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Abstract6

In this paper we study the efficacy of combining machine-learning methods with7

projection-based model reduction techniques for creating data-driven surrogate models8

of computationally expensive, high-fidelity physics models. Such surrogate models are9

essential for many-query applications e.g., engineering design optimization and parame-10

ter estimation, where it is necessary to invoke the high-fidelity model sequentially, many11

times. Surrogate models are usually constructed for individual scalar quantities. How-12

ever there are scenarios where a spatially varying field needs to be modeled as a function13

of the model’s input parameters. We develop a method to do so, using projections to14

represent spatial variability while a machine-learned model captures the dependence of15

the model’s response on the inputs. The method is demonstrated on modeling the heat16

flux and pressure on the surface of the HIFiRE-1 geometry in a Mach 7.16 turbulent17

flow. The surrogate model is then used to perform Bayesian estimation of freestream18

conditions and parameters of the SST (Shear Stress Transport) turbulence model em-19

bedded in the high-fidelity (Reynolds-Averaged Navier-Stokes) flow simulator, using20

shock-tunnel data. The paper provides the first-ever Bayesian calibration of a turbu-21

lence model for complex hypersonic turbulent flows. We find that the primary issues in22

estimating the SST model parameters are the limited information content of the heat23

flux and pressure measurements and the large model-form error encountered in a certain24

part of the flow.25
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1 Introduction26

In this paper, we develop and test a method to create surrogate models that can approx-27

imate spatially varying responses (i.e., fields) generated by a high-fidelity computational28

model (usually a system of partial differential equations) e.g., an engineering simulator.29

The method will be demonstrated in the context of hypersonic turbulent flow solutions30

over a realistic engineering geometry with shocks, boundary layers, flow separation, and31

reattachment. Surrogate models are essential for many-query applications e.g., design opti-32

mization or inverse problems where the computational model has to be invoked repeatedly33

and sequentially, and for the prediction of quantities of interest (henceforth QoI ), as a34

function of the computational model’s inputs. In this paper, we will demonstrate the sur-35

rogate models to calibrate a turbulence model using data from a hypersonic shock-tunnel36

experiment, a process that will require us to simulate a turbulent flow many times. Models37

for predicting a single scalar variable have long existed (see Ref. [1, 2, 3] for reviews), as38

well as for scalar-valued fields (see Ref. [4] for a review). A review of surrogate modeling39

for aerodynamic applications can be found in Ref. [5].40

Swischuk et al. [6] describe an alternative way of surrogate modeling fields, where they41

use some basic knowledge of the behavior of the fields in question to significantly simplify42

the architecture (and therefore the training) of the surrogate model. They realized that43

the spatial correlation in the fields persist and do not vary erratically as the model inputs44

change, and thus the modeling could admit a “separation-of-variables” approach. They45

modeled the spatial variation of the field using a basis set obtained by the proper orthogonal46

decomposition (POD) of a training dataset of fields, and captured the dependence of the47

weights/coefficients of the bases on the model inputs via machine-learning (ML) techniques.48

They found that simple ML methods such as polynomial regressions were equal to, or49

better than, complex methods (such as neural networks), which simplified the training of50

the models, and reduced requirements on the size of the training dataset (TD). In this51

foundational study, the problems considered were “idealized” - the fields were smooth, their52

dependence on model parameters relatively benign (though nonlinear) and the number of53

model input parameters less than half-a-dozen.54

In this paper, we investigate whether a difficult and realistic engineering problem can be55

addressed using the “separation-of-variables” approach to surrogate modeling, and whether56

the usefulness of simple ML techniques still holds. We seek to construct surrogate models for57

the heat-flux and pressure fields on the HIFiRE-1 geometry when placed in a M∞ = 7.16 hy-58

personic flow in the LENS-I shock-tunnel (see Ref. [7, 8] for a description of the experiment59

and modeling effort). In our study, the high-fidelity engineering simulator is a Reynolds-60

Averaged Navier–Stokes (RANS) model [9] with Menter’s SST turbulence model [10] em-61

bedded in it. Each simulation takes about 384 CPU-hours1 to converge to steady state. The62

QoIs (heat-flux and pressure) are obtained on the surface grid of the HIFiRE-1 geometry63

with 2170 grid points (1085 × 2 surface mesh with details in Sec. 3). The RANS model has64

12 uncertain parameters - freestream density, temperature and velocity, as well as 9 SST65

turbulence model parameters - which form the input vector of the surrogate model. The66

hypersonic flow contains discontinuities (shock waves), regions of intense gradients (turbu-67

1Each simulation is run using 128 2.3 GHz Intel Xeon Gold processors (4 nodes, each with 32 cores) for
approximately 3 hours using Sandia’s high performance computing resources.
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lent boundary layers) and a flow separation zone on the HIFiRE-1 geometry. It is expected68

to pose a realistic challenge for surrogate modeling.69

The usefulness of the surrogate model will be demonstrated by calibrating the 12 uncer-70

tain parameters to shock-tunnel data (heat-flux and pressure measurements on the HIFiRE-71

