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Abstract

We describe a data-driven, multiscale technique to model reactive wetting of a silver-

aluminum alloy on a Kovar™ (Fe-Ni-Co alloy) surface. We employ molecular dynamics

simulations to elucidate the dependence of surface tension and wetting angle on the drop’s

composition and temperature. A design of computational experiments is used to efficiently

generate training data of surface tension and wetting angle from a limited number of molec-

ular dynamics simulations. The simulation results are used to parameterize models of the

material’s wetting properties and compute the uncertainty in the models due to limited data.

The data-driven models are incorporated into an engineering-scale (continuum) model of a

silver-aluminum sessile drop on a Kovar™ substrate. Model predictions of the wetting angle

are compared with experiments of pure silver spreading on Kovar™ to quantify the model-

form errors introduced by the limited training data versus the simplifications inherent in the

molecular dynamics simulations. The paper presents innovations in the determination of

“convergence” of noisy MD simulations before they are used to extract the wetting angle and

surface tension, and the construction of their models which approximate physio-chemical

processes that are left unresolved by the engineering-scale model. Together, these consti-

tute a multiscale approach that integrates molecular-scale information into continuum scale

models.
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1. Introduction1

Liquids wetting (or not wetting) solids are ubiquitous in nature, with examples including2

ethanol on glass or water on super-hydrophobic lotus leaves, respectively. Many industrial3

applications, such as manufacture of photographic films and soldering/brazing, rely on reac-4

tive wetting where the contact angle is mediated by reactions at the interface of the liquid5

and solid [1]. In these cases, the wetting dynamics are affected by multiple interacting6

physical processes including reaction kinetics, diffusion of reactants or reaction products,7

flow of the liquid and thermal transport. Since it is an inherently multi-physics problem,8

reactive wetting is still not well understood and manufacturing processes that rely on re-9

active wetting are difficult to model [1, 2]. An exemplar that embodies the complexities of10

reactive wetting is brazing, where two surfaces are joined by a filler metal that is heated11

above its melting point (and notably below the melting point of the substrates to be joined),12

and bonds them together (both physically and chemically) on cooling. Understanding and13

modeling these processes is quite challenging [3] due to the multiple physical and chem-14

ical processes that must be considered. Wetting by the filler metal depends not only on15

the temperature but also the composition of both the filler metal and the substrates. The16

compositions change over time, as components are liberated from the substrates through17

dissolution or, in the case of active brazing, chemical reactions, and absorbed by the filler18

metal. While studies of single metal fillers are abundant in the brazing literature [4], data19

are scarce for high fidelity studies of wetting of multicomponent alloys as a function of tem-20

perature and composition. This makes brazing an ideal application for the development of21

reduced order, data-driven models that can accurately predict the material properties that22

control reactive wetting behavior.23

The motivation for our research is to lay a foundation for engineering-scale (millimeter24

to centimeter) simulations of a brazing process, with the specific goal of studying issues such25

as run-out where the filler material spreads beyond the surfaces being joined. Specifically,26

we seek a method to construct wetting models, trained on data from high-fidelity (HF)27

simulations, that can be integrated into engineering simulators of manufacturing processes.28

The exemplar system of interest consists of a Ag-Al braze filler joining Kovar™ (a speciality29

alloy composed of 29% Ni, 17% Co, 0.2% Si, 0.3% Mn, 0.01% C by mass, with the balance30

being Fe [5, 6]) surfaces, a system that has been previously investigated [7]. The primary31

technical challenge lies in modeling the reactive wetting at the filler-substrate interface in32
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a computationally efficient manner so that it may be reproduced within an engineering-33

scale simulation that cannot resolve all the relevant physics. Explicit resolution of such34

processes, using phase-field or molecular dynamics models, can only be performed for35

nanometer-sized drops [8, 9] (or smaller), and the simulations are very computationally36

expensive. Additional challenges lie in enforcing flow boundary conditions on the filler-37

substrate interface as it evolves.38

In this paper, we describe a data-driven augmentation of conventional finite element39

models (FEM) that can be used to simulate active brazing at engineering scale. We begin40

with the assumption that macroscale reactive wetting at the filler-substrate interface de-41

pends on two fundamental interrelated phenomena, namely the surface tension of the liquid42

filler alloy σ(T, Y ) and its wetting angle on the substrate θ(T, Y ), where T is the absolute43

temperature of the molten filler and Y is the composition of the filler alloy. Our hypothesis44

is that data-driven models of θ = F (T, Y ;w) and σ = G(T, Y ;v) can be constructed based45

on HF simulations of a filler metal drop on a flat substrate surface. Here F (T, Y,w) and46

G(Y, Y ;v) are the regression models and (w,v) are the regression models’ parameters (or,47

loosely speaking, the sensitivity of θ and σ to T and Y ). These models can be constructed48

by fitting to training data (TD) (X = (T, Y )i, Z = (σ, θ)i, i = 1 . . . N) by executing the49

HF simulations at a sampled set of X = (T, Y )i inputs and extracting Z = (σ, θ)i from the50

simulation outputs. The FEM, augmented with the models F (T, Y ;w) and G(T, Y ;v), will51

be demonstrated by simulating a millimeter-sized silver sessile drop relaxing to equilibrium52

on a Kovar™ surface. In doing so, we will also describe how the boundary conditions are53

imposed in FEM at an evolving filler-substrate boundary.54

The choice of the HF simulations is a difficult one. Ideally, the TD for the wetting55

model should include reactive processes and the formation of intermetallic phases (IMP)56

that are known to exist in the exemplar system [7]. However, the phase-field [8, 9] and re-57

active molecular dynamics (MD) simulations [10, 11] that can simulate these processes are58

computationally expensive and will not allow the assembly of TD in a timely fashion. Con-59

sequently, we will employ MD simulations using the embedded atom method (EAM; [12]),60

without reaction between the braze alloy and substrate, and in the process incur a modeling61

error. They key quantities for inclusion in the FEM are the surface tension and the wetting62

angle, and it is only the wetting angle that may be significantly affected by our choice of63

HF dataset. However, the wetting angle has contributions from the surface energy at the64
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liquid-gas, solid-gas and the liquid-solid interfaces, all of which could, depending on the65

extant reactions, incur a model-form error due to the absence of IMP in the TD simula-66

tions. This paper, in essence, will investigate whether this data-driven methodology can67

lead to stable and accurate engineering simulation, when embedded in a partial differential68

equation (PDE) continuum model. It will also quantify the PDE’s model-form error (due69

to the approximate wetting models) and provide a path forward for ameliorating them via70

multi-fidelity modeling (discussed in Sec. 5.4).71

The technical challenges presented here are (1) sufficient sampling of the (T, Y ) space,72

that will necessarily use a limited number of samplesN due to the computational cost of MD73

simulations (2) devising a proper functional form for F (T, Y ;w) and G(T, Y ;v) conditional74

on limited TD, (3) deciding on when an MD simulation has converged sufficiently (given75

limited computational resources/time) so that (σ, θ) may be extracted and (4) ensuring that76

the FEM, with embedded F (T, Y,w) and G(Y, Y ;v), is stable and can reproduce, at least77

qualitatively, the process of a sessile drop equilibrating to its equilibrium shape. The sources78

of prediction error (of the data-driven models) are the fidelity of the MD simulations and79

the limited nature of the TD (and the consequent simplicity of F (T, Y ;w) and G(T, Y ;v)).80

Identifying the relative importance of these sources of errors is a goal of this paper.81

We will address the issue of constructing F (T, Y ;w) and G(T, Y ;v) using limited TD in82

two ways. First, we will ensure, in a data-driven manner, that the complexity of F (T, Y ;w)83

and G(T, Y ;v) is consistent with the information in the TD. Second, we will estimate the84

model parametersw and v as a joint probability density function (JPDF) so that we capture85

the uncertainty due to limited TD. Finally, we will devise a way to detect the convergence of86

fluctuating (i.e., time-dependent) MD data for θ, and extract a wetting angle with a measure87

of the “extraction uncertainty” that is then incorporated into the uncertainty estimates of88

F (T, Y ;w) and G(T, Y ;v) (specifically, the JPDF of w and v). The convergence detection89

technique is based on approximating the noisy MD trace for θ(t) (where t represents time90

in the MD simulations) as a Markov chain (MC). If the MD simulation is determined to91

have not yet converged, our convergence detection method estimates how much longer the92

simulation is required to run to reach equilibrium.93

The paper is laid out as follows. In Sec. 2 we review previous work on reactive wet-94

ting and the various techniques we use. In Sec. 3, we formulate the modeling problem95

