𝜃 , 𝑝(𝑥;𝜃)

)��
𝜗=𝜃 (𝜗− 𝜃)2 +𝑂 (𝜗− 𝜃)3

= 𝐼 (𝜃) (𝜗− 𝜃)2

2
+𝑂 (𝜗− 𝜃)3

where the second and third equalities follow by (5.1e) and (5.1b). In words, the relative entropy

𝜅
(
𝑝(𝑥;𝜗), 𝑝(𝑥;𝜃)

)
= 𝐼 (𝜃) (𝜗− 𝜃)2

2
+𝑂 (𝜗− 𝜃)3

is linearly approximated by the Fisher information for 𝜗 sufficiently close to 𝜃. This is an instance
of the well-understood relationship between an 𝑓 -divergence (e.g., KL-divergence) and the Fisher
information. As with all Taylor series approximations, the analysis is formal since we have no idea
how close 𝜗 needs to be to 𝜃 nor whether any of the higher order derivatives of 𝜓 are bounded as 𝜗
approaches 𝜃. The importance, though, is to emphasize the primacy of the Fisher information.
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6. MUTUAL DEPENDENCE

The mutual information of two random variables quantifies the dependence between the two vari-
ables. A related quantity is the concordance of random variables and is typically conflated with
dependence. The latter concept relates the functional relationship between two random variables
while the former concept measures the presence of positive or negative co-movement. Correlation
is properly understood as a concordance and its absolute value is widely used as a measure of
dependence despite its limitations.

Let’s start to understand what mutual information quantifies by comparing it to the linear cor-
relation between the variables. This helps to clarify the meaning of the important concept of
dependence between random variables and draw a contrast with concordance.

Recall that the correlation of two random variables 𝑋 and 𝑌 is

𝜌𝑋𝑌 =
Cov(𝑋,𝑌 )
𝜎𝑋 𝜎𝑌

(6.1)

where

Cov(𝑋,𝑌 ) = E(𝑋𝑌 ) −E(𝑋)E(𝑌 )

=
∫ ∫

𝑝𝑋𝑌 (𝑥, 𝑦)𝑥𝑦 𝑑𝑥 𝑑𝑦−
∫

𝑝𝑋 (𝑥)𝑥 𝑑𝑥
∫

𝑝𝑌 (𝑦)𝑦 𝑑𝑦

=
∫ ∫ (

𝑝𝑋𝑌 (𝑥, 𝑦) − 𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)
)
𝑥𝑦 𝑑𝑥 𝑑𝑦 (6.2)

and

𝑝𝑋 (𝑥) =
∫

𝑝𝑋𝑌 (𝑥, 𝑦) 𝑑𝑦 and 𝑝𝑌 (𝑦) =
∫

𝑝𝑋𝑌 (𝑥, 𝑦) 𝑑𝑥 (6.3)

are the marginal pdfs. In contrast the mutual information of two random variables 𝑋 and 𝑌 is

𝐼 (𝑋;𝑌 ) = E
(
ln

𝑝𝑋𝑌 (𝑥, 𝑦)
𝑝𝑌 (𝑥)𝑝𝑋 (𝑦)

)
(6.4)

=
∫ ∫ (

ln 𝑝𝑋𝑌 (𝑥, 𝑦) − ln 𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)
)
𝑝𝑋𝑌 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

6.1. Example

Suppose that 𝑋 is a finite variance random variable symmetrically distributed about the origin so
that E𝑋 (𝑋) = 0 (think of a mean zero normal random variable) and 𝑌 = 𝑋2𝑘 for a positive integer
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𝑘 . Then

E(𝑋𝑌 ) = E𝑋𝑌 (𝑋𝑌 )

