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What is this talk about?

• A cautionary tale on decision-making using surrogate models

• Surrogate models: Data-driven, fast running proxies of CFD solvers

• Widely used in UQ and Bayesian inverse problems – but they are approximate

• Results e.g., point estimates from inverse problems can be wrong

• Ditto, wrong decisions based on point estimates

• Application: Checking the consistency of experimental datasets from LENS-XX 
expansion tunnel

• Laminar flow over double cone. Never modeled successfully

• Questions about inaccurate inlet boundary conditions (BCs)

• Basic idea: Infer inlet BC by inverting measurements on the cone

• To be safe, Bayesian inference; BCs as probability density functions (PDFs)

• But what if the surrogate models of the Navier-Stokes simulator are approximate?

Thanks, Kieweg et al, SciTech 2019

Thanks, Carnes et al, SciTech 2019
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Recap – the experiments

• We have a double-cone in hypersonic flow

• LENS-XX expansion tunnel, low temperatures, thermochemical equilibrium 
in freestream (in principle)

• Freestream errors: 3 % (U, T); 7% (r)

• 6 experiments, H0 = [5.4, 21.8] MJ/kg

• Mild vibrational non-equilibrium to widespread dissociation

• Laminar, attached flow on the fore-cone; simple physics

• Shock interactions, separation bubble on the aft cone

• Experiments of interest

• Case 1:  H0 = 5.4 MJ/kg; mild vibrational non-equilibrium

• Case 4: H0 = 21.8 MJ/kg; vibrational & chemical non-equilibrium



4

Recap – validation studies 

• LENS-XX experiments never modeled successfully. Symptoms

• Models underpredict heating on the fore cone 

• Ditto, the size of the separation zone

• Two potential causes investigated

• Cause 1: Thermochemical models are inaccurate

• Many thermochemical models & assumptions tried; changed the size of 
separation but not enough, or too much

• Cause 2: The inlet BC is mis-specified (outside expt. error bounds)

• Bayesian inference of (r, U, T, Tv) from measurements on fore-cone (laminar, 
attached flow)

• Case 1 (low enthalpy): BCs barely within experimental error bounds i.e., OK

• Case 4 (high enthalpy): BCs well outside error bounds; possibly mis-specified

Thanks, Kieweg et al, SciTech 2019

Thanks, Holloway et al, JSR, 2022. Case 4
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Problem statement

• Aim: Decide if the BC mis-specification is dependent on flow enthalpy

• Or was that an artefact of using surrogate models?

• Consequence: Did thermochemical non-equilibrium (inside and 
upstream of LENS-XX test-section) play a role in  BC (mis-) 
specification?

• How to address the problem?

• Pose and solve an inverse problem for inlet BC.

• Use Navier-Stokes CFD solver, not surrogates

• Data: p(x), q(x), H0 and Ppitot , but only on the fore-
cone, before separation
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Technical approach

• Formulation: Deterministic inversion – optimization of a cost function J

• Gradients (sensitivities w.r.t. optimization variables) computed using adjoints

• min
!
𝐽 = 𝛼 𝑞(#$%) − 𝑞(Θ) '

' + 𝛽 𝑝(#$%) − 𝑝(Θ) '
' + 𝛾 𝐻#

(#$%) − 𝐻(Θ)
'

'
+

𝛿 𝑃()*#*
(#$%) − 𝑃(Θ)()*#* '

'

• Uncertainty bounds on Q* under assumed Gaussian posterior 
distribution

• Θ ~ 𝑁 Θ∗, Γ , Γ = 𝐻"#, 𝐻 = ($!%
$&"$&#

• Outstanding questions:

• Q = {density, velocity, …..?}

• Is the Gaussian assumption for the posterior distribution valid?
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Bayesian comparison

• BC estimation done via Bayesian inversion and surrogate models

• Data: Used the same measurements on the fore-cone

• Method: MCMC

• Exact posterior PDFs for (r, U, T, Tv);  quantified the uncertainty in the 
estimates

• Also MAP values (most probable or maximum a posteriori)

