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Compressible jet-in-crossflow interactions are difficult to simulate accurately using Reynolds-

averaged Navier Stokes (RANS) models. This could be due to simplifications inherent in RANS

or the use of inappropriate RANS constants estimated by fitting to experiments of simple or

canonical flows. Our previous work on Bayesian calibration of a k − ǫ model to experimental

data had led to a weak hypothesis that inaccurate simulations could be due to inappropriate

constants more than model-form inadequacies of RANS. In this work, we perform Bayesian

calibration of k − ǫ constants to a set of experiments that span a range of Mach numbers

and jet strengths. We check the variation of the calibrated constants to assess the degree to

which parametric estimates compensate for RANS’s model-form errors. We also develop an

analytical model of jet-in-crossflow interactions and obtain estimates of k − ǫ constants that are

free of any conflation of parametric and RANS’s model-form uncertainties. We find that the

analytical k − ǫ constants provide mean-flow predictions which are similar to those provided

by the calibrated constants. Further, both of them provide predictions that are far closer to

experimental measurements than those computed using “nominal” values of these constants

simply obtained from literature. We conclude that the lack of predictive skill of RANS jet-in-

crossflow simulations is mostly due to parametric inadequacies and our analytical estimates

may provide a simple way of obtaining predictive compressible jet-in-crossflow simulations.

∗Technical Staff, Extreme Scale Data Science and Analytics, MS 9152, Senior Member
†Technical Staff, Aerosciences Department, MS 0825, Senior Member
‡Manager, Fluid and Reactive Processes, MS 0828, Senior Member
§Manager, Data Science
¶Manager, Aerosciences Department, MS 0825, Senior Member



Nomenclature

C = Parameters in the k − ǫ RANS model to be calibrated

Ca = Analytical estimate of C

Cnom = Nominal values of C

Copt = Optimal value of C

CV P = Counter-rotating Vortex Pair

Cµ = A parameter in the eddy-viscosity sub-model in a k − ǫ RANS model

Cǫ2,Cǫ1 = Parameters in the equation of the evolution of ǫ in a k − ǫ RANS model

d = Approximation error in the surrogate model

J = Jet-to-crossflow momentum ratio

JPDF = Joint probability density function

l(x) = Jet length-scale at streamwise location x

M = Cross-flow Mach number

N (µ, σ2) = Normal distribution with mean µ and standard deviation σ

TD = Training Data

udef = Velocity deficit in the streamwise direction

vnorm = Normalized vertical velocity

f (ξ), g(ξ), h(ξ) = Normalized radial profiles for streamwise velocity, turbulent kinetic energy and dissipation

x = streamwise distance

δm = Structural error; difference between experimental data and calibrated surrogate model predictions

σ = Model-data mismatch is represented as N (0, σ2)

ξ = Normalized radial distance, r/l(x)

I. Introduction

Turbulent jet-in-crossflow (JIC) interactions occur in many natural and engineering situations [1]. One such

occurence, in aerodynamics, is the stabilization of aerodynamic bodies using spin rockets mounted perpendicular to

the direction of flight. Here the interaction of the rocket exhaust with the freestream constitutes a JIC interaction.

It is known that the exhaust can interact with the control surfaces of the aerodynamic body, modifying the pressure

distribution and interfering with the moments experienced by the body [2]. Experimental investigations of the JIC

interactions [3–6] show that the exhaust (the jet) rolls into a counter-rotating vortex pair (CVP), which then interacts

with the fin/control surface [7]; a vortex-dynamical model of this interaction has also been proposed. However,

numerical simulations using k − ǫ and k − ω RANS models could only reproduce the experimental measurements
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qualitatively [8].

The lack of predictive skill of the RANS simulations could be due to two causes. First, RANS models contain

constants whose values are estimated by fitting to experimental data gathered from simple flows. These flows have little

in common with JIC interactions. Further, RANS parameters are often tuned for different classes of flows; see Ref. [9]

for a discussion. Secondly, two-equationRANS models contain gross simplifications of turbulent processes [10], giving

rise to model-form errors. It is unclear which of the two causes contributes more to the inaccuracies in JIC simulations.

In one of our previous papers [9], we investigated the first possible cause of errors, i.e., whether JIC simulations could

be improved by using better RANS parameters. We developed a Bayesian technique for calibrating three k−ǫ constants

C = (Cµ,Cǫ2,Cǫ1) and computed a joint probability density function (JPDF) for them by calibrating to data from one

of the experiments described in Refs. [3–5]. In that study, the k − ǫ RANS model employed a linear eddy viscosity

model. The experiment in question consisted of a M = 3.93 jet exhausting into a M = 0.8 crossflow, providing a

jet-to-crossflow momentum ratio of J = 10.2. We found the calibrated JPDF to be far more predictive than the nominal

value of the parameters (Cnom = {0.09, 1.92, 1.44}, taken from literature) for some of the other experiments described

in Refs [3, 5]. This suggested that, perhaps, inappropriate parameters were the main cause of the large numerical

inaccuracies.

As a check, in our next paper [11], we investigated the second potential cause of errors i.e., the simplifications

inherent in k−ǫ RANS. We estimated a nonlinear eddy viscosity model (i.e., we inferred the model form and associated

parameters) using data from the same experiment referred to above. Since this process involved discovering both model

form and parameters for the k − ǫ RANS model, we expected that it would be substantially more predictive than our

work with the linear eddy viscosity model [9]; instead, we found that their predictive skills to be quite similar. This

seemed to imply that one of the most important drawback of k − ǫ RANS with linear eddy viscosity models – their

inability to accommodate anisotropy in Reynolds stresses – was not as large a contributing factor to the inaccuracies in

the simulated mean flows compared to inappropriate k − ǫ constants. Note that this is a weak conclusion - the model

form that we learned could have been deficient due to a lack of experimental data.

These two studies seemed to indicate that parametric uncertainties, rather than model-form errors, were the primary

cause of inaccuracies in JIC simulations. However, since both the investigations involved calibration (fitting to data),

there was a possibility that the calibrated JPDF could be compensating for model-form errors. While the predictive

skill of the JPDF for experiments not used in the calibration seemed to suggest that the degree of compensation was not

large, it was hardly conclusive; the JPDF was not sharp and the estimate of C had a significant degree of uncertainty.

In our current study, we investigate whether it may be possible to find a new value of C that would be predictive for

JIC simulations over a range of crossflow Mach numbers M and jet-to-crossflow momentum ratios J. This implies

that the model-form errors are small over a (M, J) range. It also provides an indirect check on our previous (weak)

conclusion that failure to model anisotropy in turbulent stresses was a smaller source of prediction errors vis-à-vis the
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use of inappropriate parameters. We will develop and compare JPDFs for the experiments in Refs. [3–5]. We do not

expect the JPDFs to be identical, since the model-form errors will be different in each case. However, any points of

similarity between the JPDFs would provide strong evidence of how Cnom should change in order to be predictive. We

then develop an analytical model of JIC interactions, and obtain an estimate for C, which we refer to as Ca. While the

analytical model involves its own set of simplifications, it does not involve fitting to experimental data, and is thus free

of any conflation and compensation of parametric versus model-form uncertainties. We compare the predictive skill

of Ca versus the calibrated JPDFs, and decide whether it might serve as an alternative to Cnom.

This paper is an extension of two of our conference papers [12, 13] which contain many of the details, including the

derivations. We will make references to these details in the paper, which is structured as follows. In Sec. II, we review

literature on studies that seek to improve the predictive skill of RANS models by using observational data. We also

review previous attempts at modeling JIC interactions analytically, and evidence from other researchers that values of

C other than Cnom might be predictive for JIC interactions. In Sec. III, we describe the inverse modeling methodology

used to compute the JPDFs from experimental data. In Sec. IV, we develop the analytical model. In Sec. V we present

and discuss our results. In Sec. VI, we present our conclusions.