1 surface) The calibration will be Bayesian i.e., we will develop a 12-dimensional joint prob-72

ability density function (JPDF) over the uncertain parameters to capture the calibrated73

values, as well as the uncertainty in them, due to a finite number of noisy measurements74

and the shotcomings of the RANS model (i.e., model-form error).75

This paper has two main contributions. Firstly, we provide the first comprehensive and76

comparative study of data-driven ROM-based surrogate model construction for a complex77

realistic engineering application in hypersonic flows. In our case, the bulk of the complexity78

is expected to arise from the ML models that represent the influence of the freestream values79

and the nonlinearities engendered by the SST turbulence model. Surrogate models that80

leverage knowledge of the physical phenomena to simplify their architecture, training and81

TD requirements have their obvious attractions, especially when computationally expensive82

models have to be run thousands of time to populate a high-dimensional parameter space.83

Our second contribution is the illustration of the potential of surrogate models in solv-84

ing inverse problems, in our case, the SST model calibrated to measurements from a 2D85

hypersonic flow experiment. RANS models are approximate and often need to be calibrated86

to experimental measurements from flows similar to their final use-case (e.g., in hypersonic87

flows) to be predictive. To date, turbulence models calibrated to shock-tunnel data have88

been limited to low-speed flows (incompressible [11] and transonic [12]), and it is unclear89

whether the approximations inherent in RANS will even allow the estimation of SST pa-90

rameters with any degree of accuracy, given separated hypersonic flows over the HIFiRE-191

geometry. While there have been attempts to calibrate turbulence models in hypersonic92

flows [13], they are limited to 1D (flat-plate boundary layer) problems where many tur-93

bulent processes are absent. In contrast, we provide a methodology, heavily reliant on94

surrogate modeling, that can be used to calibrate models with data obtained from experi-95

ments that closely resemble actual flight conditions. We also provide the model that results96

from it, complete with error/uncertainty estimates. Such a turbulence model, customized97

to hypersonic flows, does not exist in aerospace engineering literature. Note that we have98

not tested the calibrated model for its generalizability; rather, we have demonstrated how99

the model could be calibrated. A generalizable model would likely require calibration to a100

number of experimental datasets that, pooled together, would contain most of the physics101

observed in flight. That is outside the scope of the paper.102

The paper is organized as follows. In Sec. 2, we review existing literature on surrogate103

modeling of fields and the state-of-the-art in turbulence model calibration. In Sec. 3 we104

describe the LENS-I experimental data, the SPARC high-fidelity flow simulator, and the105

setup for model calibration. In Sec. 4 we describe the construction of the surrogate model106

using dimension reduction and different types of machine learning regressors, whose per-107

formance is then evaluated in Sec. 5. Sec. 6 contains the formulation and results of the108

Bayesian calibration problem. Summary and conclusions are in Sec. 7.109

2 Literature review110
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2.1 Surrogate models for fields111

Surrogate modeling of high-fidelity models is a mature topic and contemporary reviews of112

the field can be found in Refs. [4, 1, 14]. We limit ourselves to surrogate models that output113

spatial or spatiotemporal fields (see a review in Ref. [4]). The process involves generating114

a large number of instances of the field by executing the high-fidelity model repeatedly for115

different inputs (a vector of independent scalar variables) and archiving the input-output116

pairs as TD. The TD is then used to compute an orthogonal basis set, usually via POD [15],117

though Krylov subspace bases [16, 17] and Fourier bases [18, 19] too have been explored.118

The output field is then represented using a weighted linear combination of the bases,119

with the (short) vector of weights serving as a low-dimensional representation of the field.120

Weights, individually or as a vector, are then modeled as a function of the uncertain inputs121

(of the high-fidelity model) via conventional data-driven methods. The oldest example of122

such an approach seems to be Ref. [20], where Rayleigh-Bénard convection was modeled in123

this fashion, using cubic spline interpolators to model the bases’ coefficients (or weights).124

Gaussian Process models also have been extensively used [21, 22, 23, 24], and there have125

been investigations into using self-organizing maps coupled with local response surfaces [25].126

Neural networks can serve as universal approximators and consequently Ref. [26, 27] explore127

their use as a mapping between inputs and the coefficients. In transient problems with a128

spatial component, POD is often used to reduce spatial dimensionality while the time-129

evolving coefficients are modeled as a dynamical system, using neural ordinary differential130

equations (NODE) and recurrent neural networks [28, 29, 30]. Dimensionality reduction131

of a spatial field X can also be accomplished in a nonlinear manner using a neural net132

encoder-decoder framework and used to predict a different, dependent spatial field Y via133

image-to-image regression [31]. In case of a spatiotemporal field, the time-evolution of134

the field in the dimensionality-reduced encoded (or latent) space has been modeled using135

a parameterized NODE [32]. It is also possible to generate the TD in an “intelligent”136

manner, sampling the input space where information on the input-output relationship is137

desired [33]. There are studies which explore the benefits of various surrogate modeling138

techniques [34, 35, 36] for a given problem, including in fluid mechanics [37].139

