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Background

• Model-form error: “Missing physics” in models of scientific phenomena

• Physics models: Usually PDEs in space-time, with terms that approximate some types of 
physics

• 𝑈! +	𝐹" 𝑈 +	𝐺# 𝑈 = 𝛽(𝒙)	Ξ(𝑈)

• Ξ(𝑈) is usually an approximation of a physical process (and source of model-form error)

• 𝛽(𝒙) is a multiplicative correction that seeks to rectify it & has to be obtained somehow ..

• Obtaining 𝛽 𝑥 : Can only be learned from data, 𝑈("#$), with all the physics

• Requires solving an inverse problem for a spatial/spatiotemporal field

• Challenges: limited 𝑈(%&')	& high dimensionality

• Need regularizations or a prior model for 𝛽 𝑥 , e.g., to impose smoothness

• Plagued by non-uniqueness i.e., 𝑈("#$) could imply multiple 𝛽&(𝑥), all very different
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Introduction

• Aim: Show how 𝛽(𝑥) could be computed from 𝑈("#$)

• What prior info do we need? 

• How much of that can be encoded into random field models (RFM)? 

• How do we deal with non-uniqueness of 𝛽(𝑥), if RFMs are insufficient?

• Test case: radiative heat transfer, where both the high-fidelity & engineering-
fidelity models are available
• 𝑈("#$) are synthetic data, from the high-fidelity model

• Prior information:
• 𝛽(𝑥) is smooth in space & can be modeled as a Gaussian Markov random field (GMRF)

• 𝛽(𝑥) is known, with uncertainty, at the boundaries of the domain
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The model

• The equation being solved

• &''
&('

= 𝜖 𝑇 𝑇)* 	− 	𝑇* + ℎ 𝑇) 	− 𝑇

• True: 𝜖+,-. 𝑇 = (1 + sin /0
122

𝑥 + exp 0.02𝑥 +
𝑁 0, 0.11 )×103*

• Approximation: ϵ 𝑇 = 𝜖2 = 	5	×	103*  

• 𝛽+,-. 𝑥 = 	 <4()*+('(()) 4,

• Observations: 𝑇 "#$ (𝑥) = 𝑇 𝑥$&'$"( +
	𝛾, 𝛾	~	𝑁(0, 𝜎))

• Prior info on 𝛽 𝑥
• It is smooth in space & is unimodal (because 𝜖 𝑥  is so)

• 𝛽 𝑥 = 0 ~	𝑁(𝛽!,	𝜎$), 𝛽 𝑥 = 1 ~	𝑁(𝛽% , 𝜎$)
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Estimation of b(x)

• 𝛽(𝑥) is estimated using Ensemble Kalman filters (EnKF)
• Implication: 𝛽(𝑥) is modeled as a multivariate Gaussian (Gaussian 

Markov Random Field)

• Discretization: Uniform mesh, cell-centered, 50 cells

• Observations: 𝑇 "#$ (𝑥) obtained at 𝑀 different points in time
• 𝑇 is constant in time, but the measurement error changes, so 
𝑇 "#$ (𝑥, 𝜏) varies in pseudo-time

• Initial ensemble of 𝛽(𝑥): Drawn from prior
• General form of prior: 𝛽 𝑥 = 	𝛽2 + 	𝜁, 𝜁	~	𝑁(0, Γ) 

• Will test informative and non-informative priors
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Test A – Informative prior

• Prior:
• 𝛽 𝑥 = 	𝛽+,-.(𝑥) + 𝑎 + 𝑏	 sin 2𝜋𝑥 + 	𝜙 , 𝑎, 𝑏, 𝜙	~	𝑁(0, 𝜗1)	

• 𝜖 𝑥 = 	𝛽 𝑥 𝜖2
• Initial ensemble: Very close to truth

• Observations: 10 observations with 2% noise

• Initial T(pred)(x): Pretty good

• 𝛽 𝑥 	constraints satisfied:
• Spatially smooth & unimodal 

• Boundary values close to (𝛽5, 𝛽,)

6



Test A - results
• Posterior:

• ,𝜖(𝑥)	 close to truth

• 𝑇 )*+, (𝑥) is close to observations

• Uncertainty in ,𝜖(𝑥)	and 𝑇 )*+, (𝑥) are small 
(spurious)