(data-driven and the FEM). In Sec. 4, we describe the generation of the MD training and96
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experimental data. In Sec. 5, we present results of modeling σ and θ and the performance of97

the FEM. This section will also contain a comparison of FEM predictions to experimental98

measurements of a nominally pure silver drop on a Kovar™ surface, with the aim of esti-99

mating the magnitude of the model-form error in F (T, Y ;w) and G(T, Y ;v). We draw our100

conclusions in Sec. 6.101

2. Literature review and background102

In this section we review literature on experiments and MD simulations of reactive103

wetting, with emphasis on the fundamental physical processes. We also discuss the existing104

literature on FEM approaches (at engineering scales) that we employ, and the modifications105

necessary to include data-driven models of σ and θ. Finally, we discuss TD generation106

and data-driven modeling. Note that finite element studies of brazed joints, especially107

their residual stresses (due to a mismatch of thermal expansion coefficients of the materials108

involved), have been an active field of research (see Ref. [13] for a review), but they generally109

rely on experiments and/or temperature-tabulated material properties for specific filler-110

substrate combinations [14, 15, 16] rather than on the development of a generalized model111

for interfacial properties as presented here.112

2.1. Reactive wetting and its models113

The wetting of a solid metallic substrate by a molten metal or alloy can be of two114

types – inert (or passive) and reactive. In reactive wetting, the two phases (solid and115

liquid) may simply dissolve into each other or form a new intermetallic phase (IMP) that116

exists at the interface of the solid and the liquid [17]. Our system, Ag-Al on Kovar™ ,117

undergoes reactive wetting [10, 7], with dissolution of elements and formation of an IMP118

of the form (FeNiCo)xAl, where 1 < x < 3, deposited in a reaction zone of about 10 µm119

thickness [7]. These wetting experiments were performed using millimeter-sized drops on120

a Kovar™ substrate.121

Reactive wetting has been extensively studied but is not well-understood; see reviews in122

Refs. [18, 19, 17]. During reactive wetting, the change in composition of the substrates can123

be reaction-limited or transport-limited (i.e., diffusion of the active element – Al in our case124

– to the liquid-solid interface where the reactions occur). During the spreading of the drop,125

the solid-vapor-liquid interface (called the contact or triple line in 3D and triple point in 2D126
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descriptions) may initially travel along the bare substrate, but ultimately travels on a layer127

of the reaction products (RP) until equilibrium is reached. While the initial evolution of the128

interface shape is dominated by viscosity and inertial effects, the equilibrium configuration129

is determined by the balance of capillary forces. Young’s equation, which relates the wetting130

angle (also called contact angle) θ to the surface energy of the substrate, surface tension of131

the liquid and the solid-liquid interfacial energy, should ideally be cast in terms of the liquid-132

RP interface rather than the native substrate. Since this energy is usually not known, there133

have been proposals to modify Young’s equation to include the change in the free energy134

of the system caused by the production of the RPs [20, 21]. Thus by ignoring the RP135

when generating our TD, we will incur an error in our data-driven wetting models, but the136

magnitude is likely to be specific to our exemplar system.137

Wetting can be improved (indicated by a smaller θ [18]) by the addition of trace elements138

to the filler alloy or the use of higher brazing temperatures; higher temperatures reduce139

viscosity and surface tension, and increase diffusion-driven transport, and thus accelerate the140

path to equilibrium. Ref. [22] modeled this convergence to equilibrium using an exponential141

in time whereas Ref. [9] observed more complex processes overlaid on the exponential. This142

auto-correlated behavior in time will play a central role in how we select a θ from MD143

simulations (discussed in Sec. 3.1). In addition, as the drop reacts with the substrate, it144

loses height without an equivalent change in its basal area [17, 18] (i.e., it penetrates into the145

solid as the solid substrate dissolves into the liquid filler material), and for nanometer-sized146

drops, may disappear completely [8]. This same phenomenon also affects MD simulations147

that are limited in the number of atoms that can be simulated. Additionally, as drop148

geometries can be difficult to extract in reactive simulations (see review in Ref. [19]) we use149

a fixed (i.e. non-reactive) substrate (see discussion below). In doing so, we incur model-form150

errors in our data-driven model for θ (see Sec. 5.4). Allowing the substrate to be flexible151

e.g., reactive, enhances wetting and reduces the wetting angle [10].152

Detailed simulations of the dissolution and reactive wetting of a nanometer-sized drop on153

a substrate are often performed using phase-field models [8, 9, 23]. These are multicompo-154

nent (drop/substrate/RP), multiphase (solid/liquid/gas/RP) partial differential equation155

(PDE) models that use the Navier-Stokes equations to capture fluid dynamics, and the156

Allen-Cahn equations to track the evolution of the phases. The PDEs are solved using fi-157

nite elements [8] or finite-differences [9], and due to the fine resolutions (and the consequent158
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computational cost) needed to resolve the reaction zone, are currently only possible for159

nanometer-sized drops. These simulations reproduce the exponential convergence of θ to160

equilibrium and the disappearance of the drop into the substrate. These simulations show161

the filler material penetrating into the substrate, forming a curved interface on which the162

IMP is deposited as it is formed. The simulations thus verified experimental findings [24]163

that caution against the näıve use of Young’s equation as there is no fixed, planar substrate164

to use when defining the wetting angle. Ref. [8] also found that reactions promote wetting165

and the solid-liquid-vapor triple point moves faster in reactive systems (over the IMP) than166

non-reactive ones. IMP formation is controlled by the kinetics as well as the transport of167

the filler material and IMP to and from the filler-substrate interface. Similar simulations for168

an Al droplet on a Au substrate (a solder; Ref. [9]) provided an example of the proper use of169

Young’s equation in a reactive system by defining it with respect to the curved IMP surface170

rather than the original, flat one. The simulation resolved the fluid mechanics inside the171

droplet as well as the reactions at the filler-substrate interface that lead to the formation172

of IMP; these kinetics were developed in Ref. [23]. They show the change in wetting angle173

when the IMP is formed, and the difference is significant (at least for the Al-Au system).174

The timescale of variation is in nanoseconds, implying that it is the equilibrium conditions175

that are of relevance in engineering-scale simulations, (see Fig. 5). They also found that the176

equilibrium wetting angle, at least for nanometer-sized droplets, depends on the size of the177

droplet. In addition, Ref. [9] shows that the wetting angles computed with spherical drops178

in 3D are larger than their counterparts computed using 2D simulations. Since we will179

use quasi-2D simulations (see below) to generate our training data, we may incur another180

model-form error, (likely an under-prediction of the wetting angle), in our approach (see181

discussion in Sec. 5.4).182

2.2. Molecular dynamics simulations183

Previous molecular dynamics simulations of brazing have focused on determining the184

degree of wetting and spreading of a liquid braze alloy on a solid substrate [25, 26, 27, 10].185

These simulations have considered both passive wetting [25, 10], where the substrate is held186

fixed, and reactive wetting where diffusion and reactions between the drop and substrate187

are allowed [26, 10]. To simplify the development of these data driven models, this work has188

initially focused on fixed substrates. To explicitly calculate the wetting angle of a drop on189

a substrate, various approaches can be used. The wetting angle of a drop can be estimated190
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using Young’s equation if the interfacial free energies of the system are known or can be191

calculated. Specifically, this requires the surface free energy of the solid substrate, surface192

tension of the drop, and solid-liquid interfacial free energy between the drop and substrate193

[28, 29].194

The wetting angle can be computed from atomistic simulations, for instance, by taking195

the angle between the solid/liquid interface and liquid/vacuum interface at the triple point196

[10, 29]. The location of the triple point and the surface and drop profiles all fluctuate during197

dynamic simulations and introduce errors in the direct calculation of the wetting angle. An198

alternative approach to measure the wetting angle of a drop consists of fitting the contour199

of a drop to a circular sector (2D) or spherical cap (3D). By knowing the distance between200

the solid/liquid interface and the origin of the circle (2D) or sphere (3D) the wetting angle201

can be found [30]. This fitting method is robust to local fluctuations, but incurs fitting202

errors as we approximate a discrete boundary formed by molecules with a smooth curve or203

surface.204

2.3. Data-driven modeling205

Many processes that are not explicitly resolved by continuum simulators are empirically206

modeled using data-driven models, fit to experimental [31] or other high-fidelity [32] data.207

