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Markov chains are convenient means of generating realizations of networks with a given (joint or other-
wise) degree distribution, since they simply require a procedure for rewiring edges. The major challenge
is to find the right number of steps to run such a chain, so that we generate truly independent samples.
Theoretical bounds for mixing times of these Markov chains are too large to be practically useful. Practi-
tioners have no useful guide for choosing the length, and tend to pick numbers fairly arbitrarily. We give a
principled mathematical argument showing that it suffices for the length to be proportional to the number
of desired number of edges. We also prescribe a method for choosing this proportionality constant. We
run a series of experiments showing that the distributions of common graph properties converge in this
time, providing empirical evidence for our claims.

Keywords: graph generation; Markov chain Monte Carlo; independent samples

1. Introduction

Graphs are a common topological representation across a variety of scientific fields. They are used
when relations between a large number of entities have to be specified in a succinct manner. Chemical
reactions, molecules, social networks (both physical and online) and the electric grid are some common
examples. In many cases, we may have partial information about the graph, requiring generation of
many graphical realizations consistent with the (partial) characterization. Such situations arise in case
of large online social networks (of which only a small part can be sampled tractably) or where the data
simply cannot be collected e.g., the web of human sexual relations (which only allows the estimation
of the degree distribution). In other cases, privacy concerns can prevent the distribution of a graph for
experimentation and or study, e.g., networks of email communications, critical infrastructure nets, etc.
This gives rise to the problem of constructing “sanitized” proxies, that preserve only some properties of
the original graph. Thus, being able to generate independent graphs conditioned on an incomplete set
of graphical measurements is essential for many applications.

Many graph generation methods aim to preserve the salient features of graphs [1, 7, 9, 11, 12, 15, 19,
24, 29]. For statistical analysis, we need algorithms that can generate uniformly random instances from
the space of graphs with a specified feature. There has been significant work on random graph generation
with a given degree distribution (DD), which specifies the number of vertices with a given degree.
In [14], the problem of generating a graph with a given degree distribution was reduced to a perfect
matching problem, which can be used to generate random instances by employing results in sampling
perfect matchings [6, 13]. Alternatively, sequential sampling methods were investigated in [3, 5]. These
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methods can be computationally intensive, and in practice, Markov chains (MC) are widely used due
to their simplicity and flexibility. The MC is started using a graph that honors the specified graphical
characteristics, and uses a procedure that can “rewire” a graph, to create ensembles of graphs with the
same degree distribution. Taylor [28] showed that edge-swaps could modify a graph while preserving
its DD. Kannan et al [14] analyzed the mixing time of such a MC, whereas Gkantsidis [10] devised a
MC scheme that avoids self loops. In [27], Stanton and Pinar used an MC to generate an ensemble of
graphs using a rewiring scheme that preserved the joint degree distribution (JDD), which specifies the
number of edges between vertices of specified degrees. Stanton and Pinar also empirically analyzed the
mixing of the MC using the binary “time-series” traced out by the appearance/disappearance of edges
between two labeled nodes, as the MC executed its random walk in the space of graphs. They showed
that the autocorrelation of the time-series decayed to zero, a necessary condition for the MC to converge
to its stationary distribution [25].

Graph rewiring schemes that preserve DD or JDD are simple (and fast) and MC chains driving them
are easy to construct. However, successive graphs generated by the MC are only slightly different and
the MC has to proceed for a large number of steps N before the initial graph is “forgotten.” The mixing
time estimates in [14] take the form of upper bounds and of O(|E|6), where |E| is the number of edges
in a graph. Even for small graphs with 1000 edges, the bound is intractable. In practice, N is chosen
arbitrarily. Failure to mix completely leads to the generation of correlated samples and any results
derived from them are erroneous. While the method in [27] demonstrated the use of autocorrelation to
establish mixing, it is an a posteriori test which provides no a priori guidance regarding the length of the
MC chain. Further, the method requires a small, user-specified threshold, below which the time-series
autocorrelation is deemed zero.

In this paper, we construct analytical models that estimate N. These models track the evolution of
the binary “time-series” formed by the edges of labeled graphs generated by the MC. We test the model
under conditions where the DD or the JDD is held constant. In Sec. 2, the model is used to derive an
expression for the mixing time based on when the binary time-series begins to resemble independent
draws from a distribution. The models predict that the mixing time is proportional to |E|, the number
of edges in the graph. The model holds true for a “representative” edge and exploits the constancy of
DD (or JDD) in arriving at its prediction. The model is tested with real graphs in Sec. 3. In Sec. 4, we
develop a data-driven method, that assumes neither a constant DD (or JDD) nor a representative edge,
to investigate the independence of the edge time-series. We use this test to verify the assumptions made
when developing mixing time expressions in Sec. 2. We determine the fraction of the edges for which
the model prediction of N is an underestimate, and the consequences of the lack of stationarity on the
ensemble of graphs sampled in this manner.