=
∫ ∫

𝑥 𝑦 𝑝𝑋𝑌 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

=
∫

𝑥2𝑘+1
∫

𝑝𝑋𝑌 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥

=
∫

𝑥2𝑘+1𝑝𝑋 (𝑥) 𝑑𝑥 = E𝑋 (𝑋2𝑘+1) = 0 (6.5a)

where we used our assumption that 𝑋 is symmetrically distributed about the origin, i.e., 𝑝𝑋 (−𝑥) =
𝑝𝑋 (𝑥) is an even function. Recall that 𝑋 and 𝑌 are independent if and only if 𝑝𝑋,𝑌 (𝑥, 𝑦) =
𝑝𝑋 (𝑥) 𝑝𝑌 (𝑦). In other words the joint density 𝑝𝑋,𝑌 of independent random variables is a product
of their marginal densities. If the random variables are dependent, then the joint density involves
more than the marginal densities. And so a limitation of the correlation is revealed because in
passing to the fourth equality, the dependence between the random variable is absorbed during the
integration over 𝑦 that results in the marginal density of 𝑋 . Hence

𝜌𝑋𝑌 =
Cov(𝑋,𝑌 )
𝜎𝑋 𝜎𝑌

=
E𝑋𝑌 (𝑋𝑌 ) −E𝑋 (𝑋)E𝑌 (𝑌 )

𝜎𝑋 𝜎𝑌
= 0 . (6.5b)

This example demonstrates that the random variables 𝑋 and 𝑌 = 𝑋2𝑘 have zero correlation even
though they are related in a nonlinear fashion. However, only in the special case that 𝑋 and𝑌 = 𝑋2𝑘

are jointly normal can we also conclude that the pair is independent.

6.2. Copula

How do we generate a 𝑝𝑋,𝑌 that is not a product of its marginal pdfs 𝑝𝑋 and 𝑝𝑋 , i.e., how do we
generate a function 𝑞 ≠ 1 satisfying

𝑝𝑋𝑌 (𝑥, 𝑦) = 𝑞(𝑥, 𝑦) 𝑝𝑋 (𝑥) 𝑝𝑌 (𝑦) (6.6)

so that 𝑋 and 𝑌 are dependent random variables? This is not so simple as it appears since the
product of the 𝑞 selected and the marginals must be a function that can be identified with a joint
pdf.

Does there exist appropriate functions 𝑞? A theorem due to Skalar [1959] explains that at least one
𝑞(𝑥, 𝑦) = 𝑐(𝑢, 𝑣) exists. The function 𝑐 is called the copula density where

𝑐(𝑢, 𝑣) = 𝜕2

𝜕𝑢 𝜕𝑣
𝐶 (𝑢, 𝑣) (6.7)

and 𝐶 is the copula, by definition, a joint cumulative distribution function with uniform marginal
distributions. Hence we can select 𝑢(𝑥) = 𝐹𝑋 (𝑥) and 𝑣(𝑦) = 𝐹𝑌 (𝑦) the cdfs for 𝑝𝑋 and 𝑞𝑋 , respec-
tively, then

𝑐(𝑥, 𝑦) = 𝜕2

𝜕𝑢 𝜕𝑣
𝐶
(
𝐹𝑋 (𝑥), 𝐹𝑌 (𝑦)

) 𝜕𝐹𝑋 (𝑥)
𝜕𝑥

𝜕𝐹𝑌 (𝑦)
𝜕𝑦

=
𝜕2

𝜕𝑢 𝜕𝑣
𝐶
(
𝐹𝑋 (𝑥), 𝐹𝑌 (𝑦)

)
𝑝𝑋 (𝑥) 𝑝𝑌 (𝑦) (6.8)
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where we’ve exploited the result that the cdfs 𝐹𝑋 and 𝐹𝑌 are uniformly distributed random vari-
ables; see the discussion following (2.5). We can now write

𝑝𝑋𝑌 (𝑥, 𝑦) = 𝑐(𝑥, 𝑦) 𝑝𝑋 (𝑥) 𝑝𝑌 (𝑦) . (6.9)

Roughly, this statement states that the randomness in the joint probability density is a product of
three randomness—the two marginals and the copula. Figure 6-1 shows two marginal distributions
linked by different copulas. How do we quantify how much information is associated with the
marginals and the copula? Given our interest with information theory, mutual information proves
crucial.