II. Background

A. Analytical models of JIC interactions

There have been many analytical modeling studies of JIC interactions; a comprehensive review can be found in

Ref. [14]. The jet, emanating into the crossflow, bends and is swept downstream, rolling into a counter-rotating vortex

pair (CVP). The bulk of the studies have targeted modeling the trajectory/penetration of the jet in the crossflow, as a

function of the downstream distance. Broadwell and Breidenthal [15] derived a model that showed that in the far-field

e.g., about 50 jet diameters d j from the exit, the trajectory scaled as y ∼ x1/3, a result that agreed with incompressible

experiments. They also showed that the circulation Γ of the CVP decayed downstream as Γ ∼ x−1/3. Karagozian [16]

developed a vortex dynamical model of the CVP and rederived the same result. Her model included “viscous” vortices

i.e., regions with vorticity distributed in space as a Gaussian and which spread in time due to viscous processes. She

showed that Reynolds number had a weak effect on the trajectory. The model was later extended to compressible

crossflows [17] using inviscid point vortices.

Hasselbrink and Mungal [14] developed scaling laws for the velocities and trajectory of the jet in JIC interactions.

They divided the interaction into 3 phases. The first, called the potential core, extended a few d j downstream of the

exit and resembled an axisymmetric mixing layer. The second, called the near-field, resembled the far-field of a free jet.

The trajectory scales as y ∼ x1/2. The third, called the far-field (about 50d j downstream of the exit) displayed scalings

that were reminiscent of a wake. The trajectory scales as y ∼ x1/3 and the circulation of the CVP obeys Γ ∼ J1/3x−1/3.
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The modeling efforts described above started from first principles rather than the k − ǫ model and are thus not

couched in terms of (Cµ,Cǫ2,Cǫ1). However, in one of our conference papers [13], we derived an analytical model for

JIC interactions that drew on the k − ǫ model and the near-field/far-field formalism described in Ref. [14]. The scalings

described above i.e., y ∼ x1/2, y ∼ x1/3 and Γ ∼ J1/3x−1/3 for the near- and far-fields were recovered, but now also

involved Cµ, Cǫ2 and Cǫ1. This allowed us to compute the trajectory and circulation of the CVP as a function of the

analytical estimate of C = (Cµ,Cǫ2,Cǫ1) = Ca and compare with compressible experiments described in Ref. [3, 5].

This was done in our conference paper [13] where we found good agreement with M = 0.6, 0.7 and 0.8, J = 10.2

experiments. Our model was derived under an incompressibility assumption, implying that the effect of compressibility

on the JIC interaction in the experiments we will calibrate to is weak.

B. Improving k − ǫ models

k − ǫ RANS models contain grossly simplified representations of turbulent processes, along with numerical

parameters. The numerical parameters are estimated from turbulent boundary layers and free shear flows [18]; we

will refer to them as the “nominal” values Cnom. They are not universal, and RANS model parameters have been

repeatedly tuned for particular classes of flows [19]. k − ǫ models have also been augmented with extra terms, e.g.,

for axisymmetric and compressible jets [20, 21]. The fitting of k − ǫ models to measurements of velocity profiles

of supersonic axisymmetric jets revealed model parameters that are quite different from Cnom. In particular, their

estimate of Cǫ2 is close to its upper bound of 2.1.

Recently, the estimation of RANS parameters have tended to adopt a Bayesian approach, computing the parameters’

JPDF from experimental and DNS (Direct Numerical Simulation) data. This decision is partly driven by the realization

that the data may not be uniformly informative on the RANS constants being estimated, or they may be affected by

the inherent shortcomings of RANS models. The first investigations targeted simple flows e.g., flat-plate boundary

layers and wall-bounded flows [22, 23]. Bayesian model averaging has also been used to “merge” JPDFs of RANS

constants obtained from a variety of flow cases (favorable and adverse pressure gradients) and a host of k−ω , k− ǫ and

Spalart-Allmaras models [24]. Bayesian calibration of RANS constants have also been explored in more complicated

(3D) geometries. In Ref. [25], the authors calibrated a k − ǫ model for urban canyon flows, whereas in Refs. [9, 11],

we addressed compressible jet-in-crossflow interactions. The method developed in Ref. [9] is the one employed for

Bayesian calibration results presented in this paper. These more complicated and computationally expensive RANS

simulations had to employ statistical emulators with Markov chain Monte Carlo (MCMC) sampling to construct the

JPDF and also take recourse to informative priors, since RANS constants arbitrarily picked from within their bounds

will not necessarily provide realistic flowfields (or even allow the simulation to complete). Bayesian estimation

of parameters of k − ω − γ models, for transitional hypersonic flat-plate boundary layers, have successfully used

generalized polynomial chaos expansions to construct statistical emulators and infer six parameters from experimental
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measurements of Stanton number [26]. The approach is very similar to the method used in this paper, though we

do not use polynomial chaos expansion emulators. Bayesian estimation of k − ω RANS constants have also been

performed using iterated Ensemble Transform Kalman Filters using measurements from an experiment of a flow over a

backward facing step [27]. The use of an “online” method such as Kalman filters, which assimilate data incrementally

for Bayesian estimation of turbulence model parameters, can be helpful when calibration datasets are too large for

“batch” methods such as MCMC. DNS simulations provide such datasets.

Most RANS models employ a linear eddy viscosity model (LEVM) which cannot reproduce the anisotropy observed

in turbulent flows. Much work on data-driven estimation of corrections/augmentation of RANS models aim to rectify

this shortcoming. In Ref. [28], the authors estimated spatially variable corrections, modeled as a Gaussian random

field, to the eddy viscosity coefficient using DNS data. In addition, Ref. [29] developed a genetic algorithm to discover

stress-strain rate relationships using DNS datasets of flow over backward facing step and tested them by predicting

flows over periodic hills. In Ref. [30], the authors developed a parametric model for the anisotropy in turbulent

stresses; the parameters are functions of space. These have been modeled as Gaussian random fields and inferred from

DNS data [31]. These corrections for anisotropy were related to local flow properties using random forests [32]. In

other work, spatially variable corrections to the eddy viscosity evolution equation (Spalart-Allmaras RANS model)

were estimated using full-field (Bayesian) inversion employing DNS [33] and experimental [34] data of flows over

airfoils. They were related to local flow properties using artificial neural networks. Recently, Edeling et al developed

transport equations for anisotropy perturbation to turbulent stresses and reduced the field inversion to that of estimating

2 parameters; they demonstrated their method by predicting flow over a backward facing step and a subsonic jet

flow [35]. Thus there exist methods to enrich RANS equations to reduce model-form errors, although they may require

the solution of a challenging inverse problem.

Ling et al. [36] estimated turbulent stress anisotropy by comparing DNS and RANS simulations and modeled the

anisotropy using a neural network that specifically constrained the modeled tensor to be Galilean invariant. The neural

net model was integrated into a k − ǫ RANS simulator and used to predict phenomena that cannot be captured by

LEVMs. Ling’s approach does not require one to solve an inverse problem. It has been used to model turbulent wall

fluctuations [37] and learning turbulent diffusivity for film cooling flows [38]. Such methods could be used to improve

RANS once shortcomings due to the use of inappropriate parameters have been be rectified.

III. Inverse modeling

A. The flow problem

The wind-tunnel experiments and measurements that have been used in this paper are fully described in Refs. [3, 5].

The computational details of the CFD simulator used in this paper are in our previous paper [9]; consequently, we only
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provide a summary here. A schematic diagram of the wind-tunnel test section is in Fig. 1 (left). A jet of diameter 9.53

mm is introduced, at Mach 3.93, into a crossflow from an orifice located at the front (left side) of the test section floor.

Separate experiments are conducted by varying the crossflow Mach number M = {0.6, 0.7, 0.8}. The ratio of the jet

momentum to that of the crossflow, J, is held fixed at 10.2 in these experiments. Experiments are also performed by

varying J = {10.2, 16.7}, with the crossflow Mach number M fixed at 0.8. PIV measurements of the mean flow velocity

are made on two planes - the mid-plane (the plane of symmetry in Fig. 1 (left)), and the cross-plane, the transverse

plane that slices through the CVP as seen in Fig. 1 (right). We also plot a windowW where quantifications of vorticity

will be done in Sec. V. The cross-plane is situated 321.8 mm downstream of the jet, and the oppositely-signed vortices

are clearly seen in the figure.

Mid-plane mean-flow velocity measurements are made at 5 streamwise locations, the first being 200 mm downstream

of the jet, and the rest at 50 mm intervals proceedingdownstream. At each of these five locations, velocity measurements

are available at 63 points, distributed vertically, which we refer to as “probes”. Mid-plane measurements are available

for all the experiments. Cross-plane measurements are available only for the M = 0.8 experiments. Since they are

available for all the experiments, we will use mid-plane measurements of streamwise and vertical velocities in our

inverse problem to infer C. We will check the predictive skill of the calibrated C using measurements on the cross-plane.

