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Introduction
• Aim: Devise a method to infer a spatial quantity, the spread-rate of a disease, using limited data 

of epidemiological dynamics (case-count data)

• Dataset: COVID-19 case-counts in the counties of New Mexico

• Why?

• Novel outbreaks are detected by analyzing (very noisy) case-count time-series; detection often delayed

• Reporting errors, stochastic behavior in small populations (sparsely populated areas)

• Outbreak detections (anomalous change in epidemiological dynamics) often uncertain; wait for case-counts to 
increase

• Hypothesis: Detect new outbreaks using the latent spread-rate of a disease, not case-counts

• Technical challenges:

• How to infer the spread-rate field?

• How to impose the spatial correlations seen in data? What kind of spatial structures do we have?

• How to compute the spread-rate fast, in a parallel manner?
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The practical problem – outbreak detection

• Two ways – temporal methods (SPC) & spatiotemporal method

• Data used: case-counts of a disease, disaggregated in time & space

• Temporal methods: Fundamentally, anomaly detection

• Using historical data, do a 2-week forecast of case-counts & 
uncertainty bounds (usually 95th percentile)

• Wait for data; if 3 consecutive days > than 95th percentile, alarm!

• Spatiotemporal methods: Use historical & neighborhood data 
(autocorrelation) to make forecasts

• Shortcomings

• Need long time-series data, prefer to be high-count / low 
variance

• Not really feasible for novel diseases
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Approach

• Hypothesis:

• Use (latent) spread-rate to detect outbreaks, not case-counts directly

• Not affected by reporting errors & only depends on human mixing patterns (behavior)

• Inferring the spread-rate

• Pose and solve an inverse problem for the spread-rate in each NM county

• Spread-rates in counties are auto-correlated. Devise a Gaussian Markov Random Field (GMRF) model to 
capture spatial pattern

• Reformulate a spatiotemporal inverse problem for spread-rates in M counties. Use GMRF to impose 
autocorrelation

• Solve with MCMC (for accuracy) and Variational Inference (VI; approximate, but fast); compare 
estimated spread-rates

• Test: Can disease detection be done with spread-rates, even the approximate VI one?
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Formulating the temporal problem
• Assume 𝑞(𝑡; 	𝜃), # of people infected on day 𝑡, in Area A

• 𝑦!
(#$%): Case-counts from a location; 𝑦! 𝜃 : Predictions by model 𝑀(𝑡; 	𝜃) 

• Convolve with incubation period for modeled cases 

• 𝑦!(𝜃) = 	∫!!
! 𝑞(𝜏	 −	𝑡"; 	𝜃)𝑓#$%( 𝑡	 − 	𝜏)𝑑𝜏

• Infer 𝑝(𝜃|𝑦!
(#$%)) via Bayesian inference, using 𝑦!

(#$%) & 𝑦! 𝜃 = 𝑀(𝑡; 	𝜃)
• Provides (infers) the latent spread-rate curve
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• Likelihood assumes Gaussian errors; parameter 
vector q is 4-dimensional

• Inference can be done with MCMC, VI etc.
• 4-dimension inference is easy 

• Forecasting: 𝑦!∗, 𝑡∗ > 𝑇	conditioned on 
𝑝(𝜃|𝑦!

("())) 
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Detecting change in epidemiological dynamics

• Model allows estimation of (past) infection-rate; forecasting with it assumes that it will not change 
drastically

• If forecasts are wrong, it implies a change in spread-rate (new variant, changes in human behavior etc.)

• Our insight: This could be formalized into a rigorous outbreak detector / change in epidemiological 
dynamics

6

Forecast on April 1 Forecast on April 3 Forecast on April 5 Forecast on April 7

Flattening CA’s curve; first lockdown in March 2020



The spatiotemporal problem

• Temporal estimation problem: The posterior distribution 

• 𝑝 𝜃 𝑦!
#$% 	 ∝

'!
"#$ 	)* !;	,

%
-&

'
( '!

"#$ 	)* !;	,

-
'
(

	𝑝./0#/(θ) , Γ = diag(𝜎1 +	𝜎*𝑦!
#$% )

• 𝜃 is 4-dimensional; the inversion is 6 dimensional

• The spatiotemporal estimation problem: 

• 𝑦!
#$% contains case-counts for all times till t, from all areas 𝐴2 , 𝑗 = 1⋯ 𝐽

• Γ spans over all time t, and all 𝐴2  and must enforce all spatial autocorrelations. What is it?

• Modeling the spatial problem:

• Is there any spatial correlation? What form does it take?

• What does Γ look like in a spatiotemporal inversion problem?
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Spatial modeling
• Created a simple regression model for case-counts in NM

• 𝑌 = 	𝑤+ +	∑,𝑤,𝜙, + 	𝜖, 𝜖	~	𝑁(0, 𝜁-) 

• 𝜙,: exogenous covariates of epidemiology/risk factors (population, 
socioeconomic conditions, transport connectivity etc.)