2. Theoretical analysis

The goal of this paper is to provide a mathematically principled argument for running a MC O(|E|)
steps to generate independent graphs with |E| edges. The constant hidden in the big-Oh depends on the
desired accuracy. The graphs so generated may have a prescribed DD or a JDD; we find that a MC on
graphs with a prescribed DD mixes slightly easier than those where the JDD is preserved. Our empirical
results show that 5|E| – 30|E| steps are sufficient for mixing these MCs. We provide a mathematical
justification for this observation.

Consider a MC on the space of graphs and two labeled vertices u and v. Under certain circumstances,
the existence of an edge (u,v) can also be described by a Markov chain. Thus we model the behavior
of the MC on the space of graphs in terms of a set of coupled 2-state Markov chains, each representing
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FIG. 1: The DD-preserving swapping operation described in Sec. 2.1.

edge behavior. We develop the transition matrix for the (edge) MC, which is exact for DD-preserving
experiments, but heuristically derived for MCs with prescribed JDDs. We prove an O(|E|) mixing time
for these 2-state Markov chains. This ensures that that after O(|E|) MC steps, each edge behaves as if
it comes out of independent draws. While this is not sufficient for complete mixing, it is a necessary
condition.

These mathematical theorems will be empirically validated in the next section, but we give a quick
preview of the method. Starting from a real graph, we run a MC (driving a DD- or JDD-preserving
rewiring scheme) for ℓ steps, to create a new, nominally independent graph. This is repeated M times
to create an ensemble of graphs. We plot the distribution of some common graphical quantity (e.g., the
number of triangles in each graph) constructed from the ensemble. This is repeated for different values
of ℓ till the plots converge. We find that ℓ∼ 10|E|. When ℓ∼ |E|, the MC is far from convergence.

Below, we review the rewiring schemes used in the paper. This is followed by derivations of the
models of mixing under DD and JDD preservation.

2.1 A review of rewiring schemes

Consider an undirected graph G=(V,E), where |V |= n the number of vertices in the graph, and |E|=m,
the number of edges. The degree distribution of the graph is given by f, where f(d) is the number of
vertices of degree d. The joint degree distribution is an n× n matrix J, where J(i, j) is the number of
edges incident between vertices of degree i and degree j. We use dv to denote the degree of vertex v.

The classic DD preserving MC [14] picks two uniform random edges (u1,v1) and (u2,v2), and
replaces these edges with (u1,v2) and (u2,v1), as depicted in Figure 1. The DD is preserved, and the
Markovian property is satisfied (each step only depends on the current graph, not the history of the MC).

In this paper, we use the greedy, JDD-preserving rewiring procedure by Stanton and Pinar in [27].
This is analogous to the degree distribution preserving chain [10, 14], illustrated in Fig 1. The JDD-
preserving rewiring procedure is shown in Fig 2. The procedure does not guard against parallel edges or
self-loops, but the MC itself can be slightly modified to ensure that these artifacts do not occur [10, 27].
We also maintain lists of nodes and edges indexed by their degree, so that for a given degree d, we can
locate a uniform random edge that is incident on a degree-d node. The steps in the rewiring scheme are:

• Pick an endpoint uniformly at random. This is done by picking a random edge (u1,v). and
choosing one of its endpoints with equal probability. Let this vertex be u1.

• Pick uniformly at random another vertex u2 such that du1 = du2 , and choose a uniform random
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FIG. 2: The JDD-preserving rewiring operation

neighbor w incident to u2. This gives the second edge.
• Swap the edges (u1,v) and (u2,w) to create (u1,w) and (u2,v).

Details of the rewiring scheme and discussions of the ergodicity, mixing of a MC driving such a rewiring
scheme can be found in [27]. A pictorial description is in Fig. 2.

2.2 Modeling mixing when degree distribution is preserved

Consider a MC M that generates graphs with a prescribed degree distribution. Consider two labeled
vertices u and v, with degrees du and dv. We will show that the appearance/disappearance of (u,v) in
M can also be described by a Markov chain.

Claim 2.1 The transition matrix of the Markov chain for the edge (u,v) is given by

T(du,dv) =

(
1−α(du,dv) α(du,dv)

β (du,dv) 1−β (du,dv)

)

where α(du,dv) =
dudv
2m2 , β (du,dv) = 1− (1−1/m)2, and the first index in T is state 0 (no edge).

Proof. Assume that the edge (u,v) does not initially exist. We analyze the probability of it appearing
after one step. Let e and e′ be the two edges chosen by the rewiring algorithm. (u,v) will appear if u is
the first endpoints of e and v is the last endpoint of e′ (or vice versa). This leads to four possible cases.
Consider the case when both the vertices are the first endpoints of e and e′. The probability of this event
is du/2m×dv/2m = dudv/4m2. The other case is symmetric and so α(du,dv) = dudv/2m2.