Note that this necessarily means that we can perform the check only for the subset of the experiments where both

types of measurements are available. Note, too, that this is different from our previous work [9] where calibration was

performed using cross-plane measurements obtained solely from the (M = 0.8, J = 10.2) experiment.

The calibration of C employs a k−ǫ RANS model, with a compressibility correction; details are in Refs. [9, 39]. As

verified in Ref. [9], the most important k − ǫ constants for the JIC interaction are C = (Cµ,Cǫ2,Cǫ1). They will be the

targets of our calibration study. Our flow simulator, SIGMA CFD (Sandia Implicit Generalized Multi-Block Analysis

Code for Fluid Dynamics), employs Roe-TVD fluxes with a minmod limiter to approximate the spatial terms in the

k − ǫ RANS equation. Integration in time is performed using a first-order point-implicit scheme. The computations

start with first-order spatial discretization, proceed for 5,000 timesteps, and are then switched to a second-order method

for another 25,000 timesteps. Convergence to a steady state is carried out using local time-stepping, as the CFL is

gradually ramped up. We use a multi-block mesh with about 10 million cells; mesh convergence studies are in Ref. [8].

Initial and boundary conditions are described in detail in one of our previous papers [9].

B. Formulation of the Bayesian inverse problem

In this section, we formulate a Bayesian inverse problem to infer a JPDF for C = (Cµ,Cǫ2,Cǫ1) conditional on

streamwise and vertical mean flow velocities measured on the mid-plane. Since it is the plane of symmetry, there is

no spanwise velocity. Henceforth any references to a calibrated set of k − ǫ constants C will imply the JPDF, rather

than a deterministic or point estimate of C. Computing C as a JPDF captures the uncertainty in the estimate due to
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Fig. 1 Left: Schematic of the wind-tunnel test section, which also serves as the computational domain. The

orifice where the jet is introduces is also shown, as are the mid-plane and the cross-plane. Right: Contour plot

of the vorticity field on the cross-plane slicing through the CVP. Positive vorticity is plotted with red contours.

We also plot a windowW where quantifications of vorticity will be performed in Sec. V.

limited measurements, measurement noise and the shortcomings of the RANS model that prevent it from reproducing

experimental measurements perfectly. The development closely parallels the formulation of the Bayesian inverse

problem in Ref. [9], which used measurements on the cross-plane. Cross-plane measurements are available for only a

subset of the experiments described in Refs. [3, 5], necessitating the development of this alternative inverse problem

formulation.

Consider an experimental dataset consisting of a vector ye, of length Np, containing measurements at Np probes.

Assume that a simulation seeded with the k − ǫ constants C results in numerical predictions ym(C) at the same probe

locations. We relate the measurements to the model predictions thus: ye = ym(C) + ǫ , where ǫ = {ǫ i }, i = 1 . . . Np is

the model - data mismatch. It is a composite of measurement and model-form errors. We define model-form errors

as the discrepancy between noise-free observations and model predictions using a value of C that is optimal across

all JIC interactions. We make the inverse modeling assumption that the error at each probe is independent of the

others, and can be modeled as independently and identically distributed Gaussians i.e., ǫ i ∼ N (0, σ2). This statistical

representation for the model - data mismatch introduces an extra parameter σ, which will also be estimated as a part of

the calibration; its provides a crude measure of disagreement between model predictions and experimental observations.

If the measurement errors in the experiment are small, σ is a measure of the model-form error in k − ǫ RANS when

simulating the JIC experiment.

We now develop the expression for the JPDF of (C, σ2) conditional on the experimental data ye i.e., P(C, σ2 |ye).

Given our Gaussian model for the model-data mismatch ǫ i ∼ N (0, σ2), the likelihood L(ye |C) of observing ye when
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the CFD simulator is seeded with C is

L(ye |C, σ
2) ∝

1

σNp

exp *
,
−
||ye − ym(C) | |2

2

2σ2
+
-
. (1)

Assume that our prior belief regarding C and σ2 can be expressed as the distributions Π1(C) and Π2(σ2). By Bayes’

theorem, these can be combined into an expression for P(C, σ2 |ye), the posterior density (alternatively, the JPDF):

P(C, σ2 |ye) ∝ L(ye |C, σ
2) Π1(C) Π2(σ2) ∝

1

σNp

exp *
,
−
||ye − ym(C) | |2

2

2σ2
+
-
Π1(C) Π2(σ2). (2)

The actual calibration variables are the velocity deficit in the streamwise direction udef and the normalized vertical

velocity on the mid-plane vnorm. We formally define them as

udef =
Umax (x) − u

U∞
and vnorm =

v

U∞
,

where Umax (x) is the maximum streamwise velocity at an x-location and U∞ is the freestream velocity. Due to the

mass added by the jet, the maximum velocity observed in the test section varies in the streamwise direction. udef and

vnorm are the elements of ye. Define um to be the predicted streamwise velocity deficit udef and vm be the normalized

vertical velocity vnorm for all the probes. Define ue and ve to be their experimental counterparts over all the probes.

Therefore, Eq. 2 can be written as

P(C, σ2 |ue, ve) ∝
1

σNp

exp *
,
−
||(ue − um(C))/Ku | |

2
2

2σ2
+
-

exp *
,
−
||(ve − vm(C))/Kv | |

2
2

2σ2
+
-
Π1(C) Π2(σ2), (3)

where Ku = max(ue) and Kv = max(ve). Normalization using Ku and Kv ensures that the contributions from udef

and vnorm are equally weighted in the expression for the posterior density. Solving Eq. 3 requires us to specify Π1(C)

and Π2(σ2). As in Ref. [9], we represent our prior belief of σ2 in terms of its reciprocal i.e., Π2(σ−2) which we

model with a Gamma distribution i.e., σ−2 ∼ Γ(k, θ), where k = 1, θ = 1. Such a prior distribution is called an inverse

Gamma prior and has the advantage of being practically non-informative for σ−2 > 5. This ensures that our prior

beliefs do not influence the inference of σ2 excessively, and the JPDF should reflect the information on σ2 contained

in the experimental measurements.

The four-dimensional distribution P(C, σ2 |ue, ve) in Eq. 3 is complicated, and is realized by drawing samples of

(C, σ2). As in Ref. [9], the sampling is performed using a particular MCMC algorithm called Delayed Rejection

Adaptive Metropolis [40]. The conjugate inverse Gamma prior for σ2 allows us to sample for σ−2 via a Gibbs sampler.

The MCMC chain is run till it converges to a stationary distribution, as assessed using the Raftery-Lewis method [41].

The software for computing P(C, σ2 |ue, ve) is written in R [42]. We use the Delayed Rejection Adaptive Metropolis
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algorithm implemented in the R package FME [43]. We also use the R package mcgibbsit [44] for its implementation

of the Raftery-Lewis convergence metric. The samples of (C, σ2) are used to construct the JPDF P(C, σ2 |ue, ve)

empirically via kernel density estimation [45].

The MCMC method takes between 25,000 – 50,000 samples of (C, σ2) to reach convergence. Since each sample

requires one to run a 3D JIC RANS simulation to produce (um(C), vm(C)), the MCMC method is impractical as

described above. Instead, we replace the RANS simulator with a statistical emulator. The emulator is a computationally

inexpensive proxy of SIGMA CFD that can provide accurate approximations of (um(C), vm(C)) within the parameter

space C defined by:

0.06 ≤ Cµ ≤ 0.12,

1.7 ≤ Cǫ2 ≤ 2.1,

1.2 ≤ Cǫ1 ≤ 1.7. (4)

C. Priors and statistical emulators

An informative prior Π1(C): The bounds on Cµ,Cǫ2 and Cǫ1 defined in Eq. 4 could be used to propose a prior

distribution Π1(C), e.g., as a uniform distribution on C. However, an arbitrary point in C may not lead to a physically

realistic combination (Cµ,Cǫ2,Cǫ1) - the RANS simulation may not run, fail to converge to a steady state or predict a

flow field that does not resemble transonic, high Reynolds number flows. Thus, in order to construct Π1(C), we will

first need to isolate a physically realistic region R ⊂ C in the parameter space. In doing so, we will follow the method

developed in our previous paper on RANS calibration [9], and so we summarize the process here.