• Findings:

• PDFs for T, Tv too wide – can’t be estimated from data

• Case 1’s BC (MAP values) barely inside experimental error bounds

• Case 4’s BC (MAP values) outside experimental error bounds

• Reliance on MAP values and surrogate models to make decisions is 
a deadly combination

• So check it – remove surrogates, for starters

Case 4
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Local sensitivity analysis

• Sensitivity = ⁄!"
!# at the nominal inlet conditions

• A = {surface pressure, surface heat flux} on double cone

• B = {r, U, T, Tv}

• Findings:

• Sensitivity w.r.t. {T, Tv} too small – won’t be able to estimate from data

• Expected – hypersonic flow energies are kinetic, not thermal

• So, Q = {r, U}

• Hold T, Tv at the values specified in the experimental dataset
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Validation with Run 35

• Low enthalpy (3.71 MJ/kg) flow; LENS-I shock tunnel

• Modeled successfully by Nompelis in 2003

• Bayesian inference (Ray et al, 2020) established that inferred 
(r, U) lay within experimental error bounds

• Findings: Deterministic & Bayesian agree

• Q* is close to Q(MAP) and Q(Nom) (experimental data)

• Gaussian posterior is too wide

• Conclusion: Method works 
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Test – Case 1

• LENS-XX; low enthalpy (5.44 M/kg); mild vibrational non-eq

• Bayesian method (w/ surrogates): Inferred (r, U) within 
experimental error bounds

• Finding: Deterministic & Bayesian disagree

• Q* is not close to Q(MAP) and Q(Nom)

• Gaussian posterior too wide 4.5 5.0 5.5
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Case 1 – multi-start check

• Case 1 BC also seem to be mis-specified

• Deterministic & Bayesian inference disagree

• Did we fall into a local minima?

• Redo inference starting from different guesses

• Guesses outside the experimental error bounds

• All converge to the same estimate of (r, U)

• Conclusion

• The estimate of (r, U) is correct

• The approximate surrogate models & MCMC did not find the MAP 
estimate

• Case 1 inlet BC may be mis-specified

Nominal/experimental inlet 
condition & uncertainty bounds
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Did we improve predictive skill?

• Fore-cone predictions are good but separation zone shortened; RMS errors increased

• Inlet BC are definitely only part of the cause
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Test – Case 4

• LENS-XX; high enthalpy (21.77 MJ/kg); vibrational & 
chemical non-eq

• Bayesian method (w/ surrogates): Inferred (r, U) outside 
experimental error bounds

• Finding: Deterministic & Bayesian agree

• Q* is close to Q(MAP) and far from Q(Nom)

• Gaussian posterior too wide
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Cross-validation of Gaussian assumption

• The Gaussian posteriors are wrong and not useful
• Discovered when we compared with MCMC posteriors

• Test for Gaussian assumption?

• Cross-validation

• Generate estimates (r, U)k, k = 1 …K using random subsets of 
the observations

• Scatter in (r, U)k wider than the (unknown) exact posterior

• Because (r, U)k  drawn on fewer data / information

• “Upper bound” on true posterior / uncertainty

• If scatter is narrower than Gaussian posterior, assumption not 
justified

• Our case (using Run 35): Not justified

• Scatter commensurate with MCMC posterior

• Scatter too narrow compared to Gaussian posterior
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Conclusions

• Developed a deterministic inference method to check inflow BC for LENS-XX experiments

• They have never been modeled successfully

• Method uses the Navier-Stokes CFD solver, not surrogates

• Also computed uncertainty bounds using a Gaussian assumption

• Findings:

• Both LENS-XX experiments (low & high-enthalpy) have an inflow BC that is inconsistent with double-cone 
surface measurements

• But correcting the BC does not fix the problem. There are other causes behind the model / experiment mismatch

• Gaussian posterior is easy to calculate, but the Gaussian assumption may not be valid

• Constructed cross-validation checks to test the validity of Gaussian assumption

• Gaussian assumption inappropriate; corroborated with MCMC posterior distributions