6.3. Mutual independence

Suppose that 𝑋 and 𝑌 are dependent (so that 𝑐 ≠ 1). Then by (6.9)

0 < 𝐼 (𝑋;𝑌 ) = E
(
ln

𝑝𝑋𝑌 (𝑥, 𝑦)
𝑝𝑋 (𝑥) 𝑝𝑌 (𝑦)

)
= E ln𝑐(𝑢𝑋 , 𝑣𝑌 ) = −ℎ

(
𝑐(𝑋,𝑌 )

)
(6.10)

Recall that the mutual information of two random variables quantifies the dependence between
them, a term that wasn’t precisely defined. We now see that dependence is encapsulated by the
random variable distributed with respect to copula density 𝑐(𝑥, 𝑦).

Now recall the example in the previous section: 𝑋 is a finite variance random variable symmetri-
cally distributed about the origin so that E𝑋 (𝑋) = 0 and𝑌 = 𝑋2𝑘 for a positive integer 𝑘 . In contrast
to correlation, the mutual information is zero if and only if 𝑐 = 1, i.e., when 𝑋 and 𝑌 are indepen-
dent. It is in this sense that mutual information detects the dependence between 𝑋 and 𝑌 that is not
possible with the correlation.

Let’s test our understanding. Suppose that 𝑋 and𝑌 are independent. Then 𝑝𝑋𝑌 (𝑥, 𝑦) = 𝑝𝑋 (𝑥) 𝑝𝑌 (𝑦)
so that 𝐼 (𝑋;𝑌 ) = 0. Suppose 𝑌 = 𝛼 𝑋 for 𝛼 ≠ 0 so that 𝑌 has the same distribution as 𝛼𝑋 . What is
𝐼 (𝑋;𝛼 𝑋)? Because 𝑝𝑌 (𝑦) = 𝑝𝑋 (𝑥/𝛼) (1/𝛼) we have

𝐼 (𝑋;𝛼 𝑋) = E
(
ln

𝑝𝑋𝑌 (𝑥, 𝑦)
𝑝𝑋 (𝑥) 𝑝𝑌 (𝑦)

)
= E

(
ln

𝑝𝑋 (𝑥) 𝑝𝑋 (𝑥/𝛼)(1/𝛼)
𝑝𝑋 (𝑥) 𝑝𝑋 (𝑥/𝛼)(1/𝛼)

)
= 0 .

Although knowledge of either marginal density is informative for the other marginal, the copula
determines their dependence. If we know that 𝑋 and 𝑌 are dependent, then 𝑐 ≠ 1, then their mutual
entropy describes the amount of dependence and the negative describes the average amount of
surprise.

6.4. Mutual information is unbounded

Note that 𝐼 (𝑋;𝑌 ) = 𝐼 (𝑌 ;𝑋) and 𝐼 (𝑋;𝑌 ) ⩾ 0 using Jensen’s inequality and 𝐼 (𝑋;𝑌 ) = 0 only when
𝑋 and 𝑌 are independent. And so how large can the mutual information between random variables
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(a) Independent 𝑋 and 𝑌 (𝑐(𝑥, 𝑦) = 1). (b) Gaussian copula with positive correlation.

(c) Gaussian copula with positive correlation. (d) Gaussian copula with negative correlation.

Figure 6-1. Plots of samples from joint distributions of random variables 𝑋 and 𝑌 linked by different
copulas. The marginal distributions for 𝑋 (distributed normally) and 𝑌 (distributed exponentially)
can be seen along the top and right of each plot.
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be? Let 𝑐 be the copula density for a uniformly distributed joint random variable on the square
(0,√𝑎) × (0,√𝑎) for 0 < 𝑎 ⩽ 1 so that by (6.10),

𝐼 (𝑋;𝑌 ) = −ℎ
(
𝑐(𝑋,𝑌 )