The priorΠ1(C) is constructed during the process of devising a statistical emulator for SIGMA CFD. We distribute

2744 (= 143) samples of C inside C using a quasi-random, space-filling Halton sequence and seed RANS JIC

simulations with them. Of these a few simply fail to converge to a steady state (due to non-physical (Cµ,Cǫ2,Cǫ1)

combinations) while others run to completion but may provide unsteady or unrealistic flowfields. We compute the

RMS (root mean square) discrepancy between (ue, ve) and (um, vm) produced by each of the RANS simulations, and

retain the top 25% of the run i.e., the ones closest to the experimental measurements. The values of C so chosen are

deemed to constitute R, the physically realistic subset of the parameter space C. As in Ref. [9], we define

Π1(C) =



1 if C ∈ R

0 otherwise

(5)

For the particular case of the (M = 0.8, J = 10.2) experiment, of the 2744 runs, 2628 completed. Of these the top

25% i.e., 657 were used to define R; they are plotted in Fig. 2. We note that they constitute a contiguous region in C.
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Fig. 2 C points in C that constitute R, projected down to the (Cµ,Cǫ2), (Cµ,Cǫ1) and (Cǫ2,Cǫ1) planes.

The discrete values of Π1(C), as initialized using Eq. 5, constitute the training data (TD) to construct a binary support

vector machine classifier (SVMC). For the particular case of the (M = 0.8, J = 10.2) experiment, the TD consisted of

2628 records, of which 657 fell in one class. The process for constructing the SVMC, and the R package used to do so,

are described in Ref. [9]. We ensure that the SVMC has a misclassification rate of less than 10% and thus can define R

accurately inside C. We use this SVMC as an implementation of the prior Π1(C) in Eq. 3, integrate it into the MCMC

software, and use it to sample posterior density P(C, σ2 |ue, ve).

Statistical emulator for SIGMA CFD: We use polynomial curve-fits to map the inputs into SIGMA CFD i.e.,

(Cµ,Cǫ2,Cǫ1), to the outputs udef and vnorm. These curve-fits are then used as computationally inexpensive proxies for

our RANS simulator. Separate curve-fits are constructed for udef and vnorm, and probes are also treated individually.

At each probe, we postulate a cubic polynomial in (Cµ,Cǫ2,Cǫ1) as a model for udef (or vnorm). We use the values of

C that lie in R as the data in a least-squares fit to estimate the polynomial’s coefficients. The polynomial is simplified

using Akaike Information Criterion. We find that many of the cubic terms are removed, and in case of some probes, the

polynomial model reduces to a quadratic. Before using the polynomial model as a replacement for SIGMA CFD in the

inverse problem, we ensure that it is an accurate proxy. We compute the approximate error of the polynomial emulator

using repeated random subsampling, a form of cross-validation; only those emulators that achieve an approximation

error less than 15% are retained. We see that this process often removes about 2/3rd of polynomial proxies, and the

probes with accurate emulators follow the trajectory of the jet. This is not unexpected - the impact of varying C is felt in
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Fig. 3 Prior and posterior densities obtained from mid-plane and cross-plane measurements. Posterior densi-

ties obtained from mid-plane and cross-plane measurements are plotted using solid and dashed lines respectively.

The corresponding priors are plotted with ◦ and △. The vertical lines are the “nominal” values of the parameters.

regions with substantial velocity gradients and turbulence. The run-to-run variation in the regions of the flowfield away

from the jet is small and mostly due to numerical noise, which cannot be modeled with (Cµ,Cǫ2,Cǫ1). An illustration

of such “model-able” probes tracking the jet trajectory can be found in Ref. [12], Fig.2. Note that as in Ref. [9], no

emulators are built for probes inside the boundary layer; the calibration is aimed at the accurate simulation of the jet,

the CVP and their trajectory.

The procedure outlined in Sec. III.B and III.C is repeated for all 4 experiments considered in this study, resulting

in 4 JPDFs P(C, σ2 |ue, ve). However, to be useful, we have to ensure that the information content in (ue, ve) on

(Cµ,Cǫ2,Cǫ1) is substantial, preferably similar to that of the cross-plane measurements, as assessed in Ref. [9]. We

check this in two ways. First, we compare the JPDF P(C, σ2 |ue, ve) for the (M = 0.8, J = 10.2) experiment with

the one inferred from cross-plane measurements in Ref. [9]. This is shown in Fig. 3. There, the posterior density

obtained using mid-plane measurements is plotted using a solid line, while the one from Ref. [9], inferred using

cross-plane measurements, is plotted using a dashed line. Prior densities, which are the projections of R onto the

axes, are plotted with ◦ and △ for the mid-plane and cross-plane cases respectively. We see that the prior densities

are very close, indicating that the physically realistic parameter space R identified in this paper using udef and vnorm

may be very similar to the one identified in Ref. [9] using cross-plane measurements. Also the prior distribution is

sufficiently wide to comfortably contain the posterior density. We take this as a sign that the procedure for identifying

and enforcingR, using the 25% threshold described above, is not restrictive. Further, the posterior densities are almost

identical, indicating that the information on (Cµ,Cǫ2,Cǫ1) contained in the mid-plane measurements may be similar

to the information contained in the cross-plane measurements. The vertical lines in the figures denote the “nominal”

values of Cµ, Cǫ2 and Cǫ1, and are quite different from the maximum a posterior (MAP) values (the peak of the PDF).

The close agreement between the two posterior densities in Fig. 3 implies that they are equally predictive. This
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can be checked using a “pushed-forward posterior” test and is documented in Ref. [12]. We seed our RANS simulator

(SIGMA CFD) with 100 samples of C drawn from P(C, σ2 |ue, ve) and develop an ensemble of velocity predictions

on the cross- and mid-planes. These are compared to flowfields developed using a similar “pushed-forward posterior”

test with samples drawn from the JPDF inferred using cross-plane measurements. The comparison is available in Figs.

5 and 6 in our conference paper [12] and the two ensembles match very closely. This is not surprising, given the

agreement between the two JPDFs. This gives us some confidence that the mid-plane and cross-plane measurements

contain similar levels of information on (Cµ,Cǫ2,Cǫ1). This is important since two of the four experiments considered

in this paper viz, the (M = 0.6, J = 10.2) and (M = 0.7, J = 10.2) experiments, do not have cross-plane measurements

and we have no independent way of checking whether the experiments’ JPDF can reproduce flowfield measurements

that were not used in the calibration.

The bulk of the computational cost is incurred in generating the TD. Each SIGMA CFD simulation of a JIC interac-

tion requires about 12 hours on 1024 cores of a PowerPC A2 processor; 2744 runs are required to generate the TD for a

given experiment. We generate TDs for four separate experiments corresponding to (M = 0.6, J = 10.2), (M = 0.7, J =

10.2), (M = 0.8, J = 10.2) and (M = 0.8, J = 16.7). The “pushed-forward posterior” tests require additional runs.

Simulations were performed on the Sequioa supercomputer (https://asc.llnl.gov/computing_resources/sequoia/)

at Lawrence Livermore National Laboratory.

IV. Analytical model

Hasselbrink and Mungal [14] described, in a JIC interaction, the existence of a near-field, where the trajectory of

the jet scaled as y ∼ x1/2, and a far-field where the scaling proceeded as y ∼ x/13. We will use their formalism to

develop our analytical model, starting from the k − ǫ RANS equations, so that we may obtain analytical estimates for

Cµ,Cǫ2 and Cǫ1. We first check whether k − ǫ RANS equations show these scaling for compressible JIC interactions.

In Fig. 4 we plot the scaled trajectories for a J = 10.2 jet interacting with a M = 0.6 crossflow, simulated using the

nominal values of the RANS constants Cnom. The simulation domain and settings are the same as the one described

in Sec. III.A. The location of the jet, at any x (streamwise) location is the y (vertical) location where the vertical

normalized velocity vnorm reaches a maximum. We represent y = Cxn as the trajectory and fit this model to the

RANS data. In Fig. 4, we plot C = y/x1/3 using ◦ and C = y/x1/2 using ×. We clearly see the two scalings fitting the

trajectory. For x/d j > 13 (the vertical line), C assumes a constant value of around 2.9; further, for x/d j < 13, C varies

between 2 and 2.9. On the other hand, when we plot C = y/x1/2, C assumes a value of around 1.8 for x/d j < 13, and

then slowly decays. Thus the separation of near-field and far-field behaviors, described in Ref. [14], are replicated here.