Suppose that (u,v) does exist but is removed during the Markov transition. This occurs if (u,v) is
either e or e′. The probability of this event is β(du,dv) = 1− (1−1/m)2. Note that the values of α and
β so derived are completely independent of the structure of the rest of the graph, and so the transition
probabilities in Eq. 2.1 satisfy the Markov property. □

Page 4 of 17

http://mc.manuscriptcentral.com/comnet

Manuscripts submitted to Journal of Complex Networks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

A STOPPING CRITERION FOR MARKOV CHAINS ON GRAPHS 5 of 17

2.3 Modeling mixing when joint degree distribution is preserved

We consider a pair of labeled vertices (u,v) and model the appearance/disappearance of the edge during
a Markov transition. For convenience, we will assume that f(du) and f(dv) are both strictly greater than
1. The proofs can be extended to these cases as well. (Observe that when f(du) = f(dv), the edge (u,v)
is always present because the JDD is preserved.)

Claim 2.2 Assume edge (u,v) is present and is removed using the transition. The probability of this
event is

β (du,dv) =
1
m
+

f(du)−1
2mf(du)

+
f(dv)−1
2mf(dv)

(2.1)

Proof. We follow the JDD-preserving swapping procedure described in Sec. 2.1. Let e and e′ be the two
edges chosen for swapping. If (u,v) is e, it will definitely be swapped. The probability of the chosen
edge being (u,v) is 1/m.

The other alternative is that (u,v) is e′. This can happen only if the first endpoint chosen has degree
du (or dv) and then (u,v) is chosen. Consider the first case. The total number of endpoints on degree du
vertices (excluding u) is (f(du)−1)du. The probability that e is chosen is the probability that u is chosen
as the second endpoint, and then (u,v) is chosen. This is equal to 1/(f(du)×du). The total probability
is

(f(du)−1)du

2m
× 1

f(du)du
=

(f(du)−1)du

2mf(du)du
=

f(du)−1
2mf(du)

Symmetrically, the randomly chosen endpoint could have had degree dv. So the total probability of
choosing e′ = (u,v) is

f(du)−1
2mf(du)

+
f(dv)−1
2mf(dv)

and the probability of (u,v) being removed is

β (du,dv) =
1
m
+

f(du)−1
2mf(du)

+
f(dv)−1
2mf(dv)

.

□
This expression has certain ramifications. Since the JDD is preserved (and by implication, f(d)),

the probability of edge removal does not vary as the Markov chain proceeds. This satisfies the Markov
property and β depends only on u and v i.e., it is independent of the rest of the graph.

Consider the probability α of (u,v) appearing. This is not Markovian, as it depends on the structure
of the graph. However, this dependence is weak, and we can obtain a Markovian approximation using a
simple heuristic.

Consider the number of edges J(d,dv) between vertices of degree dv and an arbitrary d. The expected
number of such edges incident on a degree dv vertex is J(d,dv)/f(dv). The number of edges between a
vertex v and degree d vertices depends on the graphical structure; however, we will approximate it with
the expected value J(d,dv)/f(dv).

Claim 2.3 If (u,v) is not present at a stage in the Markov chain, the probability α that it appears in the
next step is given by

α(du,dv) =
2J(du,dv)

mf(du)f(dv)
(2.2)
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Proof. As before, let the two edges chosen by the algorithm be e and e′, in that order. The edge (u,v)
is swapped in when either of the four following situations happens. Vertex u is the first (resp. second)
endpoint of e and v is the second (resp. first) endpoint of e′. Or, vertex u is the first (resp. second)
endpoint of e′ and v is the second (resp. first) endpoint of e.

u is the first endpoint of e and v is the second endpoint of e′ (or vice versa).
Consider the following sequence of events. First, u is chosen as an endpoint (and we get edge e).

Then, we choose a vertex u′ (who is a neighbor of v) whose degree is the same as u. Finally, we select
edge e′ = (u′,v). Swapping will lead to edge (u,v). The probability of the first event is du/2m. The
probability of the second event depends the number of neighbors of degree du incident to v. Alternately,
this is the number of edges connecting v to degree du vertices. Clearly, this depends on the graph
structure, but our approximation of this quantity is J(du,dv)/f(dv).

So, the second probability is J(du,dv)/(f(dv)f(du)) (because there are f(du) neighbors of degree du,
of which J(du,dv)/f(dv) are neighbors of v). The last probability is 1/du. The total probability is

du

2m
× J(du,dv)

f(du)f(dv)
× 1

du
=

J(du,dv)

2mf(du)f(dv)

Now consider the second case. First, v′ (a neighbor of u whose degree is dv) is chosen as an endpoint.
Then, u is chosen as the neighbor of v′, so e = (u,v′). Then, v is chosen as the first endpoint of the
second edge e′. Swapping will again lead to edge (u,v). The first probability is approximated by
J(du,dv)/(f(du)f(dv)). The second probability is 1/dv, and the last is dv/2m. The probability comes out
to be the same as earlier.