Surrogate models have also been used in compressible aerothermodynamics (hypersonic140

flows), often to approximate temperatures, pressures and heating on wings and control141

surfaces [38, 39]. They have been used within the context of aerothermoelasticity studies [40,142

41, 42, 43, 44] or to design thermal protective systems [45]. In these surrogate models, the143

spatial variation of the fields are captured using POD bases, though a few studies have used144

kriging [40, 39, 44]. In case of POD, the coefficient of the POD bases are modeled as a145

function of the environment (e.g., Mach number, altitude etc.) using kriging, radial basis146

functions or Chebyshev polynomials. The training dataset is generated using computational147

fluid dynamics (CFD) simulators to span over a parameter space ranging from two to148

eigth dimensions, consisting of Mach number (or speed), altitude and a host of parameters149

describing the attitude of the vehicle and its control surfaces e.g., angle of attack, roll150

angle etc. Comparisons between various surrogate modeling techniques for hypersonic flow151

fields can be found in Refs. [38, 40, 43, 44]. In these studies the dataset for training the152

surrogate model generally contained O(10)−O(102) examples. In contrast, Ref. [45] models153

the temporal variation of temperature under the thermal protection system as a hypersonic154
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vehicle executes an uncertain trajectory using Karhunen-Loève bases. Apart from the three155

parameters that governed the uncertain trajectory, the study also considered 18 uncertain156

parameters describing the material properties of the thermal protective system. The training157

dataset had about 400 examples.158

2.2 Calibration of turbulence models159

Data-driven turbulence modeling has mostly targeted closures in RANS equations, though160

some work has been done for Large Eddy Simulations too [46, 47]. Refs. [48, 49, 50] con-161

tain broad reviews of data-driven models used to simulate turbulent flows. Such models162

fall into three categories. The first category consists of studies which seek to replace con-163

temporary RANS closures with new forms learned from TD. This often takes the form of164

neural networks [51, 52, 53]. Alternatively, studies have used gene expression programming165

to assemble new expressions e.g., a linear eddy viscosity model augmented with additional166

terms [54, 55, 56, 57, 58]. The second category consists of inferring a spatially variable167

“correction” that modulates/multiplies certain closure terms in the RANS equations; the168

spatially variable term is then related to the local flow state with a data-driven model such as169

a neural net or a random forest [59, 60, 61, 47, 62, 63]. This field estimation has traditionally170

been performed using optimization, but Kalman filters have also been used [64, 65, 66].171

The third category consists of conventional turbulence closures that have been cali-172

brated to flows similar to the scenarios where they are expected to be used. Two-equation173

turbulence models, like the SST (Shear Stress Transport) model used in this study, contain174

a number of approximations [9], which makes it impossible to compute turbulence closure175

parameters that are universally generalizable to all types of flows. Conventionally, these176

parameters have been calibrated to simple turbulent boundary layer and shear flows [67],177

but are routinely tuned to particular classes of flows [68, 69, 70]. Due to the simplicity178

of the (conventional) closures’ forms, it is usually not possible to estimate the closures’179

parameters with a great deal of certainty, and consequently, Bayesian inference is used to180

construct a JPDF of the parameters.181

The first attempt at Bayesian calibration of closure constants used data from simple182

flows e.g., flat-plates and wall-bounded flows [71, 72]. The 1D flow models used in these183

studies did not require surrogate modeling when Bayesian inference was performed using184

Markov chain Monte Carlo (MCMC) techniques. In Ref. [11] the authors estimate five185

closure parameters of the k − ε turbulence model for urban canyon flows using a Gaussian186

Process surrogate, MCMC and 10 measurements of turbulent kinetic energy from a shock-187

tunnel model. A rather different approach was adopted for the 3D jet-in-crossflow problem188

with measurements of velocity and vorticity [12, 73, 74], where polynomial surrogates were189

employed to estimate three closure parameters of the k − ε turbulence model. Bayesian190

inference was also used to estimate parameters of the k − ω − γ turbulence model for hy-191

personic transitional flows, using Stanton number measurements in a turbulent flow over a192

flat plate and polynomial chaos expansion surrogates [75]. The same authors, in Ref. [13],193

redid the estimation using measurements of the skin friction, using Gaussian Process sur-194

rogates. In both cases, Direct Numerical Simulations provided the calibration data. The195