This gives us confidence that an analytical model that draws from a k − ǫ model could accurately represent the data in

Ref. [3, 5].
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Fig. 4 Trajectory of a (M = 0.6, J = 10.2) JIC interaction, simulated using k − ǫ RANS equations, scaled as

y = Cxn. We plot C = y/x1/3 using ◦ and C = y/x1/2 using ×. There are two significantly different regimes for

the trajectory, separated by the vertical line at x/d j = 13.

A. Far-field model

We develop a self-similar model for the far-field first. It follows the development of a similar model for wakes [10],

in keeping with its similarity with the far-field behavior of JIC [14]. We assume that the far-field interactions are only

weakly compressible, and we will develop the model under incompressibility and axisymmetric assumptions where

the x − r plane contains the jet. We also assume that the jet, which was introduced vertically, has curved into the

crossflow to an extent that the vertical velocity in the jet is small i.e. v/U∞ << 1. We also assume that the mass flow

and momentum of the jet (in magnitude) is the same as when it was introduced into the crossflow. The center of the

jet has a streamwise velocity deficit that changes downstream, and we will model the velocity deficit profile at a given

x location, in a manner similar to wakes. The details of the derivation are in Ref. [13].

Let u = U∞ + û, û/U∞ ≪ 1. We also set

û = ûs (x) f (ξ), k = ks (x)g(ξ) and ǫ = ǫs (x)h(ξ), (6)

where l = l(x) is a turbulence length scale and ξ = r/l. Under the assumption of incompressibility and negligible

vertical velocity, the momentum equation can be linearized as

U∞
∂u

∂x
=

1

r

∂

∂r

(

rCµ

k2

ǫ

∂u

∂r

)

, (7)
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where we have used a linear eddy viscosity model for the turbulent kinematic viscosity νT = Cµk2/ǫ . We write

∂u

∂x
=

∂û

∂x
= ûs

′
f − ûsξ f ′

l ′

l

and substitute into Eq. 7 to get

U∞

(

ûs
′
f − ûsξ f ′

l ′

l

)

= Cµ

k2
s ûs

ǫs l2

1

ξ

∂

∂ξ

(

ξ f ′
g

2

h

)

(8)

Here prime (′) denotes a first derivative with respect to the independent variable which is x in case of l ′ and ξ in case

of f ′. We define ks = Cûs
2

and ǫs = Dûs
3
/l, which we substitute into Eq. 8, and divide both sides by ûs

2
/l, to get

ûs
′
f − ûsξ f ′l ′/l

ûs
2
/l

=

Cµ

U∞

1

ξ

∂

∂ξ

(

ξ f ′
g

2

h

)

C2

D
.

The right hand side of the equation is solely a function of ξ, which implies

l

ûs
2

∂ûs

∂x
= K1 and

1

ûs

∂l

∂x
= K2. (9)

Eq. 9 holds if

ûs = Axn−1 and l = Bxn . (10)

The streamwise momentum flux integrated across the jet at any x location is

2π ṁ

∫ ∞

0

u r dr = 2π ṁ l2

∫ ∞

0

(U∞ + û)ξdξ, (11)

where ṁ = ρ∞U∞ is the mass flux and ρ∞ is the freestream crossflow density. This momentum consists of the

momentum due to the crossflow ṁU∞ and that due to the jet. Equating the jet’s contribution to the momentum to the

jet’s momentum at the jet exit at the bottom of the test section, we get

π

4
d2
j ρ jV

2
j = 2πl2ûs ρ∞U∞

∫ ∞

0

ξ f dξ (12)

Since the left hand side is a constant, l2ûs too should be a constant. From Eq. 10 we get

3n − 1 = 0 or n = 1/3 (13)
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Combining Eq. 13 and Eq. 9, we get

ûs = A∗U∞d
2/3
j

x−2/3 and l = B∗d
2/3
j

x1/3, (14)

where A∗ and B∗ are non-dimensional. We substitute Eq. 14 into Eq. 8 to get

−
B∗

3A∗
D

C2Cµ

(

2 f + ξ f ′
)

=

1

ξ

∂

∂ξ

(

ξ f ′
g

2

h

)

. (15)

Following the modeling of wakes [46], we set

D

C2Cµ

= ReT = 14.1 and
g

2

h
= 1, (16)

where ReT is the turbulence Reynolds number and is set to 14.1 per Ref. [47]. In Eq. 16, set

−
B∗

3A∗
D

C2Cµ

= α = 1, to get −
B∗

3A∗
= ReT

−1. (17)

From Eq. 15 we get

2 f + ξ f ′ =
1

ξ

∂

∂ξ

(

ξ f ′
)

, implying f = exp

(

−
ξ2

2

)

. (18)

Using Eq. 12, we also get

J

8
= A∗(B∗)2, (19)

where J is the jet-to-crossflow momentum ratio. Using Eq. 19 and Eq. 17 to compute A∗ and B∗ and substituting into

Eq. 14, we get

ûs

U∞
=

1

2

(

ReT

3

)2/3

J1/3

(

d

x

)2/3

l

d j

=

1

2

(

3

ReT

)1/3

J1/3
(

x

d

)1/3

. (20)

B. k − ǫ parameter estimates

We use the far-field profiles developed in Sec. IV.A to derive expressions for Cǫ2,Cµ and Cǫ1. We linearize the

evolution equations for k and ǫ as we had done for Eq. 7 to get

U∞
∂k

∂x
=

1

r

∂

∂r

(

r
Cµ

σk

k2

ǫ

∂k

∂r

)

+ Cµ

k2

ǫ

(

∂u

∂r

)2

− ǫ
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for the k−equation and, for the ǫ−equation:

U∞
∂ǫ

∂x
=

1

r

(

r
Cµ

σǫ

k2

ǫ

∂

∂r
ǫ

)

+ Cǫ1Cµk

(

∂

∂r
u

)2

− Cǫ2
ǫ2

h
.

Introducing the expressions in Eq. 6, with ks = Cûs
2

and ǫs = Dûs
3
/l, with ûs and l replaced by the expressions in

Eq. 20, we get,

α
(

2g + ξg′
)

+

1

ξ

∂ξg′

∂ξ
+

1

C

(

f ′
)2
− ReT

D

C
h = 0

α
(

4h + ξh′
)

+

1

ξ

∂

∂ξ
ξh′ +

Cǫ1

C

(

f ′
)2
− Cǫ2ReT

D

C

h2

g
= 0. (21)

Recall that in Eq. 16, we had stated that g2/h = 1. We approximate this as h = g
2 ≈ ḡg, where ḡ is the mean value of

g over the k−profile. We substitute in Eq. 21 (the k−equation) and also set α = 1, to get

2g + ξg′ +
1

ξ

∂

∂ξ
ξg′ +

1

C

(

f ′
)2
− ReT

D

C
ḡg = 0.

If we demand that

ḡReT

D

C
= 2, (22)

then the equation for k simplifies to

ξg′ +
1

ξ

∂

∂ξ
ξg′ +

1

C

(

f ′
)2
= 0, (23)

leading to a solution for g

g =
1

2C

(

2 Ei

(

ξ2

2

)

− 2 Ei(ξ2) − exp(−ξ2)

)

, (24)

where

Ei(x) =

∫ ∞

x

exp(−u)

u
du

are exponential integrals. This allows g
′(ξ = 0) = 0 and g(∞) = 0 which satisfy the boundary conditions for the

k−profile. Also we approximate ḡ as

ḡ =
1

2
(g(0) + g(∞)) =

1

4C
(2 ln 2 − 1) , (25)
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a simple arithmetic mean over the k−profile. Using Eq. 16 and Eq. 22, and substituting the numerical value of ḡ from

Eq. 25, we get,

Cµ =

8

2 ln 2 − 1
ReT

−2
= 0.1 and

D

C2
=

8

2 ln 2 − 1
ReT

−1. (26)

Doing the same for the equation for ǫ in Eq. 21 we get

4h + ξh′ +
1

ξ

∂

∂ξ
ξg′ +

Cǫ1

C

(

f ′
)2
− Cǫ2ReT

D

C

h2

g
= 0.