By symmetry, we get the probabilities of the other cases by switching the roles of u and v, yielding
the same expression. □

2.4 Estimating the mixing time

Having developed expressions for α and β in Eq. 2.1, under the assumption of prescribed DD (Sec. 2.2)
and JDD (Sec. 2.3), we use the Markov transition matrix to estimate the number of steps N to achieve a
stationary distribution, conditional on a tolerance ε .

Claim 2.4 Choose N as follows. Let the final distribution after running Mu,v for N steps be p. Then
∥p−πππu,v∥< ε .

N =

{
(m/2) ln(1/ε) DD preserving MCs
m ln(1/ε) JDD preserving MCs

The distribution πππu,v is the probability of existence/absence of edge (u,v) once M has converged.
This implies that after N = m ln(1/ε) we are very close to the converged distribution of all edges,
irrespective of the degrees of their terminating vertices.
Proof. T has two eigenvalues, 1 and 1−(α(du,dv)+β (du,dv)). Let the corresponding unit eigenvectors
be e1 and e2. For notational convenience we will refer to α(du,dv) and β (du,dv) as α and β . Since
α +β > 0, the eigenvectors form a basis. We represent the initial state of the MC as v = c1e1 + c2e2.
After N applications of the transition matrix, the distribution of the Markov chain’s state is

p = TNv = c1TNe1 + c2TNe2

= c1e1 + c2 (1− (α +β ))N e2. (2.3)
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Since (1− (α +β )) < 1, the second term decays with N, and the stationary distribution asymptot-
ically approaches c1e1. The 2-norm of the decaying term (the error incurred when we stop at finite N)
can be bounded for

N = ln(1/ε)/(α +β )

in the following manner

∥p−πππu,v∥ = ∥(1− γ)Nc2e2∥2 ⩽ (1− γ)ln(1/ε)/γ c2∥e2∥2

⩽ exp(− ln(1/ε)) = ε

where we have used γ = (α +β ) and

N =
m
2

ln
1
ε
⩾ 1

γ
ln

1
ε
, for DD-preserving MC and

N = m ln
1
ε
⩾ 1

γ
ln

1
ε
, for JDD-preserving MC. (2.4)

The key observation is γ ⩾ 2/m for DD-preserving MC (see values of α and β in Sec. 2.2) and γ ⩾ 1/m
for a JDD-preserving MC (see Sec. 2.3). □

3. Tests with real graphs

In this section we perform empirical studies to find a suitable value of ε , i.e., one which can be used to
generate samples of graphs which are statistically indistinguishable from those generated by a smaller
ε . We discriminate graphs using certain graphical metrics.

We run the MC with the DD-preserving rewiring scheme for N steps before saving the resultant
graph. We start the MC using 4 real graphs - the neural network of C. Elegans [30] (referred to as
“C. Elegans”), the power grid of the Western states of US [30] (called “Power”), co-authorship graph
of network science researchers [18] (referred to as “Netscience”) and a 75,000 vertex graph of the
social network at Epinions.com [23] (“soc-Epinions1”). Their details are in Table 1. The first three
were obtained from [17] while the fourth was downloaded from [26]. All the graphs were converted to
undirected graphs by symmetrizing the edges.

We use N = {0.5,2.5,5,7.5}|E| corresponding to ε = {0.37,6.7×10−3,4.5×10−5,3.06×10−7}.
1000 graphs are generated in this manner, starting with the real graphs in Table 1. Thereafter, we
calculate the global clustering coefficient (three times the ratio of the number of triangles to wedges in a
graph)[2], the diameter, and the maximum eigenvalue of the Laplacian matrix of the graph [16] for each
of members of the ensemble of 1000 graphs. In Fig. 3, we plot these distributions (probability density
functions, or PDFs, constructed from the 1000 samples using kernel density estimation) for three of
the four graphs in Table 1. We clearly see that for ε = 0.37 i.e., N = 0.5|E|, the distributions for all
graphical metrics are quite different from the distributions obtained with N > |E|. The red and black
curves, corresponding to N = 5|E| and N = 7.5|E| are mostly indistinguishable indicating that the MC
has converged to its stationary distributions. We will henceforth proceed with ε = 4.5×10−5, achieved
with N = 5|E| when the DD is preserved during the MC sampling.

