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What is this talk about?

* A cautionary tale on decision-making using surrogate models

* Surrogate models: Data-driven, fast running proxies of CFD solvers

* Widely used in UQ and Bayesian inverse problems — but they are approximate

* Results e.g., point estimates from inverse problems can be wrong

* Ditto, wrong decisions based on point estimates Thanks, ’2‘6;“99 etal, SciTech 2019
a

* Application: Checking the consistency of experimental datasets from LENS-XX
expansion tunnel L

* Laminar flow over double cone. Never modeled successfully
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Thanks, Carnes et al, SciTech 2019
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* Questions about inaccurate inlet boundary conditions (BCs)
* Basic idea: Infer inlet BC by inverting measurements on the cone

* To be safe, Bayesian inference; BCs as probability density functions (PDFs)

* But what if the surrogate models of the Navier-Stokes simulator are approximate?



Recap — the experiments

* We have a double-cone in hypersonic flow

* LENS-XX expansion tunnel, low temperatures, thermochemical equilibrium
in freestream (in principle)

* Freestream errors: 3% (U, T); 7% (p) N N
* 6 experiments, Hy=[5.4, 21.8] MJ/kg »' |
* Mild vibrational non-equilibrium to widespread dissociation
* Laminar, attached flow on the fore-cone; simple physics
* Shock interactions, separation bubble on the aft cone
* Experiments of interest

® Case 1: Hp=5.4 MJ/kg; mild vibrational non-equilibrium

® Case 4: Hy=21.8 MJ/kg; vibrational & chemical non-equilibrium
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Recap — validation studies

* LENS-XX experiments never modeled successfully. Symptoms

* Models underpredict heating on the fore cone

* Ditto, the size of the separation zone

* Two potential causes investigated

® Cause 1: Thermochemical models are inaccurate

Many thermochemical models & assumptions tried; changed the size of
separation but not enough, or too much

® Cause 2: The inlet BC is mis-specified (outside expt. error bounds)

Bayesian inference of (p, U, T, T,) from measurements on fore-cone (laminar,
attached flow)

Case 1 (low enthalpy): BCs barely within experimental error bounds i.e., OK

Case 4 (high enthalpy): BCs well outside error bounds; possibly mis-specified
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Thanks, Kieweg et al, SciTech 2019

Heat Flux - Compare Simulations
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Problem statement

Pressure - Forward UQ (all simulation points)
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* How to address the problem?

Heat Flux - Forward UQ (all simulation points)

* Pose and solve an inverse problem for inlet BC.
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Technical approach

Pressure - Forward UQ (all simulation points)
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Bayesian comparison

* BC estimation done via Bayesian inversion and surrogate models

®* Data: Used the same measurements on the fore-cone

* Method: MCMC

* Exact posterior PDFs for (p, U, T, T,); quantified the uncertainty in the

estimates

* Also MAP values (most probable or maximum a posteriori)

.'/-\- ™

* Findings:

®* PDFsforT, T, too wide — can’t be estimated from data g2 |

® Case 1’s BC (MAP values) barely inside experimental error bounds

* Case 4’s BC (MAP values) outside experimental error bounds BRI A

* Reliance on MAP values and surrogate models to make decisions is
a deadly combination

* So check it — remove surrogates, for starters
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Case 1

Sensitivity

Sensitivity

[ e [ ® Pressure sensitivity (LSA)
Local sensitivity analysis — f
* Sensitivity = aA/aB at the nominal inlet conditions ]
* A ={surface pressure, surface heat flux} on double cone f |
* B={p,U,T, T}
s | e
* Findings: L i
* Sensitivity w.r.t. {T, T,} too small — won’t be able to estimate from data L
. . . . X[m]
* Expected — hypersonic flow energies are kinetic, not thermal Heat flux sensitivity (LSA)
* So,®={p, U} %
* Hold T, T, at the values specified in the experimental dataset g-
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Validation with Run 35

* Low enthalpy (3.71 MJ/kg) flow; LENS-I shock tunnel
* Modeled successfully by Nompelis in 2003

* Bayesian inference (Ray et al, 2020) established that inferred
(p, U) lay within experimental error bounds

* Findings: Deterministic & Bayesian agree
* O%*is close to ®MAP) gnd OMNom) (experimental data)
® Gaussian posterior is too wide

®* Conclusion: Method works

®(Nom) e* ®(MAP)
(uncertainty limits)

p [g/m?3] 0.5848 0.589 0.5737
(0.5429, 0.6257)
U [m/s] 2545.0 2506 2490.0

(2468.6, 2621.4)
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Test — Case 1

* LENS-XX; low enthalpy (5.44 M/kg); mild vibrational non-eq

* Bayesian method (w/ surrogates): Inferred (p, U) within

experimental error bounds
* Finding: Deterministic & Bayesian disagree

* O®*is not close to ®MAP) gnd ENom)

® Gaussian posterior too wide

©®(Nom) e* ®(MAP)
(uncertainty limits)
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U [m/s]

0.499
(0.4641, 0.5339)

3246
(3148.6, 3343.4)

0.433

3540

0.4897

3340

u/u

Density

/

3.6
00 05 10 15 20 25 3.0

3.4

F] T
_W

3.2

2.8

5.5 6.0

0/ Prom

Density

Density

00 05 10 15 20 25 3.0

— MCMC
—— Gaussian
— MAP

- Det

| — MCMC

- — MAP

—— Gaussian

- Det

10



case 1 - mUIti'Sta rt ChECk Nominal/experimental inlet

condition & uncertainty bounds

* Case 1 BC also seem to be mis-specified Optimizstion P‘“"’/

* Deterministic & Bayesian inference disagree
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l

* Did we fall into a local minima?

* Redo inference starting from different guesses

3400

* Guesses outside the experimental error bounds

* All converge to the same estimate of (p, U)
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®* Conclusion

3000

* The estimate of (p, U) is correct

* The approximate surrogate models & MCMC did not find the MAP
estimate
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Did we improve predictive skill?

Pressure [Pa]
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* Fore-cone predictions are good but separation zone shortened; RMS errors increased

* Inlet BC are definitely only part of the cause
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Test — Case 4
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Cross-validation of Gaussian assumption

* The Gaussian posteriors are wrong and not useful
* Discovered when we compared with MCMC posteriors
* Test for Gaussian assumption?

* Cross-validation

* Generate estimates (p, U), k=1 ...K using random subsets of
the observations

* Scatterin (p, U), wider than the (unknown) exact posterior
* Because (p, U), drawn on fewer data / information

* “Upper bound” on true posterior / uncertainty

* |If scatter is narrower than Gaussian posterior, assumption not
justified

® Qur case (using Run 35): Not justified
* Scatter commensurate with MCMC posterior

* Scatter too narrow compared to Gaussian posterior
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Conclusions

* Developed a deterministic inference method to check inflow BC for LENS-XX experiments
* They have never been modeled successfully
* Method uses the Navier-Stokes CFD solver, not surrogates
* Also computed uncertainty bounds using a Gaussian assumption

* Findings:

* Both LENS-XX experiments (low & high-enthalpy) have an inflow BC that is inconsistent with double-cone
surface measurements

* But correcting the BC does not fix the problem. There are other causes behind the model / experiment mismatch
® Gaussian posterior is easy to calculate, but the Gaussian assumption may not be valid
* Constructed cross-validation checks to test the validity of Gaussian assumption

* Gaussian assumption inappropriate; corroborated with MCMC posterior distributions
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