We demand that

Cǫ2ReT(D/C)(h/g) = 4. (27)

Further, approximating h/g ≈ ḡg/g, we get

Cǫ2ReT
D

C
ḡ = 4.

Combining with Eq. 22, we get

Cǫ2 = 2, (28)

and the profile for ǫ is given by

ξh′ +
1

ξ

∂

∂ξ

(

ξh′
)

+

Cǫ1

C

(

f ′
)2
= 0.

Comparing with Eq. 23, we see that h = Cǫ1g. Recall from Eq. 16 that g2/h = 1 i.e., h = g
2 ≈ ḡg. Therefore,

ḡ ≈
h

g
= Cǫ1 =

2 ln 2 − 1

4C
, (29)

where we use Eq. 25 for the numerical value of ḡ. To complete the estimates of (Cµ,Cǫ2,Cǫ1), we need C. We use the

Bradshaw assumption for turbulence shear stress [46], i.e., u′v′ = 2/3 × 0.45 × ks = 0.3ks . Also u′v′ ≈ ûs
2

f ′/ReT

where f ′ = 0.5( f ′max + f ′(∞)) ≈ 0.31 (a simple mean over the entire u−profile). This gives:

u′v′ =
0.31ûs

2

ReT

= 0.3ks .

Consequently

C =
ks

ûs
2
=

0.31ReT
−1

0.3
= 0.072
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and

Cǫ1 =
2 ln 2 − 1

4C
= 1.34. (30)

Collating Eq. 26, Eq. 30 and Eq. 28, we get

Cµ = 0.1, Cǫ2 = 2.0 and Cǫ1 = 1.34 (31)

These are the analytical values of C i.e., Ca. They depend on the modeling assumptions in Eq. 16, 17, 22 and 27,

whose validity is established by the predictive skill of Ca. Eq. 16 is borrowed from the modeling of wakes; as stated

in Ref. [14], scaling laws show that they are similar to the farfield in JIC interactions.

V. Results

We perform Bayesian calibration, following the method described in Sec. III.B and III.C, to construct four separate

JPDFs using data from experiments described in Refs. [3, 5]. The JPDFs are marginalized and plotted in Fig. 5. The

experiments (M = 0.6, J = 10.2), (M = 0.7, J = 10.2), (M = 0.8, J = 10.2) and (M = 0.8, J = 16.7) are plotted using

solid, dashed, dotted, and long-dashed lines. The nominal values of (Cµ,Cǫ2,Cǫ1) are plotted with a dashed vertical

line and the analytical value Ca using a solid line. It is clear that the calibrated Cǫ2 and analytical values of Cǫ2 are far

larger than the nominal value, and in line with the value obtained for axisymmetric jets [18]. Further, one could argue

that the upper bound on Cǫ2 could be increased to 2.5 (instead of 2.1), as used in Ref. [25]. Note that the tendency of the

posterior densities to peak near the extremities of the parameter ranges are not an artifact of how we construct Π1(C)

but rather that the parameter ranges in Eq. 4, taken from literature, may be too narrow. The PDFs for Cµ do not have

the same consistency as the PDFs for Cǫ2, though most of the peaks are at values larger than the nominal value. This

conclusion is also supported by the analytical value, which is larger than the nominal one of 0.09. The PDFs for Cǫ1 are

all close to the nominal value of 1.44 with the exception of the (M = 0.6, J = 10.2) case. The plots of the model-data

mismatch σ, which is in terms of the normalized streamwise velocity deficits and vertical velocities, show that the

(M = 0.6, J = 10.2) calibration incurs the largest error; this will be investigated in detail later. The values of σ imply

that a “pushed-forward posterior” run seeded by values of (Cµ,Cǫ2,Cǫ1) sampled from the JPDFs plotted in Fig. 5 will

not bracket the experimental measurements; instead they will need a model-data mismatch ǫ ∼ N (0, σ2), where σ is

sampled from the PDF in Fig. 5. This aspect of the calibration for (Cµ,Cǫ2,Cǫ1) was observed and explained in our

previous paper where we developed the calibration method [9]; it is due to a combination of model-form error (the

main component) and the approximation error of the statistical emulator for SIGMA CFD. The (M = 0.7, J = 10.2)

experiment yields bimodal distributions for Cµ and Cǫ1. In Fig. 6, we plot the JPDF, marginalized to two dimensions.

We clearly see that Cµ and Cǫ1 are correlated, achieving similar accuracies by compensating for each other.
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Fig. 5 Marginalized JPDFs of (Cµ,Cǫ2,Cǫ1, σ) obtained from the experimental data in Refs. [3]. The dashed

vertical line is the nominal value of the k − ǫ constant and the solid vertical line is the analytically derived value

(Eq. 31).
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Fig. 6 The JPDF obtained from the (M = 0.7, J = 10.2) experimental dataset, marginalized to two dimensions.

The correlated nature of (Cǫ1,Cµ) is clear.
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Next, we check the predictive skill of the JPDFs plotted in Fig. 5. We do so using “pushed-forward posteriors”

using 100 samples drawn from the JPDF (henceforth, the “ensemble”), as described in Sec. III.C. The variability in

the prediction of mid-plane and cross-plane quantities is not much (below 10 %) as shown in our previous paper [9],

and consequently we use the ensemble mean for visualizing mid-plane predictions. We also identify the C sample

that produces predictions that match the measurements best; we call this (Cµ,Cǫ2,Cǫ1) combination Copt . Since

the variability of mid-plane predictions due to uncertainty in the inferred (Cµ,Cǫ2,Cǫ1) is small, the ensemble mean

prediction is quite close to the one produced by Copt .

In Fig. 7 we plot the streamwise velocity deficit udef (top) and normalized vertical velocity v/U∞ (bottom) at

3 streamwise locations x/d j = 21, 31.5 and 42. Results are presented for the (M = 0.8, J = 10.2) test case. The

dotted line denotes predictions using Cnom, the dashed line stands for Ca, ◦ denote experimental measurements and

the solid line is the ensemble mean prediction produced by the pushed-forward posterior. The vertical axis measures

the normalized height y/d j above the test-section floor. We see that the both udef and v/U∞ reach a maximum in

the middle, coinciding with the center of the jet. Both decay to zero near the top of the test section. The vertical

velocity is zero at the floor of the test section, whereas the streamwise velocity deficit decreases to near-zero as we

depart the center of the jet and then increases as we progress into the boundary layer on the floor of the test section.

Comparing the experimental measurements with the predictions using Cnom and the ensemble mean, we find the

the JPDF improves the predictive skill of the simulations quite remarkably. What is surprising and reassuring is the

degree of agreement achieved by the flowfield predicted using Ca; further, the improvement holds across both the

streamwise and vertical velocity fields as measured on the mid-plane at all three downstream locations. We do not have

experimental measurements any closer to the jet exit to check the predictive skill of the JPDFs in the near-field.

The good agreement observed in Fig. 7 is expected since mid-plane velocities were the calibration variables. We

check the ability of the JPDF for the (M = 0.8, J = 10.2) test case to reproduce the vorticity field on the cross-plane;

cross-plane measurements are not included in the calibration. In Fig. 8 (left) we plot contours of the vorticity field inside

W produced by Cnom using solid lines. In the middle sub-figure, we plot the vorticity field predicted using Ca. In the

right sub-figure, we plot the vorticity field produced using Copt . Overlaid on all three sub-figures is the experimentally

observed vorticity field plotted with the dash-dotted lines. It is clear, again, that there is a large improvement in the

agreement between experimental and modeled vorticity field as we replace Cnom with Copt . Further, a similar degree

of improvement is also observed when we use Ca, in Fig. 8 (middle). In addition, the predictions using Ca and Copt

are very similar.

We next check the predictive accuracy of the JPDFs for the (M = 0.8, J = 16.7) test case, using mid-plane udef

and vnorm as well as the cross-plane vorticity field as the comparison metrics. The plots for the mid-plane quantities

are in Fig. 9. We see that the larger J causes problems for simulations when Cnom is used and the predictions of udef

and vnorm get progressively worse as we go downstream. In the Appendix, we check if predictions using C sampled
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Fig. 7 Streamwise velocity deficit (above) and normalized vertical velocity (below) computed using Cnom and Ca

compared with the ensemble mean from the “pushed-forward posterior” test and experimental measurements.