Note that there are certain occasions e.g., diameters of C. Elegans and Netscience when the red
curve (k = 7.5|E|) is, paradoxically, closer to the blue curve (k = 2.5|E|) than the black one (k = 5|E|).
“Closer” is defined as PDFs have similar peak heights and not a lateral shift. A careful examination
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reveals that the “paradoxes” occur in PDFs with significant tails. The cause of the “paradox” is the error
incurred in resolving long tails with limited samples. A “tail error” results in a corresponding “peak
error” (since the area under the curve is 1.0) but should not result in a significant error in the low-order
moments of the PDF e.g., means and variances. The “paradoxical” subplots in Fig. 3 bear this out since
changing k beyond 2.5|E| does not shift the PDFs, but may cause the peak of the distribution to wax and
wane slightly.

We now turn our attention to the case when the JDD is preserved during MC sampling. We repeat the
same sampling procedure as above, but with the JDD-preserving rewiring scheme being driven by the
Markov chain. We choose the same sequence of ε , corresponding to N = {1,5,10,15}|E|, per Eq. 2.4.
The distributions of global clustering coefficients, graph diameter and maximum eigenvalue of the graph
Laplacian are in Fig. 4. Again, it is clear that the distribution (for any of the graphical metrics) is far from
convergence for ε = 0.37 but indistinguishable for the other values of ε . In particular, the red and black
plots lie on top of each other in most of the subfigures, indicating that N = 10|E| (ε = 4.5× 10−5) is
generally sufficient to drive the MC to its stationary distribution, as characterized by the aforementioned
graphical parameters.

In summary, a tolerance of ε = 4.5×10−5 provides converged/stationary distributions of global clus-
tering coefficient, graph diameter and maximum eigenvalue of the graph Laplacian. This corresponds
to running the MC on the space of graphs for N = 5|E| steps when DD is preserved and for N = 10|E|
steps when JDD is preserved. These results provide an empirical proof that the models in Sec. 2.2 and
Sec. 2.3 provide a good a priori estimate of the steps to run a MC to obtain stationary results.

4. Verification of model assumptions

In this section, we check our assumption that a MC on the space of graphs can be approximated by
coupled 2-state Markov chains. We also devise a test to ensure that the MC does not converge to a local
mode in the distribution of graphs. This can occur in case of multimodal distributions.

4.1 Verifying edge-by-edge convergence

The equation for N (Eq. 2.4) is based on a heuristic and has to be verified. Further, the equation is
strictly valid for an edge and it is unlikely that after N steps of the MC, all the edges have decorrelated
and converged to their stationary distribution. The residual number of correlated edges have to be
identified and their impact on graphical properties quantified.

Consider the behavior of an arbitrary edge (between labeled vertices) during a long walk executed by
a MC on the space of graphs. During this walk, the edge appears and disappears, thus describing a binary
time-series {Zt}. If the MC on the space of graphs reaches a stationary distribution in O(|E|) steps,

Table 1: Characteristics of the graphs used in this paper. (|V |, |E|) are the numbers of vertices and edges
in the graph and G-R diagnostic is the Gelman-Rubin diagnostic.

Graph name (|V |, |E|) G-R diagnostic
C. Elegans (297, 4296) 1.05
Netscience (1461, 5484) 1.02
Power (4941, 13188) 1.006
soc-Epinions1 (75879, 405740) 1.06
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FIG. 3: Plots of the distributions of the global clustering coefficient, the diameter, and the maximum
eigenvalue of the graph Laplacian for “C. Elegans” (left), “Netscience” (middle) and “Power” (right),
evaluated after 0.5|E|,2.5|E|,5|E| and 7.5|E| iterations of the Markov chain (green, blue, black and
red lines respectively). The corresponding values of ε are in the legend. We see that the distributions
converge at ε ∼ 1e−5. In these runs, the DD was held constant across all graphical samples.

then thinning the binary time-series by a factor of O(|E|) should result in a time-series that resembles
independent draws of zeros and ones. We develop a nonparametric test of independence for such time-
series. This method exploits Sokal’s observation that if an MC reaches a stationary distribution, the
samples it draws are uncorrelated i.e., the autocorrelation is small [25]. It is general and does not
depend on the preservation of DD or JDD in the graphs. While this test has been in existence for some
time [20, 21], it is not well known in the network generation literature.

Assume that the time-series {Zt} is very long i.e., it takes K ≫ N steps. The time-series will be
correlated as observed in [27]. Consider too, a k-thinned chain {Zk

t }, obtained by retaining every kth

member of {Zt}. The thinned chain will have a far smaller autocorrelation and upon further thinning
will begin to resemble independent draws from a distribution. If Eq. 2.4 is correct, k = N should yield
a time-series that resembles independent draws more than a first-order Markov process. This forms the
basis of our test of independence. We fit models of two processes, independence and first-order Markov,
to the data and compute the log-likelihood. The “goodness” of model fit is determined by computing
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FIG. 4: Plots of the distributions of the global clustering coefficient, the diameter, and the maximum
eigenvalue of the graph Laplacian for “C. Elegans” (left), “Netscience” (middle) and “Power” (right),
evaluated after |E|,5|E|,10|E| and 15|E| iterations of the Markov chain (green, blue, black and red lines
respectively). The corresponding values of ε are in the legend. We see that the distributions converge at
ε ∼ 1e−5. In these runs, the JDD was held constant across all graphical samples.

the Bayesian Information Criterion (BIC). This paper is the first application of this technique to graphs,
though it has been used in other contexts.