The functional forms for the data-driven fits can be motivated by theory or by flexible data208

approximators such as neural networks [32] or random forests [33]. Polynomials have also209

been widely used for this purpose in surrogate modeling (Chapter 13, Ref. [34]), especially210

in cases where the TD might be limited, as they allow their simplification (commensurate211

with the limited TD) using shrinkage (or an L1 penalty) [35, 36] or by backward-forward212

stepwise elimination [37, 38]. Both these methods remove terms in the polynomial that213

are not significantly correlated with Z = {θ, σ}. However, in these polynomial models the214

unknown model coefficients w and v are linearly related to Z, and if Z has uncertainties215

that can be modeled as a Gaussian, there exists an analytical method for propagating them216

back to the (Gaussian) JPDF for w and v (see Ref. [39]), as we will do. The method217

requires us to quantify our prior belief regarding (w,v) as Gaussians also.218

A challenging feature of our TD-generating model (MD) is that, even when converged,219

the output consists of a value for θ(tl), l = 1 . . . L that strongly fluctuates around a steady-220

state value. On convergence, it should be possible to subsample (or thin) θ(tl), l = 1 . . . L221

to resemble independent draws around a central value with no temporal trend. In contrast,222
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before convergence, θ(tl) is auto-correlated (in fact, per the discussion above, it has an223

exponential temporal trend) and can be thought of as a pth-order Markov process. The two224

can be distinguished by testing whether (windows of) θ(tl) resemble a first-order Markov225

chain (henceforth, MC) more than independent draws around θm. Details are in Ref. [40]226

and are summarized in Sec. 3.1, where we adapt this method to determine the convergence227

of MD simulations. The method uses a specified quality (i.e., level of certainty) with which228

the wetting angle must be extracted from the simulation, to evaluate whether the time-series229

θ(tl), l = 1 . . . L is sufficiently long to allow such a computation. If the time-series is too230

short, the method predicts how much longer the simulation must be run. An alternative231

approach is to compute windowed averages of θ(tl), l = 1 . . . L (over ∆t to smooth over232

statistical fluctuations) and check for an approach to a limiting θm. The latter approach,233

however, requires one to empirically determine ∆t, and if convergence has not been reached,234

does not provide an estimate of how much longer to run.235

2.4. Continuum modeling236

The Cauchy momentum and continuity equations form the basis for continuum modeling237

of the fluid flow in brazing applications [41]. In the molten alloy (or filler material), the238

dynamic flow behavior is dictated by the density and viscosity. In addition, the method used239

to apply the boundary conditions is critical to both the dynamic and equilibrium behavior.240

The wetting speed at the solid/liquid contact line is dictated by a slip factor that overrides241

the traditional no-slip condition. The gas/liquid interface (top surface in Fig. 6) is a free242

surface that is allowed to move. At this boundary, the equilibrium behavior of the alloy243

is governed by the surface tension and the applied contact angle at the solid/gas/liquid244

interface.245

Modeling free surfaces has been a historically challenging problem in computational246

fluid dynamics due to the discontinuity across the interface and the dynamic nature of247

moving surfaces. However, several advanced methods such as the volume of fluid [42], phase248

field [43], level set [44], and Arbitrary Lagrangian Eulerian (ALE) [45] have been shown to249

be accurate and stable in free surface simulation applications ranging from porous flow to250

propagating fluid surfaces. The popular level set method works by solving an independent251

function ϕ that is advected through an Eulerian grid. The phase interface can be defined252

as ϕ = 0, with the positive and negative regions corresponding to the different phases. One253

difficulty with this approach is capturing the sharp interface location, as the mesh cannot be254
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specified with the interface in mind a priori. To resolve this, the conformal decomposition255

finite element method (CDFEM; [46, 47, 48]), which dynamically adds nodes along the256

interface into the background mesh rather than requiring interpolation of quantities between257

nodes, has been used in this work. This allows for sharper interface modeling as well as258

discontinuous representation of variables across the interface.259

For wetting applications, such as brazing simulations, the traditional no-slip boundary260

condition is no longer applicable as the fluid needs to spread or contract along the solid sur-261

face. For finite element simulations, this requires refined modeling of the interface contact262

line along the solid surface. Typically, the slip condition is incorporated into the Navier-263

Stokes equations using a slip length, an extrapolated distance normal to the wall where the264

traditional no-slip condition could be theoretically applied [49]. For finite element simula-265

tions, this length can be recast as a dimensionless coefficient that is inversely dependent266

on the mesh size [50, 47]. In addition to slip modeling, at the solid/liquid contact line the267

surface energies of the respective phases must be accounted for through a contact angle.268

This has been achieved previously by incorporating a force at this contact line into the269

Navier-Stokes equations to drive the contact line toward the material-dependent wetting270

angle [51, 52]. While these methods can be used efficiently to model wetting applications,271

it is important to note that they still rely on accurate knowledge of the material properties;272

here we propose to incorporate these properties using data-driven models.273

3. Formulation274

In this section we describe a conservative method to gauge the convergence of a MD275

simulation generating wetting angles θ(tl) (or the surface tension σ(tl)). By conservative, we276

mean that it establishes a sufficient, but not necessary condition, i.e., if our technique indi-277

cates that the simulation has converged, then, with high probability, it has indeed done so;278

however, if the method fails to detect convergence, that does not imply that the MD simula-279

tion has not converged. This conservative method is needed to automatically track the gen-280

eration of TD, as manual checking is simply not feasible for the multitude of MD simulations281

that are required. We also describe the method used to construct data-driven models i.e.,282

σ = F (YAl, T ;w) and θ = G(YAl, T ;v). The training data (TD) ({YAl, T, σ, θ}i, i = 1 . . . N)283

are generated using converged θ, σ. F (:; :) and G(:; :) are integrated into FEM simulations284

of sessile drops to ensure numerical stability and for model verification purposes.285
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3.1. Diagnosing convergence of a fluctuating MD data series286

Consider a series of wetting angles θ(tl) = {θl}, l = 1 . . . L calculated from an MD simu-287

lation. The wetting angle θl is determined at time tl by fitting the drop shape to a spherical288

cap as described section 4.1. The sequence may indicate a systematic evolution/trend of289

θ and thus a lack of convergence to a non-zero θ [22, 9]. The sequence might also show290

an oscillation as the MD simulation approaches equilibrium in θ(tl) (e.g., Fig. 2b); esti-291

mating the final wetting angle as the empirical mean θm can be biased depending on the292

stopping point of the sequence, the number of periods included in the empirical mean and293

the size of the oscillations (which could depict physical effects like capillary waves or a lack294

of convergence). Ideally the samples used in the mean should resemble independent draws295

from a stationary distribution, which could be obtained by thinning (i.e., subsampling) the296

sequence by k i.e., only every kth item of the sequence is retained for estimation purposes.297

Note that if θl oscillates periodically about a central value, the method would indicate (er-298

roneously) a lack of convergence. Note, too, that if there are many periods included in299

the median (or mean) and/or the oscillations are small, the bias may be sufficiently small300

to be acceptable. This makes the ideal case, of computing θm from independent draws, a301

conservative method for diagnosing convergence i.e., it is a sufficient, but not necessary,302

condition for convergence.303

We assume that the sequence {θl} is a Markov chain (MC), and we wish to estimate a304

central value e.g., its median θ′m, from it. We also desire that θ′m lies between ±r of the305

true median q with confidence s i.e. P (q − r ≤ θ′m ≤ q + r) = s. If L is too short to allow306

this estimation, we desire an estimate of a length L′ that will allow the estimation. The307

derivation below is adapted from our previous work on a generative model for uncorrelated308

complex networks [40], and is based on determining convergence of an MC [53, 54].309

We compute the empirical median θ′m from {θl} and convert it to a binary sequence310

{vl}, where vl = 1 if θ ≥ θm and vl = 0 otherwise. Let {vkl } be the k−thinned version of311

{vl}, and let Nmn be the number of (m,n) transitions observed in {vkl }, m,n ∈ {0, 1}. Nmn312

is used to populate a 2×2 contingency table with entries normalized by the sequence length313

i.e. (L/k − 1). Let N̂mn and π̂mn = N̂mn/(L/k − 1) be the expected values of the table314

entries depending on whether we assume the sequence {vkl } contains independent draws, or315

are generated by a first-order Markov chain (and thus can display autocorrelation). The316

goodness-of-fit of the data to these models is given by the likelihood-ratio statistic (G2; see317
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Chapter 4.2 in Ref. [55]) and the Bayesian Information Criterion318

G2 = −2
m=1∑
m=0

n=1∑
n=0

Nmn log

(
N̂mn

Nmn

)
or BIC = G2 +Np log

(
L

k
− 1

)
, (1)

where Np is the number of parameters in the model used to fit the table data. Log-linear319

models are generally used to model table data and estimate the transition probabilities π
(I)
mn320

and π
(M)
mn (see Ref. [40] for derivation) where superscripts I,M indicate an independent and321

a Markov process respectively. Drastically abbreviating the derivation in Ref. [40], we get322