SST model has also been tuned for hypersonic flows, using the same HIFiRE-1 measure-196

ments used in this study [8], but the manual adjustment of a single parameter in the SST197
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model is not quite a formal calibration. Closure parameters of the k − ω turbulence model198

have also been estimated using Ensemble Transform Kalman Filters and measurements199

from a backward-facing step experiment [76]. The same method has been used to esti-200

mate spatially-varying turbulent viscosity fields using measurements from transonic flows201

over airfoils and wings [77]. In Ref. [78], the authors used Approximate Bayesian Compu-202

tations (ABC) to estimate the parameters of a non-equilibrium RANS turbulence model,203

and quantified the dependence of those parameters on the statistical summaries used for204

calibration. The measurements used in the calibration were obtained from the Bachalo &205

Johnson experiment (transonic flow over an axisymmetric bump). Finally, in Ref. [79], the206

authors discovered, while calibrating RANS for Rayleigh-Taylor instabilities, a dependence207

of a parameter on the Atwood number and thus helped uncover and remove a model-form208

uncertainty (i.e., the use of a Atwood-number-indpendent parameter).209

3 The HIFiRE-1 configuration and experiment210

3.1 Flow configuration and RANS model211

Figure 1: Profile of the cone-shaped HIFiRE-1 geometry. The heat flux and pressure fields
are measured as a function of the distance from the tip of the nose along the axis of rotation,
r.

The flow configuration: The flow configuration being simulated is the HIFiRE ground212

test conducted in CUBRC’s (Calspan-University at Buffalo Research Center) LENS-I shock-213

tunnel facility, as described in Ref. [7]. The HIFiRE-1 geometry is cylindrical, and 1721.7214

mm in overall length and 409.2 mm in diameter. It consists of a conical forebody, with215

half-angle of 7 degrees and of length 1118 mm. The cone has a blunted nose of diameter216

2.5 mm and is followed by a cylindrical midbody of 400 mm. The aftbody, which is a flare217

of angle 33 degrees, follows the midbody and is 203.7 mm long (see schematic of the profile218

in Fig. 1). The test-section of the shock-tunnel is capable of accommodating test models219

3 feet in diameter and 12 feet long. The geometry is aligned with the flow, leading to a220

nominally axisymmetric flowfield. The HIFiRE-1 surface was instrumented with pressure221
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and heat flux sensors. There were 42 piezoelectric pressure sensors (with a measurement222

error of ±3%) and 76 thin-film heat-flux sensors (with a measurement error of ±5%) on223

the surface. The flow is tripped (artificially rendered turbulent)2 at a location 0.505 metres224

from the nose-tip, causing a dramatic increase in aerodynamic heating. The experiment225

has been modeled using the RANS equations with the Menter SST turbulence closure [10]226

(our “full-order” model) previously and is described in Ref. [8]. The flow configuration used227

in this paper is the “Condition B” of Ref. [8], corresponding to nominal HIFiRE-1 flight228

conditions at an altitude of 21.1 km. The inflow velocity v is 2170 m/s, with a freestream229

temperature u of 226.46 K and density ρ of 0.066958 kg/m3. The Mach number is 7.16 and230

the unit Reynolds number Re ≈ 10.2×106/m. The total enthalpy of the flow is 2.38 MJ/kg.231

The uncertainty in the LENS-I freestream measurements are 0.5% for the Mach number,232

3% for the temperature and 1% for the pressure [7]. Some simple algebra on the ideal gas233

model reveals that the freestream velocity and density have a measurement uncertainty of234

2% each. The HIFiRE-1 body was kept at a temperature of 296.7 K. The slender cone235

causes oblique shock-waves to form near the nose. The turbulent flow separates in front of236

the flared aftbody, which also causes complex shock structures, including shock-boundary237

layer interactions. This is captured in both the heat-flux and pressure measurements and238

the full-order model calculations.239

The full-order (RANS) model: The full-order flow model solves the Reynolds-Averaged240

Navier Stokes (RANS) equations [9], with Menter’s SST turbulence closure [10]. It is im-241

plemented within Sandia’s SPARC (Sandia Parallel Aerodynamics and Reentry Code) flow242

simulator. SPARC implements a second-order-accurate finite-volume spatial discretization243

of the compressible-flow RANS equations, which consists of the continuum conservations244

laws for mass, momentum and energy (a more detailed description of the simulator is in245

the appendix of Ref. [80], and some grid-convergence studies are in Ref. [81]). These are246

formulated for reacting gases in thermochemical non-equilibrium, though for the low total247

enthalpy of our flow (2.38 MJ/kg) an ideal gas approximation is used. The equations are248

solved using a finite-volume method for the conserved variables. SPARC can accomodate249

structured and unstructured meshes, though, given the simple geometry, we only use struc-250

tured ones in this paper. For the simulations in this paper, we use a Steger–Warming scheme251

for the inviscid fluxes, extended to second-order using a MUSCL reconstruction. A mimod252

limiter is used within the reconstruction. Diffusion and viscous terms in the conservation253

laws are discretized using a central difference scheme. SPARC solves the unsteady form254

of the governing equations, using a second-order backward difference scheme for the time-255

integrator. Since all the simulations in this paper are steady, we run the time-integrator in256

its first-order form to accelerate the convergence to a steady-state solution. The HIFiRE-1257

simulations were computed on a 1024 × 512 × 2 grid-cell mesh, clustered near the HIFiRE-258