Let xi j be the number of (i, j), i, j ∈ (0,1) transitions in the k−thinned chain {Zk
t }. The xi j are

used to populate X , a 2×2 contingency table. The table entries are normalized by the length of the k-
thinned chain (K/k−1) to provide us with the empirical probabilities pi j of an (i, j) transition in {Zk

t }.
Let p̂i j and x̂i j = (K/k− 1)p̂i j be the predictions of expected values of the table entries provided by a
model. Then the goodness-of-fit of the model can be provided by a likelihood ratio statistic (called the
G2-statistic; Chapter 4.2 in [4]) and a Bayesian Information Criterion (BIC) score:

G2 = −2
i=1

∑
i=0

i=1

∑
i=0

xi j log
(

x̂i j

xi j

)
,

BIC = G2 +q log
(

K
k
−1

)
, (4.1)
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where q is the number of parameters in the model used to fit the table data. Log-linear models are
generally used to model tabular data (Chapter 2.2.3 in [4]). The log-linear models’ predictions for table
entries generated by independent sampling and a first-order Markov process are

log(p(I)i j ) = u(I)+u(I)1,(i)+u(I)2,( j) and

log(p(M)
i j ) = u(M)+u(M)

1,(i)+u(M)
2,( j)+u(M)

12,(i j), (4.2)

where superscripts I,M indicate an independent and a Markov process respectively. The maximum
likelihood estimates (MLE) of the parameters (u(W )

b,(c)) are available in closed form in literature (Chapters
2.2.3 and 3.1.2 in [4]) and we reproduce them below:

x̂I
i j =

(xi+)(x+ j)

x++
and x̂M

i j = xi j, (4.3)

where xi+ and x+ j are the sums of the table entries in row i and column j respectively. x++ is the sum of
all entries (i.e., K/k−1, the number of transitions observed in {Zk

t }, or the total number of data points).
We compare the fits of the two models thus:

∆BIC = BIC(I)−BIC(M)

= −2
i=1

∑
i=0

i=1

∑
i=0

xi j log

 x̂(I)i j

xi j

− log
(

K
k
−1

)
.

(4.4)

Above, we have substituted x̂(M)
i j = xi j and the fact that the log-linear model for a Markov process has one

more parameter than the independent sampler model. Large BIC values indicate a bad fit. A negative
∆BIC indicates that an independent model fits better than a Markov model.

This test is applied as follows. We construct a thinned binary time-series {Zk
t } for k = |E| for

each of the edges. The ∆BIC is computed and edges with negative ∆BIC are deemed to have become
independent after k steps of the Markov chain. The test is repeated with a higher k till all the edges are
deemed to have become independent. A C++ implementation of this test, using a binary time-series as
input, is available at [22].

However, a difficulty appears at this point. We see that the accuracy of the log-linear models in
Eq. 4.2 and 4.3 depend on the length of the chain being tested i.e., if the chain is too short, the ratio of
likelihoods and the BIC will be wrongly calculated. Thus, before we populate the contingency table, we
ensure that the edge time-series is long enough.

Consider an edge time-series obtained from the K-step MC. One can empirically compute the edge-
mean Zt i.e., the probability of existence of the edge. An estimate of the same quantity can be obtained
from a k−thinned version of the chain i.e., Zk

t . If the thinned time-series are sufficiently long, then the
estimates of the edge mean, Zk

t , computed for different values of k, approximately describe a normal
distribution, with mean q (the edge mean) and a variance σ2.

We wish to ensure that a k-thinned MC is sufficiently long, i.e., the empirical edge-mean Zk
t can be

estimated to lie inside q± r with confidence s i.e.P(q− r ⩽ Zk
t < q+ r) = s, or(

r
Φ−1{0.5(1+ s)}

)2

= σ2 (4.5)
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where Φ is the cumulative distribution function for a standard normal distribution and r is a tolerance
on the empirical edge-mean calculated using a k-thinned MC.