∆BIC = BIC(I) −BIC(M) = −2
n=1∑
m=0

n=1∑
n=0

Nmn log

N̂
(I)
mn

Nmn

− log

(
L

k
− 1

)
. (2)

Here N̂
(I)
mn is the expected number of (m,n) transitions if the binary sequence {vkl } resembled323

independent draws from a distribution. A negative ∆BIC implies that the independent324

draws model fits the data better.325

The log-linear models require that the sequence, of length (L/k−1), is sufficiently long to326

provide good estimates and here we provide an estimate of how long is considered sufficient.327

Let θLm be the empirical mean computed from the full sequence and θkm from a k−thinned328

chain. Multiple θkm can be computed for various levels of thinning (i.e., various ks) and will329

constitute draws from a normal distribution with mean q and variance ν2. To ensure that330

the k−thinned sequence is sufficiently long, i.e., the empirical mean θkm lies near the true331

mean with sufficient confidence or P (q − r ≤ θkm ≤ q + r) = s, or332 (
r

Φ−1{0.5(1 + s)}

)2

= ν2 (3)

where Φ is the cumulative distribution function for a standard normal distribution and s, r333

have been defined above.334

Consider an L−step {θl} sequence that has been thinned by a factor k′ and has become335

a first-order MC. Let L′ be its length. The contingency table entries provide the transition336

probabilities of the 2-state Markov sequence {vkl }. The transition probabilities α and β can337

be computed trivially and ν2 can be written as338

ν2 =
αβ(2− α− β)

L′(α+ β)3
or L′ =

αβ(2−α−β)
(α+β)3(

r
Φ−1{0.5(1+s)}

)2 , (4)

using Eq. 3. Thus the k−thinned sequence {θkl } must be at least L′ long to provide an339

estimate of q with the specified tolerance r. An implementation of this method is in the R340

package mcgibbist [56].341
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3.2. Constructing data-driven models342

In this section, we describe the method by which we construct polynomial models for343

θ and σ. In our case, the filler material is primarily silver (Ag) with some aluminum (Al)344

and the composition Y is defined in terms of mass fraction i.e. Y = {YAg = 1 − YAl, YAl}.345

Thus the independent variables in the models for θ and σ are (T, YAl). The convergence346

diagnostic described in Sec. 3.1 results in a k−thinned sequence {θkl }, a subset of which347

is used to compute the empirical mean and standard deviations (θm, ς). The subset of348

the k−thinned sequence that we use is the usually the last half, as by doing so we ignore349

the initial transients in θ(t) and σ(t). This is repeated for many (Ti, YAl,i), i = . . . N350

combinations (the features in our TD) to yield (θi, ςi) responses (the labels in our TD).351

Consider the vector T = {Ti}. We scale the variables T = (Ti − E(T))/
√
Var(T)), where352

E() and Var() denote the empirical mean and variance of TD values. The other variables353

are similarly scaled to get YAl,i and θi. We define the polynomial model simply as354

θi = w0 + w1T i + w2YAl,i + w3YAl,i
2
+ w4T

2
i + w5YAl,i × T i + ϵi, (5)

where ϵi is the fitting error, modeled as a Gaussian random variable with a zero mean and an355

unknown variance. The quadratic form is motivated by previous work [57] (which modeled356

the effect of temperature and surface roughness) and the tendency of trace elements to357

reduce the wetting angle [18]. Eq. 5 is fitted to the data via least-squares minimization,358

and simplified, via backward-forward stepwise elimination, to remove terms in the equation359

which do not contribute to θi predictions. This results in a model360

θ
(pred)

= Aw, w = {wj}, (6)

where j spans the terms in Eq. 5 that were retained after simplification and the superscript361

(pred) denotes a model prediction. The columns of A contain the linear and quadratic362

terms of T i and YAl,i.363

The uncertainty in the wetting angle estimate (ςi) implies that there is a corresponding364

uncertainty in the estimates of w in Eq. 6. Since the model is linear in wj , the uncertainty365

can be computed analytically (see Chapter 2, Ref. [39]). We create a prior model w ∼366

N (wa,Γa), where Γa is diagonal and non-informative (i.e., the diagonal entries are large).367

The posterior distribution for w is given by w ∼ N (ŵ, Γ̂) where368

ŵ = wa + ΓaA
T (AΓaA

T + Γθ)
−1(θ −Aw) and

Γ̂ = ΓaA
T (AΓaA

T + Γθ)
−1AΓa. (7)
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Here Γθ = diag(ςi/
√

Var(θ)), θ = {θi} is a diagonal matrix denoting the uncertainty in369

θ = {θi}. An identical process is followed to develop a model for the surface tension370

σ(pred) = Bv, where v ∼ N (v̂, Σ̂).371

3.3. The finite element model for sessile drops372

To model the alloy deformation at engineering length scales, we use finite element mod-373

eling (FEM) as implemented in Sandia’s Sierra/Aria Galerkin FEM code [58]. The three-374

dimensional domain (8×8×8) mm includes two blocks corresponding to a solid substrate on375

which the alloy is allowed to spread and a multiphase alloy/atmospheric block resting above376

it. Only the boundary of the solid block interacts with the simulation, and all equations377

are solved on the fluid blocks. The maximum time step is set to 0.02 ms.378

The alloy/atmospheric interface is represented using the CDFEM method [46, 47, 48].379

With CDFEM, the interface is originally represented on the non-decomposed alloy/atmospheric380

block mesh using a level set field, (ϕ). This block is then conformally decomposed into sep-381

arate alloy and atmosphere regions along the ϕ = 0 isosurface.382

Within the braze alloy and the atmosphere above it, the Cauchy momentum and conti-383

nuity equations:384

ρ
∂v̄

∂t
+ ρv̄ · ∇v̄ − ḡ −∇ · ¯̄T = 0 (8)

385

∇ · v̄ = 0, (9)

respectively, are solved to evaluate the pressure P and velocity vector v̄. Here, ρ represents386

the density of the specific material phase (10,490 kg/m3 for the alloy and 1.225 kg/m3 for387

the atmosphere), v̄ is the gravity vector (pointed towards the substrate), and ¯̄T is the stress388

tensor, which is defined as:389

¯̄T = −P ¯̄I + µ
(
(∇v̄)⊤ +∇v̄

)
, (10)

where µ is the viscosity (2.91 cP for the alloy and 0.0181 cP for the atmosphere) and ¯̄I390

is the identity tensor. At all outermost surfaces of the domain, an open flow boundary391

condition is applied with P = 0 and n̄ · ∇ ¯̄T = 0.392

At the interface, surface tension is incorporated through a flux boundary condition:393

n̄ ·
(
¯̄Tl − ¯̄Tg

)
= −σn̄∇ · n̄, (11)

where n̄ is the unit normal vector pointing out of the alloy and the subscripts l and g394

correspond to the alloy and atmospheric phases, respectively. Here, we incorporate the395
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species and temperature dependent surface tension σ = G(T, YAl;v), as established in396

the preceding sections. At the substrate interface, fluid motion is enabled through a slip397

boundary condition applied tangentially along the substrate:398

t̄w · ¯̄T · n̄w = − µβ

∆x
v̄ · t̄w, (12)

where t̄w is the unit tangent vector at the substrate surface, n̄w is the unit normal vector at399

the substrate surface, ∆x is the mesh size ( 0.15 mm background with 0.01 mm surface edge400

tolerance), and β is a non-dimensional slip factor (set as 0.01 for the alloy and 1.0 for the401

atmosphere). The influence of the slip parameter is analyzed in Appendix A. To prevent402

the drop from sliding around the substrate (due to numerical errors or asymmetrical mesh403

elements), a no-slip condition is applied to a small region of the alloy/substrate interface404

at the very center of the domain. The species and temperature dependent contact angle405

θ = F (T, YAl;w) is applied to the contact line (the intersection of the alloy/atmosphere406

interface and the substrate surface) through a force f̄θ term:407

f̄θ = σ (t̄w cos θ + n̄w sin θ) . (13)

The mean values (ŵ, v̂) (see Eq. 7) are used to compute the nominal values of (θ, σ) used408

in the FEM.409

We initialize the level set field as a hemispherical surface of radius 1 mm above the410

substrate. The level set is the advected through the non-decomposed mesh according to:411

∂ϕ

∂t
+ v̄ · ∇ϕ = 0, (14)

where v̄ is the fluid velocity from the momentum equation. CDFEM is then used to update412

the conformal decomposition at every time step.413

Thermal transport is coupled to the momentum equations through a separate convection-414

diffusion equation for the temperature T , using Fourier’s Law for the diffusive flux:415

ρcp
∂T

∂t
+ ρcpv̄ · ∇T = ∇ · (κ∇T ) . (15)