)
=

1
𝑎

ln
1
𝑎

∫ √
𝑎

0

∫ √
𝑎

0
𝑑𝑢 𝑑𝑣

= − log𝑎 →
{
∞ as 𝑎 → 0+

0 as 𝑎 → 1−
(6.11)

Consider the latter case when 𝑎 → 1− so that 𝑐 → 1 over the square (0,√𝑎) × (0,√𝑎). Hence
𝑝𝑋𝑌 (𝑥, 𝑦) → 𝑝𝑋 (𝑥) 𝑝𝑌 (𝑦) so 𝑋 and 𝑌 are approaching independent random variables. In contrast,
as 𝑎 → 0+, then 𝑐 → 0 or roughly, the copula 𝑐 is approaching the product of Dirac delta function
𝛿(𝑥) 𝛿(𝑦) located at the origin. Hence 𝑝𝑋𝑌 (𝑥, 𝑦) = 0 over the domain (√𝑎,1) × (√𝑎,1) so that the
mutual information between 𝑋 and 𝑌 increases (without bound) as 𝑎 decreases to zero. Because
the negative of the mutual information 𝐼 is the negative of the entropy of 𝑐, the mutual information
is large precisely when 𝑐 conveys little, if any, average surprise. And so as 𝑎 decreases to zero,
the corresponding copula is associated with a random variable that is nearly deterministic, which
implies that the entropy is much less than zero. As 𝑎 increases towards one, then the entropy of the
copula is nearly 0. An important conclusion is that entropy of a copula is bounded from above by
zero in contrast to the entropy of the marginal distributions, which are unbounded. In other words,
the entropy of the copula contains at most zero average surprise.

6.5. Entropic decomposition

Let’s summarize what we’ve learned via several remarks.

• The copula density 𝑐 quantifies the dependence between 𝑋 and 𝑌 . The mutual information
𝐼 (𝑋;𝑌 ) is the negative of the entropy of the copula. Large mutual information corresponds
to little, if any, average surprise in 𝑋 given knowledge of 𝑌 or in 𝑌 given knowledge of
𝑋 . In contrast, as the mutual information decreases to zero the average surprise in 𝑋 given
knowledge of 𝑌 or in 𝑌 given knowledge of 𝑋 increases. However, the largest the amount of
surprise is zero.

• 𝑐 = 1 if and only if 𝐼 (𝑋;𝑌 ) = 0 (can you support this?). In other words, 𝑋 and 𝑌 are inde-
pendent. The statisticians draw comfort. The information for a random variable distributed
with respect to the joint probability density only depends upon the marginal densities. Their
is no dependence between 𝑋 and 𝑌 .

• As 𝑐 approaches the product of Dirac delta measures (within the unit square) then the mutual
information between 𝑋 and 𝑌 increases without bound. In other words, the dependence
information between them increases as 𝑐 decreases to a point mass. This is consistent with
our intuition that such a copula characterizes a nearly deterministic variable, e.g., one where
the randomness is negligible.
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𝐼 (𝑋;𝑌 )ℎ(𝑋) ℎ(𝑌 )

ℎ(𝑋,𝑌 )

Figure 6-2. A Venn diagram relating the joint entropy ℎ(𝑋,𝑌 ) to ℎ(𝑋), ℎ(𝑌 ), and 𝐼 (𝑋;𝑌 ).

The important conclusion is that the dependence between 𝑋 and 𝑌 is distinct from the individual
attributes of 𝑋 and 𝑌 . Can we support this conjecture by considering the information associated
with each of these three random variables?

An elementary identity is the entropic decomposition

ℎ(𝑋,𝑌 ) = ℎ(𝑋) + ℎ(𝑌 ) + ℎ
(
𝑐(𝑋,𝑌 )

)
. (6.12)

In words, the (differential) entropy for the pair 𝑋 and 𝑌 is the sum of the (differential) entropies
of the two marginal densities and copula density. The product of the three densities in (6.9) and
their relative importance is given in terms of the information of each. The information, or average
surprise for the pair 𝑋 and 𝑌 is the average surprise for 𝑋 , 𝑌 and the dependence ℎ

(
𝑐(𝑋,𝑌 )

)
=

−𝐼 (𝑋;𝑌 ). Since the mutual information 𝐼 is non-negative, dependence between 𝑋 and 𝑌 reduces
the average amount of surprise. When 𝑋 and 𝑌 are independent then the entropy of each defines
the entropy of the pair. A common illustration for the entropic composition identity is shown in
Figure 6-2.