1 surface to resolve the boundary layer and around the region with the shock attached to259

the nose-tip. Two planes were used in the depth-wise direction to fit into the 3D nature of260

the SPARC software; the two planes were mirrored. Studies to assess the adequacy of the261

grid are in Appendix A. The fluid dynamical quantities on the solid boundary were inter-262

polated onto a 1085 × 2 surface mesh that defined the HIFiRE-1 geometry via quadratic263

2In the RANS equations, the source terms in the k and ω equations are set to zero for r ≤ 0.505 m and
the turbulent kinetic energy k is set to zero at the inflow boundary, as the freestream flow is laminar.
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interpolation.264

3.2 Model calibration and setup265

The full-order solution represents the heating and pressure fields on the HIFiRE-1 geometry266

which we denote by267

y(·; x) ∈ RNs (1)

where Ns is the dimensionality of spatial discretization of the solution field, and x ∈ Rd
268

is the d-dimensional tuning parameter or feature space. Fig. 1 shows the profile of the269

HIFiRE-1 geometry. The full geometry is the shape generated by the rotation of the profile270

around the r axis. The heat flux and pressure fields are measured on the surface along271

the length of the test geometry, and, due to the symmetry of the mesh, are given as a272

one-dimensional function of the axis of rotation, r. Plots of the pressure and heat flux273

fields, computed with the nominal turbulence model and inflow conditions, can be found in274

Ref. [8], along with numerical Schlierens of the shock structures. We can write the solution275

vector in discretized form as276

y(·; x)
.
= [y(r1; x), y(r2; x), . . . , y(rNs ; x)]T , (2)

where ri’s are the discretized mesh points along the profile in Fig. 1.277

The feature space consists of 12 tunable input parameters, including three free-stream278

parameters, i.e., temperature, density and velocity, and 9 closure constants defined by the279

standard Menter two-equation (SST) model [10]. These quantities are varied by scaling280

(multiplying) them by a uniform random variable resulting in values ±15% from the nomi-281

nal. Table 1 shows the three freestream quantities and their scaling parameters and Table 2282

does the same for nine SST parameter constants. The ±15% variation for the freestream283

quantities’ scalings are designed to bracket the uncertainty in the measured values (see284

above), so that the surrogate model is comfortably applicable over our prior belief regard-285

ing the freestream conditions. The uncertainties in the SST parameters are obtained from286

Ref. [82]. Since these uncertainties are only known as bounds, we proceed with uniform287

distributions (under a maximum entropy assumption) for their prior densities.288

Note that we are primarily interested in the nine calibrated SST model parameters.289

However, the freestream density and velocity in the shock-tunnel, which are only known to290

within ±2% error, also affect the measured heat flux and pressure; the heat flux q ∼ ρv3 and291

pressure p ∼ ρv2 [80]. This strong dependence implies that the uncertainty in the freestream292

quantities have the potential to affect the calibrated values of the SST parameters. Thus293

we will perform a joint estimation of the freestream variables and the SST parameters,294

and compare it with a calibration when the freestream parameters held constant at their295

nominal values. This comparison will reveal the degree to which the uncertainty in the296

shock-tunnel inlet conditions affect the calibrated model.297

The goal of calibration is to find the inputs for the flow model (set of x’s) that min-298

imize some measure of discrepancy between the model prediction, y, and some observed,299

experimental data, yobs. Let d : Rnobs ×Rnobs 7→ R+ be a discrepancy function between two300

vectors of size nobs, which we use to measure the distance between the model prediction301
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Scaling/multiplier Value Freestream quantity Nominal value

ρs (0.85, 1.15) ρ (density) 0.066958

vs (0.85, 1.15) v (velocity) 2170

us (0.85, 1.15) u (temperature) 226.46

Table 1: Three parameters (left in white) are the multipliers used to scale the freestream
specification. The bounds of the uniform distribution for them are in the second column.
The multipliers are varied by ±15% around 1. The third column contains the freestream
quantities and the fourth column their nominal values.