Here, cp is the specific heat capacity (arbitrarily set at 100 J/kg-K), and κ is the thermal416

conductivity (arbitrarily set at 100 W/m-K). The above equation was solved in both the417

liquid and gas phases, and a source term is applied as a flux boundary condition (1.5418

W/mm2)on the interface of the liquid with the solid wall. No flux is assumed for all419

other surfaces. Similarly, another convection-diffusion equation was coupled to the system420
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to represent chemical species conservation for aluminum, where we assumed the chemical421

species obeys Fick’s Law for diffusion:422

∂CAl

∂t
+ v̄ · ∇CAl = ∇ · (DAl∇CAl) . (16)

Here, CAl represents the concentration of aluminum in the liquid, and DAl is the aluminum423

diffusivity (arbitrarily set at 50 mm2/s). Aluminum transport was only solved in the liquid424

domain with a flux condition (arbitrarily set at 0.3 mol/mm2-s) at the solid wall interface425

and a no flux condition applied to the gas/liquid surface. Since incorporation of thermal426

and species transport presented here is intended as an illustrative example, the physical427

properties and fluxes were defined as to allow temperatures and concentrations to change428

significantly in the relatively short simulation time.429

4. Data generation430

In this section, we describe the method by which TD of MD simulations were generated.431

We also describe the experimental method by which we acquired the measurements of θ to432

estimate the model-form error in our MD simulations and therefore F (T, YAl;w).433

4.1. Generating the training data434

To generate training data of θ and σ, as a function of (T, YAl), we first generate samples435

in 1150 K ≤ T ≤ 1350 K and 0 ≤ YAl ≤ 0.043 mass fraction (corresponding to a maximum436

mole fraction of 0.15), based on the temperatures and compositions observed in experimental437

studies of brazed joints [59]. The sampling was performed using a space-filling Halton438

sequence. Some of the (T, YAl) combinations were such that the filler material was not a439

liquid, and consequently we discarded these samples. Since the sampling design was space-440

filling, the excision of a subset of samples did not materially degrade the sample set. Fig. 1a441

shows the (T, YAl) samples that were retained, along with the (experimental) liquidus line442

that denotes the boundary above which the filler material is liquid. These 45 samples were443

used in MD simulations to compute the corresponding θ.444

MD simulations were run using the embedded atom method [12] potentials developed445

by Zhou et al. to approximate an Ag-Al braze alloy and Kovar substrate [60]. Quasi-2D446

cylindrical droplets were considered. Note that quasi-2D simulations will slightly over-447

predict the wetting angle and surface tension relative to 3D simulations; Ref. [9] shows a448
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Figure 1: (a) Samples in the (T, YAl)-space which were used to generate the TD for (θ, σ). The red line

denotes an approximation of the experimental liquidus boundary; above it, the (T, YAl) combinations yield

a liquid filler. (b) Relationship between the wetting angle of a droplet, θ, and the circle associated with the

wetting angle defined by the radius of the circle, R, its origin, (x0, y0), and the distance of the origin of the

circle to the surface ys.

5% discrepancy in wetting angle between the two, computed using a phase-field model, for449

a Al droplet on a Au substrate. The droplets were placed on a (010) face-centered cubic450

substrate with dimensions of 78a0 × 13a0 × 8a0 corresponding to the droplet spreading451

direction, interface plane, and droplet width. The substrate was given a lattice parameter452

of a0 = 3.6 Å. The initial wetting angle of the droplet was set to 90◦. A Nose-Hoover453

thermostat (NVT) was used with a 100 fs temperature damping parameter. Each simulation454

ran for 50 ns with the timestep set to 2 fs and atomic positions were output every 20 ps. The455

wetting angle at a given time θ(tl) was measured using the approach outlined by Nijmeijer456

et al. [30]. The functional form of the droplet’s liquid/vacuum interface is that of a circular457

sector. As such, by fitting the liquid/vacuum interface to that of a circle, the wetting angle458

can be shown to be459

θ(tl) = arccos

(
ys(tl)

R(tl)

)
, (17)

with ys and R defined in Fig. 1b. To determine the contour of the liquid/vacuum surface,460

bins of width 3 Å were created along the êx direction. The position of the Ag atom with461

the highest y-component in a given bin was defined to be the height of the liquid/vacuum462
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interface for that bin. The solid/vacuum surface was defined as being 5 Å above the lowest463

value of all bins considered in the simulation to exclude surface states (i.e. the precursor464

foot that spreads before the main drop) along the solid/vacuum interface in the fitting of a465

circle to the surface.466

The surface tension of the Ag-Al liquids was calculated from MD by creating a 10a0 ×467

10a0 × 20a0, a0 = 4.22 Å, block of FCC atoms with periodic boundary conditions in the468

x- and y-directions and free surfaces for the z-direction. The block of atoms was made into469

a liquid by randomly displacing each atom -0.4 to 0.4 Å in each of the three Cartesian470

directions, and then running the simulation at 2500 K for 2 ps in an NVT ensemble with a471

Langevin thermostat. After the liquid was formed, the simulation was run for 4 ns at the472

desired temperature. The surface tension was calculated from the equation [61]473

σ =
V

4A
(⟨σxx⟩+ ⟨σyy⟩ − 2p) , (18)

where V is the volume of the system, ⟨σxx⟩ and ⟨σyy⟩ are the time-averages of the xx and474

yy components of the system’s stress tensor, averaged over the final 2 ns of the simulation.475

A is the surface area between the liquid and vacuum. For mechanical equilibrium to be476

achieved for the planar interface between two fluids, the pressure in each fluid must equal p.477

In the case considered here, the interface between a vacuum and a liquid, We take p = 0. We478

note that within molecular dynamics simulations, averaged small, but finite, stresses normal479

to the vacuum/liquid interface can occur [62]. Substituting p = ⟨σzz⟩ into Eq. 18 changes480

the results of our surface tension calculations on average by 4 mJ/m2. These finite values481

are within the average error of the calculation of ⟨σxx⟩ and ⟨σyy⟩ across all compositions482

and temperatures considered, 80 mJ/m2.483

4.2. Experimental methodology484

Silver sessile drops on Kovar were formed by the following processes. Kovar sheet metal485

was sheared into 25 × 25 mm squares, degreased with acetone and isopropyl alcohol, and486

fired in a Thermal Technologies Inc. Astro AVF 430-SPL vacuum-hydrogen furnace for 2487

hours at 1000oC in a dry hydrogen atmosphere to reduce oxide on the surface. Brazing filler488

metal discs were cut from a pure silver rod. The discs weighed 0.42g ± 0.06. The discs were489

degreased in acetone and isopropyl alcohol. Sessile drops were formed by placing a silver490

disc on a Kovar square, placing a cylindrical Ti sheet metal “top-hat” on top of the sample491

to act as a getter and increase cleanliness, and brazed with the following parameters. The492
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furnace temperature was ramped up at a rate of 10oC/min, with holds at 500oC (30 min.),493

900oC (10 min.), and the brazing temperature (10 min.). Brazing temperatures of 1243,494

1263, 1273, 1283, 1293, 1303 and 1323 K (970, 990, 1000, 1010, 1020, 1030, and 1050oC)495

were investigated. The initial heating was conducted under high-vacuum, approximately496

10−6 Torr, generated by a cryo-pump which allowed the molybdenum oxide on the heating497

elements to decompose and the O2 be removed from the chamber. After 15 min. under498

high-vacuum at 500oC, 9 Torr of gettered Ar (house liquid Ar source passed through a Ti499

gettering furnace, yielding Ar with approximately 0.3 PPB O2) was added to the chamber500

to suppress Ag evaporation at brazing temperatures. With the Ar in place, temperature501

was ramped to 900oC where a 10 min. hold increased temperature uniformity across the502

chamber, and then to the brazing temperature where it was held for 10 minutes. The503

furnace was then allowed to cool passively to room temperature.504

The contact angle of the sessile drops was determined as follows. A “Depth-up” or “Z-505

stack” series of images focused at different heights was taken at 500× optical magnification506

on a Keyence VHX-6000 digital microscope and stitched into a 3D surface. Height profile507

data was then plotted along a line versus position and the flat plate and slope of the sessile508

drop were fitted with lines by eye using the Keyence software. The angle between these lines509

was taken as the contact angle. This process was repeated three times every 90o around510

the circumference of the drop, for a total of 12 contact angle measurements. The average511

of these 12 measurements is the reported contact angle.512

5. Results513

In this section we develop models for θ and σ and embed them in an FEM to simulate514

the spreading of sessile drops.515

5.1. Determining convergence and extracting θ and σ516

In Fig. 2a, we plot the sequence {θl} from an MD simulation, of L = 2501 time-points517

where θ was computed (henceforth, called “ticks”, and equal to a duration of 20 ps). The518

figure also shows a window-averaged version (with a window width of 200 ticks) that shows519

the convergence trend and the low-amplitude oscillations. We apply the convergence di-520

agnostic of Sec. 3.1 with the quality requirement that the true median θ of the trace be521

computed, with 95% confidence, between the 40th and 60th percentile of the θ data. While522
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Run L L′ Correlation length (θ, ς)

Well-behaved 2501 1709 17.6 (22.81
◦
, 0.91

◦
)

Ill-behaved 2502 4802 49.7 (26.54
◦
, 1.70

◦
)

Table 1: Statistics of the two runs shown in Fig. 2 (top). The “well-behaved” run attains its quality

requirements within the number of timesteps simulated, primarily because of its smaller correlation length.