Consider that thinning the K-step time-series by a factor k′ renders it a first-order MC (see Appendix A
on how this may be done). The contingency table entries (Eq. 4.3) then indicate the number (or propor-
tions) of 0-1 and 1-0 transitions of the 2-state Markov chain model of the time-series. It is then trivial
to compute the entries α and β of the Markov transition matrix. If n′ is the length of the k′-thinned
time-series, then the variance of the Zk

t , σ2 can be written in terms of α,β ,

σ2 =
αβ (2−α −β )

n′(α +β )3

and so, using Eq. 4.5,

n′ =

αβ (2−α−β )
(α+β )3(

r
Φ−1{0.5(1+s)}

)2 , (4.6)

i.e., the k′-thinned time-series must be at least n′ in length to provide an estimate Zk
t of q (computed

from the K-step time-series) within tolerance r with the required confidence s. In this paper, we use
r = 0.01 and s = 0.95.

We now apply this test to a Markov chain on graphs initiated with those mentioned in Table 1. In
Fig. 5 we see the thinning factors required to render the k-thinned time-series {Zk

t } resemble independent
draws from a distribution. In Fig. 5 (left) we see that thinning by 4|E| is sufficient to render {Zk

t }
independent, for all three graphs tested, when the DD is preserved by the MC. In Fig. 5 (right) we
see results for the JDD-preserving counterpart. It is clear that higher thinning factors are required for
independence, but a thinning factor of 10|E| seems to be sufficient. Thus empirically, the factor-of-two
difference in N, as predicted by the models in Eq. 2.4, and as seen empirically in Fig. 3 and Fig. 4, are
corroborated by a separate test that does not assume DD or JDD preservation.

Convergence of distributions of global clustering coefficients, diameter and maximum eigenvalues
do not automatically indicate that the time-series of all the edges in a graph resemble independent draws.
This is clearly seen in Fig. 4 for the graph “Power” (bottom row). In Fig. 4, N ∼ 10|E| (ε = 4.5×10−5)
was sufficient to construct distributions that do not change appreciably for greater N. However, from
Fig. 5, we see that about 2% of the edges are still not independent, but presumably close to being so,
since about 15|E| steps of the MC result in all edges becoming independent.

In order to check this issue, we performed a test with the soc-Epinions1 graph. We generate an
ensemble of 1000 graphs using N = 30|E| and the method in Sec. 2.3 i.e., where the JDD of the initial
graph was preserved as samples were generated. We also run a long K-step MC (K = 21.6× 106|E|)
and compute the thinning factor k required to render each edge’s time-series similar to independent
draws. Since the graph has 405,740 edges, the independence test was performed for only 10% of the
edges, chosen randomly from the initial graph. In Fig. 6 we plot a histogram of k/|E|. We clearly
see that while by k = 30|E| about 90% of the edges have become independent, there are quite a few
“pathological” edges that are very far from becoming independent (one such edge becomes independent
at k = 720|E|). In Fig. 7 we plot the distributions for the diameter and the maximum eigenvalue for
N = 30|E|,150|E|,270|E| and 390|E|. We see that the two distributions, while not identical, do not
change much. Thus distributions of the chosen metrics are robust (insensitive) to an ensemble which
might contain graphs with a few “hard-to-converge” edges. Thus, if one is interested in generating proxy
graphs where anonymity is critical (e.g. proxies of email traffic in an organization), an exhaustive, edge-
by-edge checking of independence, using the method described above, may be necessary. On the other
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FIG. 5: Fraction of edges testing independent, for “C. Elegans”, “Netscience” and “Power” for various
values of the thinning factor k. Left: Results for the case when DD is preserved. We see that with a
thinning factor of k = 4|E| all the edges have converged to their stationary distribution. Right: Results
for the case when JDD was preserved. We see that k = 10|E| ensures that at least 95% of the edges
become independent.

hand, when one only desires a collection of roughly independent graphs with a prescribed DD or JDD,
the far simpler approach of Sec. 2.2 or 2.3 may suffice.

4.2 The Gelman-Rubin test for convergence of Markov chains

Finally we address the question whether the MC generating the ensemble of graphs is sampling from
a particular mode of the distribution of graphs (in case the distribution is multimodal). This can, in
principle, occur since the MC is always started from the same starting graph. Convergence to the
stationary distribution (and not just to one mode) can be tested by starting the MC from an overdispersed
set of points and checking whether the same distributions are realized, irrespective of the starting point.
In our case, we will choose three points and perform this test only for the JDD-preserving case.

In order to generate a set of overdispersed starting graphs, we run a Markov chain for N = 10,000|E|
steps, after initializing it with a real network. This serves as the second over-dispersed starting point for
the MC and the initial condition for the third point (realized after another 10,000|E| steps). Three con-
current MC are initialized with these graphs, and we calculate the Gelman-Rubin (G-R) diagnostic [8]
using the binary edge time-series. Values of the diagnostic between 1 and 1.1 indicate that the states of
the concurrent Markov chain are not dependent on the starting location. We performed this test for all 4
graphs; the corresponding G-R diagnostics are tabulated in Table 1.