Par. Value Par. Value Par. Value Par. Value

σk1 (0.7, 1.0) σw2 (0.7, 1.0) a1 (0.31, 0.40) β1 β∗/β1,r
σk2 (0.8, 1.2) β∗ (0.0784, 0.1024) β1,r (1.19, 1.31) β2 β∗β2,r
σw1 (0.3, 0.7) κ (0.38, 0.42) β2,r (1.05, 1.45)

Table 2: Table showing nine parameters from the SST turbulence model and their respective
parameter ranges. “Par.” is an abbreviation for SST parameters. Nominal values are exact
center of the specified ranges.

y(·,x) and some observation yobs.
3 Then, the deterministic calibration problem can be302

written as303

arg min
x

d(y(·,x),yobs, ; θ), (3)

were θ represents the parameters of the discrepancy function. A typical discrepancy is the304

squared error metric given by305

dSE(y(·,x),yobs, ; θ)
.
=
‖y(·,x)− yobs‖22

θ2
(4)

where the numerator is the canonical squared error norm and θ2 the variance. In a Bayesian306

formulation, we can write307

yobs = y(·,x) + ε, (5)

where ε is the discrepancy between model predictions and measurements and is modeled308

as ε ∼ N (0, θ2), N (·, ·) being a normal distribution. In such a case, problem Eq. (3) can309

be re-interpreted as the negative log-likelihood function. Moreover, if we place a prior310

distribution on θ and x, we have fully defined a posterior distribution for the feature space311

parameters:312

log p(x, θ) ∝ −d(y(·,x),yobs, ; θ) + log π(θ,x), (6)

where π(θ,x) is the prior distribution on θ and x, e.g., an inverse gamma density if θ313

represents the variance in a sum of squares discrepancy error and a uniform prior over some314

prescribed bounds, respectively. Fig. 2 illustrates the discrepancy between the full model315

prediction, y(r; xi) evaluated at a single set of sample parameters and the experimental316

data for heat flux and pressure, respectively. In the heat flux profile, there is an abrupt317

3We note that nobs does not need to be the same as, or even a subset of Ns. In fact, in this work, the
observed points fall in between the discretized mesh points.
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jump at r ≈ 0.505 where the simulation is “tripped” into turbulent flow, whereas the318

experimental data shows a gradual change consistent with a transition zone. Since pressure319

does not vary in the laminar versus turbulent zone, no changes are seen in the pressure320

profile (Fig. 2, bottom). Further, at r ≈ 1.25, both pressure and heat flux decline, with321

the RANS model closely following experimental data; expansion fans are not difficult to322

model. Finally, r ' 1.4, the flow separates, with the heat flux and pressure climbing323

steeply, but significantly overpredicted by the RANS model. This is due to the model-form324

error in RANS and its consequent inability to model separation zone correctly. The goal

Figure 2: Model output versus the experimental HIFiRE-1 data for heat flux and pressure.
The sharp changes in values correspond to changes in the geometry profile as seen in Fig. 1.
The RANS model prediction, using the nominal values of the model, is plotted with a solid
line. The experimental measurements are plotted with symbols.

325

for calibration is to find the values of x that result in the best match between the model326

(blue lines in Fig. 2) and the experimental data (red dots in Fig. 2). The search for the327

optimal x will require the evaluation of the RANS model repeatedly, which, at 384 CPU-328

hours a run4, would make the search in 12-dimensional space intractable. Consequently,329

it is necessary to replace the RANS model of the HIFiRE-1 geometry with a fast-running330

proxy i.e., surrogate model. In summary, the calibration procedure involves two331

4Total computational time for each simulation is roughly 3 hours on 128 cores using an Intel Xeon Gold
6140 CPU at 2.30GHz.
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stages: (1) construct a ROM-based surrogate for the heat flux and pressure332

fields, and then (2) perform Bayesian inference to infer a joint density on the333

tuning parameters informed by the discrepancy between the surrogate and the334

HIFiRE-1 measurements.335

4 Surrogate construction using proper orthogonal decompo-336

sition337

A simple approach for constructing surrogates for spatially varying fields, sometimes called338

the multi-target regression problem in the machine learning literature, is to construct a (sub)339

surrogate for each element in the output field (see Ref. [73] for an example). The complete340

surrogate is then the union of all the individual surrogate models. This is cumbersome if the341

dimensionality of the output y(·; x) is very large, as is the case for most complex problems.342

In addition, this method does not preserve the correlations that exist between different343

y(ri; x) in an efficient way. In contrast, we propose using proper orthogonal decomposition344

(POD) to transform the solution space to a low-dimensional subspace or latent space and345

then fit the handful of latent space dimensions with separate single-target surrogate models.346

If the transform is invertible5, we can simply invert back to the full order solution space for347

direct comparison.348

The procedure for dimension reduction of the output and subsequent regression fitting349

is as follows. Let Y
.
= [y1, . . . ,ym]T ∈ Rm×Ns be a snapshot matrix of sample solutions or350

ensemble runs, where each row of Y represents a solution field for a particular parameter351

set. These m samples are generated by sampling the twelve-dimensional feature space352

using Latin hypercube sampling over the prescribed bounds. We then perform principal353

component analysis (PCA) on this (centered) snapshot matrix to obtain a set of orthogonal354

transformations denoted by Φ = [φ1, . . . ,φn] ∈ RNs×n, where φi ∈ RNs ’s represent n355

new coordinate axes representing the directions of maximum variances. The associated356

coordinates or projection coefficients for each basis term is given by ci
.
= Ycφi ∈ Rm, where357