The “ill-behaved” (unconverged) run does not, and results in a larger ς.

these lower and upper bounds may seem excessively generous, the actual variation of θl is523

small. The diagnostic yields that for the specified quality requirement, a subset of the run524

L′ = 1709 is sufficient; further, it computes a correlation timescale of 17.6 ticks. Thinning525

the {θl} by 18 (the nearest integer greater than the correlation length), we get the samples526

that are plotted in red. We compute the mean and standard deviation of the last half of527

the red symbols to obtain (θ, ς) for this MD simulation. For the purposes of the data-driven528

model, θ can be thought of as an observation/measurement and ς, its measurement error.529

Per Sec. 3.2, only the last half of the samples, right of the vertical line in Fig. 2a, are used530

to compute (θ, ς). This information is summarized in Table 1. In Fig. 2b, we show an531

non-converged run (per the quality metrics specified to our conservative diagnostics). The532

time-averaged trace shows clear oscillations and the ideal run-length (L′) indicates that533

the simulation ought to be run twice as long and thinned more aggressively to yield {θl}534

samples that are independent (see Table 1). Due to the computational cost, this was not535

done and the last half of the samples in Fig. 2b are used to compute (θ, ς). The mean536

and standard deviation computed for this run leads to ς that is almost twice as large as the537

previous one. These ς are explicitly captured in our data-driven model and its predictions.538

In Fig. 2c we plot the histogram of all θ in the TD; the median value is plotted with a539

solid vertical line and the first and third quartiles with dashed lines. We see that about540

50% of the wetting angles lie between 21
◦
and 27

◦
. In Fig. 2d we see that the coefficient of541

variation ς/θ is small, with a median of about 0.045 i.e., despite the occasional inability of542

our MD simulations to meet the conservative quality requirements, the uncertainty in the543

simulated θ is rather small. The ill-behaved run is at the extreme right of the figure. Note544

that the net effect of “ill-behavior” is a larger uncertainty ς which is incorporated into the545

estimates of w via Γ.546
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Figure 2: (a) A converged time series of θ for a run with (T = 1250 K,YAl = 0.042). The dots are the θ

computed at the timesteps that were saved (the “ticks”), the black solid line is the window-averaged version

of the same and the red symbols are the θ that constitute independent draws. The final/converged values of

the wetting angle and twice its uncertainty i.e., (θ, 2ς) are also shown in blue. The last half of the samples,

right of the vertical line, are used to compute (θ, ς).(b) The same, but for an “ill-behaved” (or unconverged)

simulation time series (corresponding to a run with T = 1337 K,YAl = 0.0078). The net effect of using this

“ill-behaved” MD simulation is a larger ς when constructing data-driven models. (c) The distribution of the

45 θ in the TD. (d) The distribution of the coefficient of variation ς/θ. In both the figures, the median is

plotted with a solid vertical line, and the first and third quartiles are plotted using dashed lines.
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5.2. Data-driven models547

The TD generated in Sec. 4.1 have features (Ti, YAl,i) and labels (θi, ςi), i = 1 . . . N .548

The first step in making a model for θ, per Eq. 6, is to determine the prior model i.e., the549

structure of A. We propose a model of the form of Eq. 5 and fit it to the scaled TD i.e.,550

to (T i, YAl,i, θi), while ignoring ςi. The centering values E(:) for (T, YAl, θ) are (1.268 ×551

103, 2.222 × 10−2, 23.71
◦
) and the scaling ones (

√
Var(:)) are (47.35, 1.269 × 10−2, 2.280

◦
).552

The model is simplified via backward-forward stepwise elimination, which removes the w4553

term. Thus the scaled wetting angle θ
(pred)

is linear in (scaled) temperature, while being554

quadratic in YAl. It yields wa, that is used in the prior distribution of w (see Eq. 7). The555

adjusted R2 of the fit is 0.946 and a 20-way cross-validation resulted in a prediction error556

of 0.29
◦
. Note that per Fig. 2c, the median θ is about 23

◦
and the “measurement error”557

ς (Fig. 2d) is about 5%. Thus the prior model has an prediction error of about 1.2%,558

about a quarter of the measurement error. This is an estimate of one component of the559

model-form error in our data-driven model, and is due to the limited nature of the TD. The560

other component is due to the limitations of the MD simulations and will be quantified in561

Sec. 5.4.562

Having determined the structure of A we proceed to compute the coefficients w via563

Eq. 7. The prior uncertainty on w is modeled as Γa = diag((3 ∗wa)
2) (i.e., we assume that564

the coefficient of variation is 3). Using Eq. 7, we compute565

ŵ = {−0.57,−0.13,−0.75, 0.56,−0.17}

Γ̂ =



10.1 −1.2 −0.6 −5.8 5.4

−1.2 6.0 1.3 0.8 −2.0

−0.6 1.3 6.1 0.4 0.9

−5.8 0.8 0.4 7.0 1.5

0.54 −2.0 0.9 1.5 7.9


× 10−3, (19)

where ŵ contains the intercept w0 and coefficients of the T i, YAl,i, YAl,i
2
and YAl,i × T i566

terms. Γ̂ contains the uncertainty in the w estimate. While it is diagonally dominant,567

it does display significant off-diagonal terms, denoting correlations between the various568

elements of w.569

In Fig. 3a we plot the θ̂(pred). It is computed using ŵ from Eq. 7, Eq. 6 and Eq. 19.570

All variables have been restored to their unscaled, physical values. The linear dependence571

on T and the quadratic dependence on YAl are clearly evident. Also evident is the muted572
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sensitivity of θ to T compared to YAl (see Eq. 5 and 19). We also plot the data points573

whose fitting errors are in the top 10th percentile using symbols; two such points are below574

the shaded surface and not visible. These“badly modeled” points are the same ones that575

had the largest uncertainties in θ in the TD, as plotted in Fig. 2d. Note that the two576

axes are plotted in reverse order to illustrate the surface. The same figure is plotted as577

contours in the (T, YAl)-plane in Fig. 3c; the liquidus is clearly visible and demarcates the578

(T, YAl)-space where the filler material is a not a liquid. In Fig. 3b, we plot the uncertainty579

in θ(pred) due to uncertain w. We do so by taking 10,000 samples from w ∼ N (ŵ, Γ̂) (and580

Eq. 19), generating realizations of θ(pred) using Eq. 6, and computing the standard deviation581

as a function of (T, YAl). We see that the uncertainty in θ is largest at the boundaries; this582

is expected as the boundaries have data (to constrain the data-driven model) only on one583

side. In addition, the prediction uncertainty in the vicinity of the liquidus is also large.584

We also plot the ς of the same poorly fit points in Fig. 3a. Finally, in Fig. 3d, we plot a585

posterior predictive test. We use 1,000 samples of w ∼ N (ŵ, Γ̂) and generate realizations586

θ(pred) using Eq. 5 for (Ti, YAl,i), i = 1 . . . 4 examples that were held back from the TD.587

The box-and-whisker plots summarize the predictions. The values of θ from the TD are588

plotted as red symbols, with the 2ς bounds as whiskers. We see that in three out of four589

cases, the θ from the TD is contained within the first and third quartiles of the predictions,590

and the measurements, including the error bars, are contained within the whiskers of the591

predictions. However, the effect of the model-form errors (due to the limited TD) are also592

evident here - had these errors been negligible, the MD simulations’ θ would have coincided593

with the median of the predictions.594

An identical process was followed to construct the model σ = G(T, YAl;v) for the surface595

tension. The behavior of σ in (T, YAl)-space is simpler than θ and a less sophisticated596

sampling was used. The centering values E(:) for (T, YAl, σ) are (1500, 4.5 × 10−2, 717.7)597

and the scaling ones (
√
Var(:)) are (2.02 × 102, 3.26 × 10−2, 31.35). The units of σ are598

mN/m. A prior model was fitted to the TD, which revealed that v3 = v4 = 0 i.e, the only599

relevant quadratic term in the model was YAl × T . The adjusted R2 of the fit is 0.98 and a600