Note that the (differential) entropy ℎ(𝑋,𝑌 ) ≪ 0 when an appropriate combination of marginal den-
sities and copula density is nearly deterministic, i.e., has little surprise. The entropy ℎ(𝑋,𝑌 ) = 0
when all three densities are uniform on the unit square. The entropy increases with the standard
deviation for a finite variance random variable. This explains that as the differential entropy in-
creases over the interval (−∞,∞) the average surprise increases. See the discussion following the
entropy definitions (2.1).
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7. WASSERSTEIN METRIC

Chapter 4 reviewed relative entropy as a way to compare two distributions. Though the relative
entropy is not a distance (since relative entropy is asymmetric under an interchange of 𝑝 and 𝑞), the
relationship with hypothesis testing explains in what sense the two distributions can be compared.
Chapter 6 explained that mutual information between random variables depends on more than their
marginal distributions. The joint pdf (or pmf) considers all possible outcomes of pairs so that the
copula and marginal distributions define the joint pdf. Our current chapter reviews a distance that
involves the copula.

The ℓth Wasserstein distance between two probability measures 𝑝𝑋 and 𝑝𝑌 is defined in terms of
the joint density 𝑝𝑋𝑌

𝑊ℓ (𝑝𝑋 , 𝑝𝑌 ) B
(

inf
𝑝𝑋𝑌∈𝑃𝑋𝑌 (𝑋,𝑌 )

∫
R×R

𝑑ℓ (𝑥, 𝑦) d𝑝𝑋𝑌 (𝑥, 𝑦)
)1/ℓ

=

(
inf

𝑝𝑋𝑌∈𝑃𝑋𝑌 (𝑋,𝑌 )
E[𝑑ℓ (𝑋,𝑌 )]

)1/ℓ
(7.1)

where 𝑃𝑋𝑌 (𝑋,𝑌 ) is the collection of all joint probability densities over R×R with marginals 𝑝𝑋 ,
𝑝𝑌 and 𝑑 is a cost, a non-negative function. The copula equality (6.9) implies that the collection of
joint probabilities densities can be identified with the collection of copulas. In contrast to relative
entropy 𝑊ℓ is a distance function. More significantly, however, is that 𝑊ℓ implicitly involves the
mutual information (or entropy of the copula 𝑐).

In this chapter, we will focus on the first Wasserstein distance ℓ = 1 unless otherwise specified. The
first Wasserstein distance is related to the earth mover’s distance, which can roughly be thought of
as the minimum cost to transform one pile of dirt (or probability distribution) to another. Unless
otherwise specified, we use Euclidean distance 𝑑1(𝑥, 𝑦) =

√
(𝑥− 𝑦)2 = |𝑥 − 𝑦 | as the cost function

in our computations of Wasserstein distance.

7.1. Comparing the Wasserstein distance and the KL Divergence

7.1.1. Probability mass functions

Some pairs of probability distributions have the same KL divergence but different Wasserstein dis-
tance. Other pairs can have the same Wasserstein distance but different KL divergences. Consider,
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Figure 7-1. An example of four different probability distributions. Note that 𝜅(𝑝𝐴, 𝑝𝐵) = 𝜅(𝑝𝐴, 𝑝𝐶 ) and
𝑊1 (𝑝𝐴, 𝑝𝐵) <𝑊1 (𝑝𝐴, 𝑝𝐶 ). Also, 𝜅(𝑝𝐵, 𝑝𝐶 ) > 𝜅(𝑝𝐵, 𝑝𝐷) and 𝑊1 (𝑝𝐵, 𝑝𝐶 ) =𝑊1 (𝑝𝐵, 𝑝𝐷).