Yc is the centered snapshop matrix (see Algorithm 1). The empirical variance is then given358

by λi
.
= σ2i /(m − 1), where σi’s are the singular values associated with the SVD of Y, or359

equivalently, the eigenvalues associated with the normal matrix. With X
.
= [x1, . . . ,xm]T ∈360

Rm×d as the data matrix for the feature space, our subsequent task is to then create a361

surrogate model for each of the reduced space training data pairs {X, ci} for i = 1, . . . , n.362

While this is still a multi-target regression problem, the number of targets is n � Ns. If363

we denote ŷj(x) : Rd 7→ R each of the j = 1, . . . , n surrogate models corresponding to each364

component, then our full surrogate model is given by the Karhunen-Loeve expansion [83]365

y(·; x) ≈ ỹ(·; x) = µ0 +
n∑

j=1

√
λj ŷj(x)φj . (7)

The complete PCA/ POD algorithm with details about automating the choice of n is shown366

in Algorithm 1.367

5It may be the case that the inversion is not lossless, e.g., principal component analysis.
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368

Algorithm 1 Principal Component Analysis

Input: Snapshots Y ∈ Rm×Ns and percentage variance threshold ν ∈ [0, 1].a

Output: Basis matrix Φ ∈ RNs×k∗ , and projections C ∈ Rm×k∗ .
1: Center the snapshot data matrix, i.e. Yc = Y − µ, where µ =

∑m
j=1 yj , i.e., mean w.r.t.

the rows.
2: Compute thin singular value decomposition (SVD): Yc = UΣVT , where U ∈ Rm×K , Σ ∈

RK×K , V ∈ RNs×K , where K = min(Ns,m).
3: Find k∗ = arg min{k ∈ N+ :

∑k
i σ

2
i /
∑K

i σ2i ≥ ν}.
4: Set Φ = [v1, . . . ,vk∗ ], where vi’s are the columns of V and compute C = YΦ.b

aEach of the m snapshots corresponds to a model output evaluated at xm, i.e. a sample from the feature or
tuning space.

bOne can also scale the projections using C = YΦΣ−1
∗ , where Σ∗ is the k∗ × k∗ submatrix of Σ.

369

Once the PCA approach is performed on the solution field, the remaining effort is con-370

structing machine learning surrogates for ŷ(x)j ’s. To determine the best regression, we371

experiment with an array of different types of machine learning regressor models includ-372

ing Gaussian process regression, multi-layer perceptron (fully connected neural network)373

models, random forests, kernel ridge regression, support vector machines, and, last but not374

least, polynomial chaos (or multi-variate polynomial) expansions using Legendre polyno-375

mials. Each of these regressors are hyper-parameter-tuned over a specified parameter grid,376

e.g., polynomial order and regularization type for polynomial fitting, using five-fold cross377

validation in order to perform model comparison (see Appendix B) . We briefly summarize378

some of the key model features of these model regressors in Sec. 5. See Ref. [84, 6] for379

a more thorough discussion of orthogonal polynomial interpolants for multivariate model380

fitting and dense neural network construction, and the Scikit-Learn documentation [85] for381

a brief discussion of the other five estimators and their respective implementation.382

5 Surrogate models for HIFiRE-1 simulations383

The training dataset (TD) for the calibration and surrogate model construction is generated384

using Latin hypercube sampling (LHS) of the feature space. Ranges for the LHS study are385

defined in Table 1 and Table 2.6 The full-order i.e., RANS model is then evaluated at386

m = 2500 sample points and the heat flux and pressure fields are recorded to produce in-387

put/output data pairs {(X,yi)} for i = 1, . . . , n. Furthermore, we use 5-fold cross validation388

to tune and evaluate the accuracy of each possible regression technique (see Appendix B389

for more details about the hyper-parameter tuning). Fig. 3 shows summary statistics of390

realizations or snapshots of the heat flux and pressure fields. The realizations are plotted as391

a function of the geometry profile shown in Fig. 1. This is data we use to train our surrogate392

model in order to capture the effect of perturbations in the twelve-dimension feature space393

on the heat flux and pressure fields.394

6Note that the ranges for the training data are larger than the allowable ranges for the Bayesian calibration
in order to avoid problems with extrapolation.
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Figure 3: Ranges for of heat flux and pressure fields from the LHS study, simulated at
m = 2, 500 LHS points, plotted against the geometric profile in Fig. 1. The experimental
measurements for heat flux and pressure, respectively, are also shown in red. The bottom
range represents the q = .005 quantile while the upper range represents q = .995, so the
total range encompasses 99% of the total data. The median is shown in the dashed blue
line.