20-way cross-validation resulted in a prediction error of 4.75 mN/m. Note that the median601

σ in the training data was 717.7 mN/m, making the prediction error rather small. Having602
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Figure 3: (a) Surface plot of θ̂(pred). TD points that could not be modeled well are plotted in red. The

unit of θ is degrees. (b) The uncertainty (standard deviation) in θ(pred). (c) Contour plot of mean θ̂(pred) in

the (T, YAl)-plane. (d) Posterior predictive test of four held-back θ, showing uncertainties in θ predictions

versus the “measurement uncertainty”. The red whiskers are 2ς bounds. The run numbers on the horizontal

axis are insignificant and only denote the indices of the held-out data in the TD.

determined the structure of B, we computed the probabilistic model per Eq. 7 to give603

v̂ = {−0.0019,−0.8863, 0.4418, 0.0432}

Σ̂ =


0.319 −0.0140 0.0246 −0.00135

−0.0140 220.9 −1.83 2.30

0.0246 −1.83 228.0 −1.07

−0.00135 2.30 −1.07 95.1

× 10−4 (20)
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Figure 4: (a) Surface plot of σ̂(pred) as a function of (T, YAl). The red dots are the worst modeled points. (b)

Posterior predictive test of held-back σ, showing uncertainties in σ(pred) predictions versus the “measurement

uncertainty” ς. The red whiskers are twice-standard-deviation bounds.

where v̂ contains the intercept v0 and coefficients of the T i, YAl,i and YAl,i × T i terms.604

Σ̂ contains the uncertainty in the v estimate. v is seen, from Σ̂, to have insignificant605

correlations between themselves (off-diagonal terms are two orders of magnitude smaller606

than the diagonal ones). In Fig. 4a we plot the most probable prediction of σ(pred) i.e.,607

σ̂(pred), which shows a strong linear trend. This is also evident from Eq. 20, where the608

coefficients for T and YAl are an order of magnitude larger than the quadratic term. The609

TD points with errors in the top 10 percentile are also plotted. In Fig. 4b we plot the610

posterior predictive results for 5 TD examples that were held-out when training the model.611

We see that the prediction uncertainties are larger than ς from the MD simulations, though612

all the data points (red symbols) are contained within the first and third quartiles of the613

predictions. In addition, the uncertainty in the predictions, as quantified by the inter-614

quartile range (the shaded box) as a proportion of the median prediction is quite small,615

around 1%. These plots show that the data-driven model for σ is more predictive than616

that of θ. Also note that these data-driven models are proxies for the MD simulation data;617

errors latent in the MD simulations themselves have yet to be quantified.618
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5.3. Sessile drop simulations with data-driven models619

To demonstrate that these data-driven models can be successfully incorporated into620

finite element simulations, we simulated a hemispherical, Ag drop of radius 1 mm resting621

on a substrate. Initially, the drop is at 1150 K and contains no aluminum. Throughout622

the first half of the simulation, the drop is allowed to relax to an equilibrium state on the623

substrate that is dictated by the contact angle and surface tension. At 0.02 s, we apply624

a source term for the temperature and aluminum species at the substrate/drop interface,625

mimicking a chemical reaction. The aluminum and energy are allowed to spread within626

the drop via convection/diffusion. In typical brazing applications the heat transport627

occurs several orders of magnitude faster than the mass transport. However, for illustrative628

purposes we assigned fluxes that would allow the temperature and aluminum mass fraction629

along the contact line to vary on similar time scales. As this mimicked reaction progresses,630

the chemical composition and the temperature of the wetting surface change with time631

leading to an evolution of the contact angle as shown in Fig. 5. Note that the contact angle632

is post-processed based on the spatial mean of the unit normal vector along a reconstructed633

sliver of interface 0.001 mm above the substrate. We found the post-processed contact angle634

at this edge tolerance to be both not strongly influenced by the included area above the635

substrate and not strongly susceptible to numerical fluctuations associated with a smaller636

tolerance. The corresponding shapes of the drop at various times are shown in Fig. 6.637

The FEM simulation demonstrates the ability to reproduce the wetting behavior of the638

alloy at a length scale commensurate with engineering applications. As shown in Fig. 5,639

the contact angle approaches the mean prediction from Eq. 6 and Eq. 19 that depends on640

temperature and aluminum mass fraction. The deviation between the two at the start of641

the simulation corresponds to the time needed for the drop to relax from its initial state,642

which is still occurring slightly at 0.02 s. The fluctuations in the FEM simulations can be643

attributed to discretization errors leading to localized errors in the post-processed contact644

angle and can be minimized by using a smaller time step as shown in Appendix B. As645

the aluminum mass fraction and temperature increase, additional deviation (about 0.6°)646

between the simulation and the mean prediction from Eq. 7 persists, indicating there is a647

slight lag for the simulations to respond to the new conditions. This deviation between648

the simulation and the analytical model can be minimized by using a finer mesh as shown649

in Appendix B.650
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Figure 5: Results from FEM sessile drop simulations. (a) Post-processed contact angle as compared to the

mean prediction (denoted analytical) from Eq. 6 and Eq. 19 for the prescribed temperature and aluminum

mass fraction as plotted in (b) and (c), respectively. Note that the temperature and aluminum mass fraction

are spatial means taken around alloy-atmosphere-substrate contact line.
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Figure 6: Depiction of FEM sessile drop shapes at different simulation times. The drop coloring corresponds

to the aluminum mass fraction as indicated by the colorbar on the right.

5.4. Discussion651

The discussion above focused on the development of the models θ = F (T, YAl;w) and652

σ = G(T, YAl;v) and the shortcomings in their predictive skill versus the MD data. This653

first component of their model-form error is due to the simplicity of the data-driven model,654

which, in turn, is a consequence of the limited TD. However, these models have a second655

source for error from the MD simulations used to generate the TD.656

The MD simulations generate θ using a quasi-2D model, rather than a 3D model. This657

was necessary for computational speed when assembling the TD and will result in smaller658

wetting angles compared to 3D simulations and experiments, as seen in Ref. [9], where the659

difference was about 5% for their Al-Au system. Further, the EAM potential is known660

to have difficulty predicting some multicomponent metallic alloy interactions [63, 64]. We661

consider this error acceptable to ensure the computational tractability of the TD; any errors662

in the resulting data-driven model can be corrected by assimilating experimental data via663

multi-fidelity modeling (see discussion below). In addition, our simulations assume a fixed664

substrate even though in reality the substrate dissolves into the molten filler, a phenomenon665
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Figure 7: (a) Comparison of experimental data for pure Ag on Kovar with model predictions. A molecular

dynamics simulation of the wetting angle at 1250 K, taken from our training dataset, is also plotted. (b)

Comparison of experimental data for pure Ag surface tension (from Ref. [65]), MD simulations and our

data-driven model’s predictions for σ. Error-bars are ±2 standard deviation bounds. The solid line is the

mean prediction using Eq. 7 and the dashed lines are the ±2 standard deviation bounds computed using

Eq. 7 and Eq. 19.

that our MD model does not currently capture. A fixed substrate keeps the braze/substrate666

interfacial free energy artificially high by preventing mixing of the substrate and braze. As a667

result, the fixed substrate condition overestimates the wetting angle[10]. The use of a fixed668

substrate implies that our θ could be larger than experiments. Finally, the experiments669

were conducted under 9 Torr pressure whereas the MD simulations were done in vacuum.670

We now investigate these errors by comparing against experimental data acquired with a671

pure Ag filler i.e., YAl = 0 wetting Kovar. Fig. 7a plots the experimental measurements672

of θ versus the model predictions ( i.e., means, using Eq. 7 and Eq. 19). For the modeled673

results, the dashed lines show the ±2 standard deviation bounds for the θ(pred), computed674

using 100 samples drawn from Eq. 19 and Eq. 7. For the experiments, the average value675

of 12 measurements on each drop is plotted with symbols and the error-bars denote ±2676

standard deviation. The error bound for the MD data denotes the variation of θ over677

a time-window where it was computed. The experiment at 1280 K was repeated twice,678

and yielded somewhat different values of θ, leading to much larger uncertainty bounds.679
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Fig. 7a shows that the uncertainty in θ(pred) is insignificant compared to the uncertainty of680

experimental measurements, as one would expect from Fig. 3b where the uncertainties are681

seen to be around 1
◦
. Further, the model predicts hardly any change in the θ across the682

temperature range, also expected from Fig. 3a and the weak linear dependence of θ(pred)683

on temperature. In contrast, the experimental data shows a clear temperature dependence.684