for example, random variables 𝐴, 𝐵, 𝐶 and 𝐷 with pmfs

𝑝𝐴 (𝑥) =


1
2 𝑥 = 1
1
4 𝑥 = 2
1
4 𝑥 = 3
0 else

, 𝑝𝐵 (𝑥) =


1
4 𝑥 = 1
1
2 𝑥 = 2
1
4 𝑥 = 3
0 else

, 𝑝𝐶 (𝑥) =


1
4 𝑥 = 1
1
4 𝑥 = 2
1
2 𝑥 = 3
0 else

, and 𝑝𝐷 (𝑥) =


3
8 𝑥 = 1
1
4 𝑥 = 2
3
8 𝑥 = 3
0 else

as shown in Figure 7-1. In this example 𝜅(𝑝𝐴, 𝑝𝐵) = 𝜅(𝑝𝐴, 𝑝𝐶) = 1
4 log(2), and 1

4 =𝑊1(𝑝𝐴, 𝑝𝐵) <
𝑊1(𝑝𝐴, 𝑝𝐶) = 1

2 . In contrast, 𝜅(𝑝𝐵, 𝑝𝐶) > 𝜅(𝑝𝐵, 𝑝𝐷) = log(2)− 1
2 log(3) and𝑊1(𝑝𝐵, 𝑝𝐶) =𝑊1(𝑝𝐵, 𝑝𝐷).

7.1.2. Normal Random Variables

The first Wasserstein distance between two normal random variables 𝑋 and 𝑌 with 𝜎 = 𝜎𝑋 = 𝜎𝑌
is

𝑊1(𝑝𝑋 , 𝑝𝑌 ) = |𝜇𝑋 − 𝜇𝑌 |
and the relative entropy is

𝜅(𝑝𝑋 , 𝑝𝑌 ) =
(𝜇𝑋 − 𝜇𝑌 )2

2𝜎2 .

where we used (4.9). The KL divergence depends upon 𝜎 while the Wasserstein distance does not.
The relationship with hypothesis testing provides a clue. The distinction between samples of 𝑝𝑋
or 𝑝𝑌 decreases with increasing variance when the difference between the means is fixed. Figure
7-2 plots the KL divergence and the Wasserstein distance when 𝜇𝑌 = 0. The plots display the linear
and quadratic dependence of 𝑊1 and 𝜅 upon 𝜇𝑋 and illustrates that 𝜅 flattens out as the variance
increases.
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Figure 7-2. A comparison of the KL divergence (blue) and Wasserstein distance (red) among various
pairs of normal distributions with the same standard deviation.

7.2. Estimating KL Divergence and Wasserstein Distance from Samples

We can also compare Monte Carlo approximations of KL divergence and Wasserstein distance. A
practical consideration emerges when computing a Monte Carlo approximation to the KL diver-
gence. Recall that 𝜅(𝑝𝑋 , 𝑝𝑌 ) is defined only if 𝑝𝑌 (𝑥) = 0 implies 𝑝𝑋 (𝑥) = 0. If we use histograms
to approximate 𝑝𝑋 ≈ 𝑝𝑋 and 𝑝𝑌 ≈ 𝑝𝑌 based on samples, there may be values where 𝑝𝑌 (𝑥) = 0
and 𝑝𝑋 (𝑥) ≠ 0 even if 𝑝𝑋 (𝑥) = 0 whenever 𝑝𝑌 (𝑥) = 0. One strategy to allow for the estimation of
𝜅(𝑝𝑋 , 𝑝𝑌 ) is to discard all bins in the histogram where 𝑝𝑌 (𝑥) = 0. Another possibility regularizes
the estimated probabilities. That is, for each bin in the histogram, a small positive number is added
to the estimated probability for that bin, and renormalize the estimated probability.