• Numerical method 
• Extracts info from 𝑇 %&' (𝑥) to obtain an 

estimate of b(x) (and therefore e(x))
• Stable
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Takeaway: Estimation of 𝛽(𝑥) feasible but 
uncertainties should not be trusted



Test B - non-informative prior

• Prior model
• 𝛽 6,7", 𝑥 = 1 + 	𝜁, 𝜁	~	𝑁(0, Γ)	

• G is modeled using a variogram

• Variogram model
• Obtained by fitting a Wave and Gaussian 

variogram to 𝛽+,-. 𝑥
• Chose Wave 

• 𝛽 𝑥 	constraints satisfied
• Not spatially smooth

• Not unimodal

• Boundary values not close to (𝛽5, 𝛽,)
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Test B - results
• Prior: Huge variability in 𝛽 𝑥  ensemble

• 𝜖 𝑥 = 	𝛽 𝑥 𝜖&
• Posterior:

• 5𝜖(𝑥)	 nowhere near truth – multimodal!

• 𝑇 '%() (𝑥) is close to observations!

• What happened? Non-uniqueness of 𝜖 𝑥
• 𝑇 *+, (𝑥) could not constrain 𝜖 𝑥  into a unimodal 

shape

• Unimodality was never enforced
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Takeaway: All prior constraints must be 
enforced during data assimilation



Test C – imposing prior constraints

• Aim: Ensure unimodality

• Hypothesis: Smoothing the (partially) estimated 𝛽(𝑥) at each step of the data 
assimilation process will ”nudge” solution towards truth

• Recollect: 𝑇 "#$ (𝑥) obtained at 𝑀 different points in time
• Data assimilation is done over these M steps in (pseudo-) time

• Approach: Smooth 𝛽(𝑥) using the heat equation
• 𝛽8 =	∇1𝛽, 𝛽8 = 0 at 𝑥 = (0, 1)

• Apply heat-equation smoother before assimilating 𝑇 "#$ (𝑥, 𝜏) at each of  𝑀 time-steps

• Integrate over 0 < 	𝜏 < 	 𝜏.9&, 𝜏.9& ≈ 2∆𝑥1 
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Test C - results

• Prior: Huge variability in 𝛽 𝑥  ensemble (same 
as Test B)

• Posterior:

• 5𝜖(𝑥)	 something like the truth

• Unimodal and smooth

• Shape not quite right

• Wrong value at the boundaries

• 𝑇 "#$ (𝑥) has little constraining effect there

• 𝑇 '%() (𝑥) is close to observations!
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Takeaway: Imposing constraints at each step can nudge 
solution close to physical reality



Test D – impose boundary constraints

• Aim: Get the boundary values of 1𝛽(𝑥) correctly

• Hypothesis: Boundary values could be known with some 
certainty i.e. 𝛽 𝑥 = 0	 ~	𝑁 𝛽7, 𝛼)𝛽7) ,	a is small

• If so, this could be enforced in the starting ensemble of b(x)

• Justification: Boundaries could be far from the “action” 
and model-form errors could be small i.e. b ~ 1

• Approach
• Generate realizations of (𝛽5, 𝛽,)

• Blend with realization of 𝛽	~	𝑁(1, Γ)
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Test D - results

• Prior: Huge variability in 𝛽 𝑥  ensemble (same 
as Test B) but not at boundaries

• Posterior:

• 5𝜖(𝑥)	 something like the truth

• Smooth, but nearly bimodal

• Values agree with 𝜖-./0(𝑥)

• Correct values at the boundaries

• 𝑇 '%() (𝑥) is close to observations!
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Takeaway: Obtaining a good solution requires 
imposing all the constraints – and it may not be 

possible in just the starting ensemble



Sensitivity of b(x)
• What if we did this with half the sensors? 

• The estimate is not even symmetric

• Halved the measurement the noise?

• Not much effect
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Conclusions

• We’ve demonstrated a problem in the estimation of model-form error
• Requires field estimation

• Method: Field estimation performed iteratively (in pseudo-time)
• Using iterated ensemble Kalman filters

• Findings:
• Plagued by non-uniqueness due to low information content in observations

• Necessary to impose as many physical constraints as possible

• Not usually hard in iterated EnKF, if they are known

• Reducing noise did not help much. Increasing sensors helps.

• Likely because they were too limited in any case
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