Note, also, that the data-driven model’s prediction agree with the MD simulation results685

very well. In Fig. 7b we perform a similar comparison for σ compared to experimental686

measurements (obtained from Ref. [65]). Again, the MD and data-driven models agree687

in their predictions, but there is a distinct bias in the MD predictions when compared to688

measurements.689

Model shortcomings and improvements: Fig. 7 exposes the shortcomings of adopt-690

ing an approximate MD model that lacks reactive processes to generate the TD. It also raises691

the question of how to improve the θ = F (T, YAl;w) and σ = G(T, YAl;v) models, under692

the condition that high-fidelity MD simulations (i.e., higher fidelity than the EAM model)693

are not possible e.g., due to resource constraints. The answer may lie in the structure of694

the discrepancy between the modeled and measured data seen in Fig. 7. Fig. 7a shows695

that the measurements vary around θ(pred) as a smooth function of T . If the same struc-696

ture holds true as YAl is varied, then it may be possible to add a correction δθ to θ(pred),697

perhaps as a Gaussian Process. For σ, plotted in Fig. 7b, the discrepancy between the698

MD simulations and experimental data follows a simpler, almost linear trend in tempera-699

ture, and an approach based on adding δσ to σ(pred) may also also improve the predictive700

skill of the data-driven model. Improving the predictive skill of inaccurate, but computa-701

tionally tractable, process-based models (our MD) by including a correction learned from702

sparse high-fidelity data is a type of multi-fidelity modeling used in many engineering prob-703

lems [66]. Multi-fidelity wetting models, e.g., based on co-kriging, are feasible in principle704

but introduce new practical challenges. Primarily this requires the design and execution of705

a new, and far sparser, design of experiments, conducted via laboratory measurements or706

MD simulations that encompass reactions and can simulate the creation of IMP; these are707

under way. Secondly, data-driven multi-fidelity models are often Gaussian Processes or neu-708

ral networks, which are far more difficult (from a solver and numerical stability viewpoint)709

and computationally expensive to integrate into a partial differential equation simulator710

vis-à-vis our polynomial fits; this is left to future work.711
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6. Conclusions712

In this paper, we have developed a general technique for modeling the surface tension (σ)713

and wetting angle (θ) of a braze filler alloy on a substrate. These quantities are motivated714

by a desire for engineering-scale simulations of brazed joints, and in particular to investigate715

run-out i.e., the spread of the filler material beyond the surfaces being joined. In our case,716

the filler material is a silver-aluminum (Ag, Al) alloy and the substrate is Kovar™ . The717

dependence of σ and θ on the filler temperature (T ) and composition (YAl) is captured by718

the model. We first summarize our findings and then discuss their ramification on being719

able to model brazing processes.720

Summary of findings: The modeling process fundamentally consists of generating721

a training dataset of σ and θ for 50 (T, YAl) combinations by performing molecular dy-722

namics simulations with EAM potentials, and capturing their dependencies via polynomial723

(nominally quadratic) fits θ = F (T, YAl;w) and σ = G(T, YAl;v). The molecular dynamics724

simulations here do not capture all the physics occurring at the filler-substrate interface.725

We chose to begin with this simplified model due to its tractable computational cost, a726

necessity when a large (T, YAl)-space has to be covered to generate a training dataset. In727

particular, we plan to extend this work to use chemically accurate (and far more compu-728

tationally expensive) simulations, and therefore made the decision to limit computational729

cost as much as possible even with these simpler simulation techniques. We show how the730

(T, YAl) combinations may be generated in a space-filling manner, while removing some731

combinations may represent filler material that was not a liquid. We also discuss the sim-732

plification of the quadratic fits, commensurate with the information content of the limited733

training datasets. The simplified structure of the polynomials incur a model-form error,734

and consequently an uncertainty in the estimates of model parameters (w,v) when fitted735

to data. These parameter estimates are computed in a Bayesian manner i.e., as a joint736

probability density function. The uncertainty in the model predictions, and their disagree-737

ment with MD simulations are quantified. The models for θ and σ were integrated with738

an engineering-scale FEM, and used to simulate a drop initialized on a Kovar surface. The739

FEM reproduces the dynamics of the sessile drop reaching its equilibrium configuration in a740

qualitatively correct manner indicating that the integration of F (T, YAl;w) and G(T, YAl;v)741

did not destabilize the FEM or add noticeable stiffness to time-evolving simulations as they742

approach equilibrium. This was fortunate as these data-driven models interact with the slip743
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model on the solid surface as well as the force that drives the contact line to the equilibrium744

θ = F (T.YAl;w) angle.745

Finally, we investigated the predictive skill of the data-driven model by comparing with746

experiments. The discrepancies seem to be almost entirely due to the missing physics747

in the simplified molecular dynamics simulations that are quasi-2D and use a fixed (i.e.,748

non-reactive) substrate. We find that these discrepancies are far larger than the errors749

introduced by the simplicity of F (T, YAl;w) and G(T, YAl;v) arising from the limited nature750

of the training dataset. However, we find that the mismatch between experiment and model751

predictions shows autocorrelation (when YAl = 0) i.e., a smooth variation as a function of752

temperature T . If the same characteristic holds true for YAl > 0, the current models for σ753

and θ could be augmented in a multi-fidelity manner with a small number of experiments754

conducted at carefully chosen (T, YAl) combinations.755

Ramifications on modeling brazing processes: The method described above is,756

in essence, a data-driven means of distilling results from MD simulations into a form that757

can be used in multicomponent, multiphase PDE models that can be used in engineering-758

scale simulations of reactive wetting e.g., brazing. As shown in Fig. 7, the model may759

need to be improved, perhaps by assimilating experimental data in a multi-fidelity manner760

to be predictive, but its inclusion into FEM appears to be straightforward and robust.761

The method can be extended to other configurations e.g., metal-ceramic brazed joints, by762

generating a training dataset using appropriate MD simulations. The process is rigorous,763

as it allows us to quantify the errors that arise due to modeling decisions. It therefore764

constitutes a multiscale simulation framework for brazing processes as well as more generally765

to wetting processes.766

Active brazing is sometimes used to join metallic surfaces with ceramic ones, many of767

which contain aluminum. In these cases, the filler does not contain Al; rather, it diffuses768

out of the ceramic surface following a reaction with the braze alloy. We attempted to769

model this effect in our FEM simulation of a sessile drop with a point source. However,770

unlike our example where we were free to introduce an arbitrary amount of Al, a true771

brazing simulation would have to not only introduce the correct amount, but also validate772

that its transport inside the filler material is realistic. In addition, temperature and any773

components/elements that diffuse/dissolve out of the metallic surface, and are transported774

to the ceramic one, will doubtless affect the amount of Al that is released into the filler. Thus775
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a general modeling framework for active brazing is not feasible. However, the framework776

described in this paper may be sufficient for modeling the brazing of two metallic surfaces.777

Augmented with experimental data, via multifidelity models for θ and σ, it holds the promise778

of being predictive.779
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Figure A.8: Effects of varying the slip parameter β as compared to the analytical solution. The lines in the

legend correspond to different values of β.

Appendix A. Slip parameter influence969

To assess the influence of the semi-empirical slip parameter β on the FEM simulations,970

we conducted additional simulations with varying values of β. The results are shown in971

Fig. A.8 as compared to the analytical solution. Our results indicate that increasing β972

does not significantly affect the simulation as the dynamic behavior is restricted by the973

overall momentum balance. However, we found that decreasing β will result in delayed974

wetting behavior but may help to eliminate some numerical instabilities that arise during975

fast deformation of the interface.976

Appendix B. Grid resolution study977

The influence of mesh and time step sizing were assessed by independently varying the978

background mesh size from 0.25 mm to 0.15 mm and maximum time step from 0.1 ms to979

0.02 ms, as shown in Fig. B.9. Increasing the mesh resolution leads to the simulation more980

closely aligning with the analytical solution. This is likely due to the fact as the background981

mesh sizing increases, the facets along the alloy-atmosphere-substrate contact line are more982

dependent on the capillary effects above the contact line, resulting in a lower post-processed983

contact angle. Despite the improved accuracy, simulations with increased mesh resolution984

are more susceptible to numerical instabilities and result in fluctuations of the contact985

angle. However, as the maximum time step decreases, these numerical fluctuations can be986

minimized.987
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Figure B.9: Grid resolution study. (a) Effect of decreasing background mesh size for a fixed maximum time

step of 0.1 ms. (b) Effect of decreasing maximum time step for a fixed background mesh size of 0.15 mm.

The different lines in the legend correspond to mesh resolution (left figure) and time step size (right figure).
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