Monte Carlo approximations to the KL divergence and 𝑊1 using samples of two normally dis-
tributed random variables 𝑋 and 𝑌 with the same standard deviation are shown in Figure 7-3. An
immediate observation is that the error in the Wasserstein approximation is small regardless of the
difference in the means. In contrast, the error in the KL divergence approximation increases with
the difference in means.

Recall that the definition of Wasserstein distance involves joint probability densities, and the def-
inition of KL divergence does not. In our experiments, we observe that the copula used to link
two random variables 𝑋 and 𝑌 impacts the estimates of the Wasserstein distance. More specifi-
cally, Monte Carlo approximations of 𝑊1(𝑋,𝑌 ) appear to be more consistent across different trials
when 𝑋 and 𝑌 are linked by a Gaussian copula with a positive correlation. In comparison, the
estimates of 𝜅(𝑋,𝑌 ) are spread out even as the correlation increases. An example for two normally
distributed random variables is show in Figure 7-4.

One question that may arise concerns the difference between Wasserstein distance estimates for the
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Figure 7-3. Estimated KL divergence and first Wasserstein distance based on samples of normally
distributed random variables 𝑋 (with mean 𝜇𝑋 and standard deviation 1) and 𝑌 (with mean 0 and
standard deviation 1). The boxplots show estimates from 50 trials with (top) 100 samples each or
(bottom) 10,000 samples each. The lines show the actual KL divergence and Wasserstein distance
between 𝑝𝑋 and 𝑝𝑌 . The estimates use numpy histograms with ‘auto’ bins.
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Figure 7-4. Estimated KL divergence and first Wasserstein distance for random variables 𝑋 ∼N(0,1)
and 𝑌 ∼ N(1,1) linked by Gaussian copulas with different correlations. The box plots show results
from 100 trials of 10,000 samples from each distribution. From the equations for the KL divergence
and Wasserstein distance of normal distributions, we know that 𝜅(𝑋,𝑌 ) = 1

2 and 𝑊1 (𝑋,𝑌 ) = 1. The
estimates use numpy histograms with ‘auto’ bins.

random variables linked by copulas with positive and negative correlations. After all, shouldn’t a
large negative correlation tell us as much about the relationship between 𝑋 and𝑌 as a large positive
correlation?

The Wasserstein distance measures a cost of transforming one distribution to another. Consider
𝑋 ∼N(0,1) and 𝑌 ∼N(1,1). If 𝑋 and 𝑌 are connected by a copula with large positive correlation,
then a sample distance |𝑋 −𝑌 | tends to be close to the distance |𝜇𝑋 − 𝜇𝑌 |. This can be seen in the
rightmost plot of Figure 7-5, where samples of (𝑋,𝑌 ) are clustered around the line 𝑦 = 𝜇𝑌 − 𝜇𝑋 +𝑥.
In our observations (𝑥, 𝑦) of (𝑋,𝑌 ), the 𝑥 and 𝑦 tend to be 𝜇𝑌 − 𝜇𝑋 apart. If, instead, 𝑋 and 𝑌 are
connected by a copula with large negative correlation, then samples of |𝑋 −𝑌 | are more spread out,
i.e., the entropy of the random variable |𝑋 −𝑌 | is larger. This can be seen in the leftmost plot of
Figure 7-5, where samples of (𝑋,𝑌 ) are clustered about the line 𝑦 = 𝜇𝑌 − 𝜇𝑋 − 𝑥. Regardless of
the correlation, with enough samples, the average distance between 𝑥 and 𝑦 in observations (𝑥, 𝑦)
of (𝑋,𝑌 ) approaches |𝜇𝑋 − 𝜇𝑌 |. However, more samples are needed to approach |𝜇𝑋 − 𝜇𝑌 | as the
correlation decreases.
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Figure 7-5. Samples from normal distributions 𝑋 ∼N(0,1) and 𝑌 ∼N(1,1) linked by Gaussian copulas
with (left) negative correlation or (right) positive correlation. (Center) Some observations of |𝑋 −𝑌 |
at different correlations. The black line shows |𝜇𝑋 − 𝜇𝑌 |.
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