5. Conclusions

We have developed a method for generating independent realizations of graphs which share a particular
graphical property. In this paper, we have demonstrated the method in the case where (1) the degree
distribution was preserved over all realizations and (2) where the joint degree distribution was held
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FIG. 6: A histogram of k/|E|, where k is the number of steps the MC has to take to render the time-series
of a particular edge resemble independent draws, calculated for the soc-Epinions1 graph. We see that
while 30|E| steps render about 90% of the edges independent, there are a few edges which are still very
far from becoming independent.These results are for a case where the JDD was preserved.
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FIG. 7: Plots of the distribution of graph diameter (left) and maximum eigenvalue of the graph’s Lapla-
cian (right) for N = 30|E|,150|E|,270|E| and 390|E|, for the soc-Epinions1 graph (green, blue, black
and red lines respectively). We see that distributions are very similar, even though, from Fig. 6, it is
evident that a few edges are far from being independent. Thus these two graphical metrics are not very
sensitive graphs that are almost, but not quite, independent. These results are for a case where the JDD
was preserved.
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constant. The graphs are generated using a MC approach, which drives a graph “rewiring” scheme.
The rewiring scheme is responsible for preserving the shared graphical properties when it generates
a new graphical realization, from an old one. Our method involves running the Markov chain for N
steps before extracting a graph; the chain is run repeatedly to generate an ensemble of realizations,
given an initial graph. We have developed models and closed form expressions for N that allows a
coupled 2-state Markov chain of an edge to converge to its stationary distribution. This is a necessary,
but not sufficient, condition for the Markov chain on the space of graphs to “forget” the starting graph
and generate an independent realization. We find that a Markov chain requires 5|E|−30|E| steps to mix
fully, i.e., to provide converged distributions of graphical properties like the global clustering coefficient,
graph diameter and maximum eigenvalues of the graph Laplacian. We find that the Markov chains that
preserve the degree distribution are easier to mix than those where the joint degree distribution is held
constant.

We verified our model (for N) by performing a test for the independence of the Markov chain
described by any edge between two labeled vertices in the graph, as the Markov chain on the space
of graphs executes its random walk. This test is not dependent on any heuristic or graphical properties.
The test uses the time-series of occurrence/non-occurrence of an edge between labeled vertices, thins
them by a factor of N, and fits it with a first-order Markov and an independent sampling model. The
goodness of fit of the two models, determined by their individual BICs, is used to select between them.
The Markov chain is considered mixed for any N for which the independence sampling model is selected
over the Markov model. We find that even for N that provide converged distributions of the graphical
properties above, a small fraction of the edges may still be significantly correlated (as determined by
the independence test). The robustness of the graphical properties indicate that if fully independent
graphical realizations are desired, the laborious process of testing each edge may be unavoidable.

Finally, we repeated our tests by starting parallel Markov chains from widely dispersed starting
points and computing the Gelman-Rubin diagnostic for them. We find that the parallel chains con-
verge to the same stationary distribution. This check was performed to ensure that our distributions of
graphical properties was not being driven by the starting point of the Markov chain.

Apart from the theoretical results summarized above, we also provide an open-source C++ imple-
mentation of the non-parametric test, along with sample problems to illustrate its use [22].
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A. Thinning a chain into a first-order Markov process

Here, we address how one may thin a long, K-step time-series so that the thinned chain resembles a
first-order Markov process. It follows the arguments in Sec. 4.1. We consider a binary time-series and
populate a 2× 2× 2 contingency table of transitions that one might observe in a sequence of length
three. The contingency table is fitted with log-linear models for second- and first-order Markov models
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(see Sec. 7.3.1 in [4] for second-order Markov models), and the G2 statistic calculated along with the
difference in the BICs arising from second-order and first-order Markov model fits.

Initially, the high-order Markov model fits to data better than the first-order model. However, as
the K-step time-series is thinned, and the correlation decays, the fit of first-order model, vis-á-vis, the
second-order model improves. At a particular thinning factor k′ the first-order model fits better than
the second order one (the difference in BICs favors the first-order model) and we obtain a first-order
Markov chain.

In the software that we have released with this paper [22], the C function mctest() checks the
fit of a time-series to first- and second-order Markov chains, returning the ratio of likelihoods and the
difference in the BICs of the two models. The C function indtest() does the same, but between a
first-order Markov model and independent draws from a binary distribution. Both the functions construct
the contigency table from the binary time-series supplied via the function arguments, and compute
the expected values of the table entries (using log-linear models calibrated to table data). In contrast,
the function mcest() estimates the transition probabilities α and β from a binary time-series, being
modeled as a first-order Markov process. Examples of the use of the tests (mctest and indtest) are
illustrated in the software package associated with this paper (in ex01/). The use of all the functions,
in a MC on graphs, is in ex02/.
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