Results are plotted for the (M = 0.8, J = 10.2) test case, at three streamwise locations (x/d j = 21, 31.5 and 42.0).

We see that both Ca and Copt provide better predictions than the nominal parameters Cnom.
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Fig. 8 Vorticity field on the cross-plane, as predicted using Cnom (left), Ca (middle) and Copt (right) for the

(M = 0.8, J = 10.2) test case. The domain shown here is the windowW . Numerical predictions are plotted

using a solid line (−). Overlaid are experimental measurements of vorticity using a dash-dotted (−.−) line. Again,

Copt and Ca improve predictions vis-á-vis the experimental measurements.
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Fig. 9 Streamwise velocity deficit udef (above) and normalized vertical velocity vnorm (below) computed using

Cnom and Ca compared with the ensemble mean from the “pushed-forward posterior” simulations and exper-

imental measurements. Results are plotted for the (M = 0.8, J = 16.7) test case, at three streamwise locations

(x/d j = 21, 31.5 and 42.0). We see that both Ca and Copt provide better predictions than the nominal parameters

Cnom. Also, the agreement between simulations and experimental measurements worsens downstream.

from the prior bracket observations. We see that they do, except for about 10 probes at the most downstream location

at x/d j = 42.0. The performance of the calibration is almost certainly affected by this shortcoming of the prior.

Predictions using Ca and the ensemble mean are far better than the predictions with Cnom. Further, the predictions

with Ca agree closely with the ensemble mean of the “pushed-forward posterior” simulations, though the agreement

worsens with increasing x/d j . The numerical simulations underpredict both udef and vnorm, and consequently a weaker

CVP. In Fig. 10, we plot the vorticity field insideW as predicted using Cnom (left sub-figure), Ca (middle sub-figure)

and Copt (right sub-figure). Predictions using the nominal values of C do not even reside inside W , and by that

token, Ca and Copt perform far better. However, as Fig. 9 shows, the agreement between modeled and experimental

velocity fields mid-plane degrades as as we proceed downstream, and consequently, comparison between the measured

and predicted vorticity fields on the crossplane (situated at x/d j = 33.76) is not as good as the one observed for the

(M = 0.8, J = 10.2) case (compare Fig. 10 versus Fig. 8; the simulated vortex sits below the experimental one for

J = 16.7). This is particularly true for the predictions using Ca.

In Fig. 11 we plot the mid-plane predictions using Cnom and the ensemble mean from “pushed-forward posterior”

simulations from the JPDF for the (M = 0.7, J = 10.2) test case. We see that predictions are quite close to the
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Fig. 10 Vorticity on the cross-plane as predicted using Cnom (left), Ca (middle) and Copt (right) for the

(M = 0.8, J = 16.7) test case. The domain shown here is the windowW . Numerical predictions are plotted

using a solid line (−). Overlaid are experimental measurements of vorticity using a dash-dotted (−.−) line. Copt

and Ca have a better agreement with measurements than the prediction using Cnom, which does not even lie

insideW .

experimental measurements, and are a large improvement over predictions using Cnom. This is particularly true for the

vertical velocity. In Fig. 12, we plot the vorticity field on the cross-plane insideW , as predicted using Ca and Copt .

We see that they agree quite well. No experimental measurements were taken on the cross-plane for this test case, and

so we do not know the degree to which the calibrated and analytical vorticity fields improved on the one generated by

Cnom; consequently, we have omitted that plot.

A. Discussion

The mid-plane results provided above in Figs. 7, 9 and 11 show that the calibrated predictions (i.e., ensemble mean

of the “pushed-forward posterior” predictions, seeded using the JPDFs in Fig. 5) invariably have a better agreement

with experimental measurements than predictions using the nominal value of k − ǫ constants Cnom. This is perhaps

not very surprising, given that mid-plane measurements are the calibration variables. What is surprising is the degree

to which predictions using the analytical values of C i.e., Ca, follow the calibrated ensemble means in all three test

cases analyzed above. As mentioned before, the JPDFs almost certainly compensate for some RANS model-form

errors; however, given the close agreement with Ca predictions, they are probably not excessive. Ca, being derived

analytically, with no fitting to the datasets used in this paper, is free of any conflation between parametric and model-

form uncertainties. Further, had the compensation of model-form errors by the JPDFs been large, the residual data -

model mismatch σ would have been small. As the PDFs for σ in Fig. 5 show, this is not the case.

The ability of the JPDFs to reproduce the measured flowfield on the cross-plane is somewhat mixed. We checked

this by identifying an “optimal” C = Copt from the “pushed-forward posterior” simulations, and comparing its cross-
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Fig. 11 Streamwise velocity deficit udef (above) and normalized vertical velocity vnorm (below) computed

using Cnom and Ca compared with the ensemble mean from the “pushed-forward posterior” simulations and

experimental measurements. Results are plotted for the (M = 0.7, J = 10.2) test case, at three streamwise

locations (x/d j = 21, 31.5 and 42.0). We see that both Ca and Copt provide better predictions than the nominal

parameters Cnom.
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Fig. 12 Contour plots of the vorticity field generated on the cross-plane using Copt (solid lines, −) and Ca

(dashed line, −−) for the (M = 0.7, J = 10.2) test case. We do not have experimental measurements for this test

case.
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plane vorticity predictions against experimental data. Note that a different Copt is obtained for each test case; these are

tabulated in Table 1. Calibration invariably provided a better prediction than Cnom, and for the (M = 0.8, J = 10.2)

test case, the match with experimental data was quite impressive. The agreement was somewhat less impressive in the

(M = 0.8, J = 16.7) test case (see Fig. 10), which may be partially due to the overly-restrictive prior (see the Appendix

for details). In all cases, predictions using Ca closely tracked the calibrated predictions.

It is clear, then, that the JPDFs could be improved. In Ref. [9], where we developed the Bayesian calibration

technique, we had obtained a JPDF for C using vorticity measurements on the cross-plane using the (M = 0.8, J = 10.2)

test case. We had also obtained an “optimal” value of C using a genetic algorithm, which we tabulate below (Table 1) as

C(ga) . The dominant flow feature in the JIC interaction is the CVP and calibrating to its direct measurements provided

us with a robust JPDF. Being able to reproduce the CVP in the correct position and with the correct circulation

automatically led to a flowfield that agreed with measurements on the mid-plane. It was also compared, with somewhat

less agreement, to measurements from the (M = 0.8, J = 16.7) and (M = 0.7, J = 10.2) test cases. However, it was

not optimized to those particular test cases, and one could never be sure whether any discrepancies between predictions

developed using C(ga) and Ca were due to compensations of model-form errors, the approximations adopted to obtain

Ca or the shortcomings of the JPDF due to limited and noisy measurements. This led to our decision to calibrate to

each of the test cases, and the necessity of using mid-plane measurements (since cross-plane measurements were only

available for M = 0.8 test cases). The mid-plane measurements are less informative of the CVP than the cross-plane

ones, and hence our mixed results in reproducing cross-plane vorticity fields, post-calibration.

Note that in this study we do not test the generalizability of a JPDF developed for a (M, J) to other (M, J)

combinations. As mentioned above, generalization was studied in Ref. [9], with encouraging results. It led us to

believe that a modification of the JPDF for the (M = 0.8, J = 10.2) could be predictive for other conditions, and

consequently this study. Also, note that in Figs. 7, 9 and 11 we plot the ensemble mean of the “pushed-forward

posterior” simulations, without any measure of the variability in them. This is because the variability is small and

will not help bracket the observations; as shown in Ref. [9], one needs to include the effect of σ to successfully do

so. This implies that, post-calibration, the parametric uncertainty is far smaller than σ, a composite of model-form,

measurement and surrogate modeling errors, and any further improvement in predictive skill is dependent on reducing

σ, e.g., via reducing model-form errors.