• 𝜖	shows spatial correlations in epidemiological dynamics not explained by 
exogenous covariates

• Clear spatial pattern

• Rio Grande valley (inhabited; blue) shows similar 𝜖

• Further out, red counties have similar behavior

• Northwest / Southeast counties show max 𝜖

• To do:

• Clearly, clustered, but need to get significance via a statistical test

• Need to capture this pattern in a GMRF model
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G for GMRF 
• Existence of clusters determined by Moran’s I test

• How far does autocorrelation extend in the (large) counties of NM?

• Also determined by Moran’s I test, computed with 1-hop and 2-hop 
neighborhoods

• Finding: autocorrelation is only between nearest neighbors

• Precision matrix Γ!" = "
#.
𝐼	 − 	𝜆𝑊 ,𝑊 is the nearest-neighbor 

connectivity matrix, l is the strength of spatial autocorrelation
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• Posterior:

• 𝑝 Θ 𝑌!
#$% 	 ∝ 	∏!
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𝑝./0#/ Θ , Θ = 𝜃2 , 𝑗 = 1⋯ 𝐽	

• 𝜓! = 	𝑀 𝑡; 	Θ  predicts case counts on Day t    

• Θ contains 4	×	𝐽 parameters to infer, along with 𝜏, 𝜆 ; high-dimension even for 𝐽 = 3



3- county results using MCMC

• Estimation with 3 
counties
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Speeding up with VI

• Curse of dimensionality: Dimensionality of the inverse problem grows 
as ~ 4J, J = # of areal units
• For NM, J = 33. Too high-dimensional for MCMC

• Solution: mean-field variational inference

• Approximate 𝑝 Θ 𝑌!
#$%  as a multivariate Gaussian with a diagonal 

covariance 
• Estimation now implies estimating 𝜃5 , Var(𝜃5) , k = 1…K (=4J)
• Test on Santa Fe county

• Mathematical development
• Objective function (likelihood) to be maximized to estimate 

𝜃5 , Var(𝜃5)
• Parallel iterative methods to optimize (Adams)

• Effect of approximation: VI underestimates uncertainty
• Much faster & already parallelized
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3-county results using VI

• Estimation with 3 
counties
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9-county inference with VI
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Detecting the fall wave, 2020

• Detect the arrival of the Fall wave of 2020 in Bernalillo county

• Process:

• Infer spread-rate using data till Sept 15th ; forecast ahead w/ 95th 
percentile; detect outliers

• Redo with negative binomial fit (RKI; Hohle & Paul, 2008)
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• Result: 

• Our method detects the start of 
the fall wave; RKI method fails

• RKI’s time-series method needs 
long training data (>2 months)

• We exploit knowledge of 
incubation period & 
parameterized infection-rate 
profile



Conclusions
• We have developed a VI method to infer a latent field, give indirect observations

• Our case: latent infection-rate or spread-rate field, from case-count data

• Requires a forward problem (epidemiological problem); spread-rate is smooth in space-time

• Algorithmic innovations: Estimation is high-dimensional; MCMC not up-to-the-task

• Requires a Gaussian Markov Random Field model to spatially regularize (enforce spatial auto-
correlation)

• Estimation performed using Variational Inference

• Tested on the counties of New Mexico, COVID-19 data

• Final use: Detect arrival of Fall wave in NM, posing it as an anomalous epidemiological behavior

• Detect better than conventional detectors that employ case-counts natively

• Often conventional detectors are not robust – can get better performance with smaller training data

• Better detection artefact of exploiting a smooth infection-rate, unaffected by reporting errors etc.
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Backup slides: Scalability to more counties, approximation error
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Comparison of MCMC and VI

• VI uncertainties (std dev) are always under-estimated. In some cases, the parameter means also disagree significantly

• Prediction RMSEs always larger than MCMC, but expected (approximate method) 17

MCMC VI
t0 (-6.5e+00  3.5e+00) (-1.1e+01, 3.2e-01)

N (4.4e+03  1.3e+02) (1.54e+02, 4.81e+00)

k (4.4e+00  8.3e-01) (6.6e+00, 8.7e-02)

q (1.1e+01  1.4e+00) (9.0e+00, 1.30e-01)

RMSE 9.77 43.16

Bernalillo

MCMC VI
t0 (-1.5e+01, 4.9e+00) (-1.1e+01, 3.6e-01)

N (8.2e+02, 3.3e+01) (1.7e+02, 6.2e+00)  

k (4.6e+00, 8.6e-01) (5.0e+00, 9.7e-02) 

q (1.5e+01, 2.3e+00) (1.5e+01, 2.6e-01) 

RMSE 1.52 2.4

Santa Fe

MCMC VI
t0 (-1.8e+01, 5.6e+00) (-7.0e+00, 3.3e-01)

N (4.9e+02, 1.1e+01) (1.6e+02, 5.1e+0) 

k (8.3e+00, 1.7e+00) (7.6e+00, 9.9e-02)

q (7.5e+00  9.7e-01) (7.8e+00, 1.1e-01)

RMSE 1.08 5.6

Valencia

MCMC VI
t2 (2.0e+01, 6.3e+00)

l (5.3e-01, 3.0e-02)

s a (2.1e-06,  3.8e-07)

s M (5.8e-03, 3.0e-03)

Regional parameters