Fig. 5 shows two curious features - the estimate of Cǫ1 obtained for the (M = 0.6, J = 10.2) case is quite different

from the other ones and the data - model mismatch σ is the largest of all the test cases considered. We investigate this

further. In Fig. 13, we plot udef and vnorm predictions due to Ca, Cnom and the ensemble mean of “pushed-forward

posterior” simulations, and compare them with experimental observations. As in Figs. 7, 9 and 11, we see a peak in

udef in the middle of the domain (the jet core) and a large value of the same in the boundary layer at the bottom of the

test section. In between the jet core and the floor of the test section, udef should have decreased to a small number
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Fig. 13 Streamwise velocity deficit udef (above) and normalized vertical velocity vnorm (below) computed

using Cnom and Ca compared with the ensemble mean from the “pushed-forward posterior” simulations and

experimental measurements. Results are plotted for the (M = 0.6, J = 16.7) test case, at three streamwise

locations (x/d j = 21, 31.5 and 42.0. We see that both Ca and Copt provide better predictions than the nominal

parameters Cnom, though their agreement is not as good as those seen in Fig. 11, 7 and 9.

outside the jet; this is seen in Figs. 7, 9 and 11 for all the test cases. As is clear in Fig. 13, the measurements do not show

this trend for the (M = 0.6, J = 10.2) case, though predictions using Cnom and Ca do. We cannot explain this aspect

of the experimental measurements, but we do calibrate to it. This could be the explanation behind the “anomalous”

PDF for Cǫ1. Despite the calibration, the k − ǫ RANS model does not reproduce the flowfield well (as seen in Fig. 13)

leading to large σ in Fig. 5.

Table 1 contains a list of optimal C that we have identified in this study, as well as from previous Bayesian

calibrations using experimental data employed in this study. From Fig. 5 and Table 1, we that Ca is close to the

calibrated values, reproduces mid-plane measurements well, and is far more predictive than Cnom in all cases (mid-

and cross-plane predictions). Further, Ca respects the trends seen in the JPDFs in Fig. 5 - Cµ and Cǫ2 are higher than

their nominal counterparts whereas Cǫ1 is similar to the nominal value. In addition, the analytical model from which

Ca is derived has been used to predict the trajectory of the jet [13]. These analytical predictions have been compared

to k − ǫ predictions using Ca, Cnom and experimental data (the M = (0.6, 0.7, 0.8), J = 10.2 test cases). In all three

cases, both Ca and the analytical trajectory agreed better with experimental data than k − ǫ RANS predictions using

Cnom. It is thus clear that the analytical model developed in Sec. IV embodies the essential physics in JIC interactions,
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is far more predictive than Cnom and is close to the calibrated model parameters developed in this study. It could serve

an alternative to Cnom for k − ǫ RANS simulations of compressible JIC interactions.

Table 1 Values of Copt obtained for the test cases in this study. C(ga) is an estimate from Ref. [9] and Ca was

derived in this study.

Test case Optimal (Cµ,Cǫ2,Cǫ1)

(M = 0.8, J = 10.2) C
(ga)

opt , from Ref. [9] {0.105, 2.099, 1.42}

(M = 0.8, J = 10.2) {0.11, 2.095, 1.44}

(M = 0.7, J = 10.2) {0.11, 2.09, 1.46}

(M = 0.8, J = 16.7) {0.11, 2.04, 1.45}

(M = 0.6, J = 10.2) {0.117, 2.09, 1.2}

Ca {0.1, 2.0, 1.34}

VI. Conclusions

Despite their shortcomings, two-equation RANS models e.g., k − ǫ and k − ω models, are the backbone of

engineering aerodynamic simulations. The nominal values of RANS parameters Cnom are not predictive and they

are often tuned. k − ǫ RANS models have been shown to be not predictive for compressible JIC simulations, and in

view of their engineering relevance, it is clear that a replacement for Cnom would be useful. It is less clear what that

replacement might be, and whether it would hold across a range of crossflow Mach numbers and jet strengths. We

have attempted to investigate the problem rigorously, and may have found a replacement. Note that this rigor does not

endow our estimate of k − ǫ constants with any degree of universality across types of flows - it has been shown to be

predictive for compressible JIC simulations only. Its predictive skill for other classes of flows has not been tested.

In one of our previous papers on this topic [9], we developed a Bayesian method to compute JPDFs of k − ǫ

constants. The JPDF captures the uncertainty in the inferred k − ǫ constants. The decision to treat the k − ǫ constants

as random variables and compute their JPDF from data was deliberate. We were mindful of the approximation errors

in RANS, as well as the sparsity of experimental compressible JIC datasets that contained measurements of velocity

(as opposed to just the trajectory of the jet), neither of which are conducive to parameter estimation with a great deal

of certainty. As discussed in Sec. I, this work led us to believe that parametric uncertainties, rather than model-form

errors, might be responsible for the poor predictive skill of k − ǫ RANS for JIC interactions. Our second paper [11]

investigated whether the inability of RANS models with linear eddy viscosities to model anisotropy in turbulence could

account for the poor predictive power of RANS for JIC interactions. We found that nonlinear eddy viscosity models

too had to be calibrated to data, and, post-calibration, were not vastly more predictive than linear eddy viscosities. This

study reinforced our belief that a modification of Cnom would be sufficient to improve RANS JIC simulations.

Both the calibration studies mentioned above ran the risk of the inferred JPDFs for k−ǫ constants could compensate

for model-form errors. However, if JPDFs were developed for individual experiments (and thus compensated for model-
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form errors to differing degrees), any points of similarity between them could indicate how Cnom would have to change

to be predictive. These JPDFs are plotted in Fig. 5 and show that (1) Cǫ2 and Cµ would have to be larger than their

nominal counterparts and (2) Cǫ1 could remain unchanged. We also developed an analytical model of an incompressible

JIC interaction and obtained k−ǫ constants’ estimates. Since this involvedno model fitting to our datasets, the analytical

model is free of any compensation of model-form errors. We found that these “analytical” k − ǫ parameters obey the

trends seen in the JPDFs. Further flowfields predicted using the JPDFs and the analytical k − ǫ constants are similar,

and in turn are closer to measurements than predictions with Cnom. These outcomes lead us to believe that the effect

of model-form errors on the JPDFs are small, that the predictive skill of Ca would carry over to (M, J) combinations

for which we do not have measurements and Ca would be preferable to Cnom for JIC simulations.

Having calibrated k − ǫ constants, any residual model - data mismatch is largely due to model-form errors. This

manifests itself most prominently as the disagreement between modeled and measured turbulent stresses, as we

illustrated in one of our previous papers [9]. The analytical model is entirely derived using mean flow quantities rather

than turbulent stresses and thus contributes nothing to rectify this shortcoming. Consequently, further improvements of

the calibrated k−ǫ model for JIC simulations will require augmentation of the equations to reduce approximation errors,

e.g., by employing eddy viscosity models that accommodate anisotropy. Methods and approaches that might help in

this regard were reviewed in Sec. II. Specifically, the method developed by Ling et al [36] may serve as an attractive

starting point as it has already been applied successfully in incompressible jet-in-crossflow interactions [38, 48].
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A. Checking the prior for (M = 0.8, J = 16.7) test case

In this appendix we investigate the cause of the poor predictions of the mid-plane velocities seen in Fig. 9. We check

if the prior Π1(C) can bracket the observations for the (M = 0.8, J = 16.7) test case. We pick 100 random samples

of C from the prior and simulate the flow. In Fig. 14, we plot the mean prediction from the ensemble of simulations

(solid line) along with the ±3 standard deviation bounds (dashed lines). The experimental measurements are plotted

as symbols. We also plot a horizontal line at y/d j = 3. We only use the measurements above the horizontal line in

our calibration study to remove any influence of the boundary layer on the JPDF of C. We see that the dashed lines do

bracket the experimental data, except for about 10 probes in the last station of probes at x/d j = 42. This shortcoming

will necessarily impair the quality of the calibration. Note that the 10 probes are a small fraction of the 121 probes

used in this study.
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Fig. 14 Streamwise velocity deficit (above) and normalized vertical velocity (below) computed using 100 Cnom

values sampled from the prior of the (M = 0.8, J = 16.7) test case, at three streamwise locations (x/d j = 21, 31.5

and 42.0). The symbols denote the experimental measurements. The solid line is the mean prediction of the

ensemble of 100 simulations, and the dashed line are the ±3ζ bounds of the simulation, where ζ is the standard

deviation of predictions.
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