Once the TD is generated, we begin with the dimensionality reduction of the spatially395

varying targets using Algorithm 1. Fig. 4 shows the cumulative explained variance ratio,396

which can be used to determine the dimension of the latent space. From this plot we can397

deduce that a latent space dimension of k∗ = 4 captures more than 99% of the total variance398

of the original signal. 7
399

Figure 4: Cumulative explained variance ratio (i.e., Scree plots) as a function of the PCA
component for both the heat flux (left) and pressure (right) fields. Four components (ver-
tical blue line) are enough to capture more than 99% of the total variance (red dashed
horizontal line) for both heat flux and pressure fields (a 1000x dimension reduction for only
4 components).

The first four components for the heat flux and pressure fields are shown in Fig. 5. The400

components (plotted as a function/vector of the geometric profile parameter r) represent401

the directions of maximum variance, in decreasing order. One can also interpret these402

7We experimented with using six or eight components, but the resulting surrogate only improved test
errors by less than a tenth of a percent.
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components or modes as the axes of a new coordinate transformation in Ns-dimensional403

space. While only four components are needed to capture nearly the entirety of the variance,

Figure 5: First four principal components for heat flux (left) and pressure (right) fields.
Much of the variance is concentrated around the r ' 1.5 area, where the simulation struggles
to capture the experimental data.

404

Fig. 6 shows the difference in the original versus the reconstructed signal using k∗ = 4405

components. Indeed the statistics of reconstructed signal are indeed distinguishable from406

the original data. This shows that the dimension reduction, while extremely accurate in407

capturing the total variance, is not lossless when transformed back to the original space.

Figure 6: 99% quantile comparisons of heat flux and pressure fields from LHS study (blue)
versus PCA reconstruction samples (red), compared to experimental data (red dots).

408

Each of the component projections are fit with six different regression models and a 5-409
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fold cross-validation score is computed. Furthermore, for added robustness, each regressor410

is tuned over a set of prescribed hyper-parameters, e.g., a range of maximum depth and411

number of estimator are tested to obtain the best overall random forests regressor, a range412

of polynomial orders, least squares and sparse solvers are tested to obtain the best overall413

polynomial regressor, and etc. (See Appendix B for more details about the hyper-parameter414

tuning and the final model architecture). We use a negative root mean square score function415

for the individual regressors. Fig. 7 shows the root mean square errors (RMSE) for ŷ1 in416

Eq. (7), i.e., the surrogate for the projection coefficients of the first component of heat417

flux and pressure, respectively. The y-axis separates the different regressors and the x-axis418

shows the the RMSE (the smaller the better). Recall that the first component has the419

largest contribution to the total variance, and it decreases from there onwards. Thus, if we420

focus on the first component, we see that the two best regressors, i.e., the lowest RMSE,421

for fitting the component projections are the polynomial chaos expansions (PCE) with422

Legendre polynomials and the multi-layer perceptron (MLP) models. We left out errors for423

the k-nearest neighbor approach since the errors where significantly worse.

Figure 7: Root mean squared errors for regression surrogates for the first projection com-
ponent of heat flux (left) and pressure (right). The six different models used for comparison
are Gaussian processes (gpr), multi-layer perceptron (mlp) or dense neural networks, kernel
ridge regressor (krr), random forests (rf), support vector machine (svr), and polynomial
chaos expansions (pce).

424

We also compute the root mean square relative error (RMSRE) for the full field solution425

ỹ(x), which we obtain by projecting the latent space surrogate back to the original space,426

for the two best performing surrogates in the latent space, i.e., the PCEs and the MLPs.427

The error for the full field solution is defined by428

εi
.
=
‖yi − ỹi‖2

‖yi‖2
, (8)

where ỹ is the ML surrogate, i.e. either PCE or MLP, evaluated at the ith training or429

observed data point. Here we haven chosen to use relative error explicitly in order to get a430

sense of the relative magnitude of the surrogate construction error, and not just as a tool431

for model selection. Not shown in this plot is the baseline error computed by creating a432

“dummy” mean predictor which had a RMSRE of .1. Thus, our surrogate model reduces433

the relative error by almost an order of magnitude (10x) from the mean predictor.434
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Figure 8: Root mean squared relative errors (RMSRE) for the full field solution surrogate.
We calculate the 5-fold cross-validation error only for two best performing models on the
projection coefficients: multi-layer perceptron (mlp) or dense neural networks and polyno-
mial chaos expansions (pce). Heat flux is shown in the left and pressure on the right. For a
baseline comparison, the mean “dummy” predictor has an RMSRE of .1, which is roughly
ten times worse.

When choosing our final surrogate model, we have to balance simplicity with accuracy.435

With that in mind, for the purposes of the Bayesian calibration, we will use Legendre PCEs436

for our surrogate model construction. MLPs suffered from long training times, difficult437

hyper-parameter tuning spaces, and sensitivities to random seeds, which made them less438

reliable and less robust. PCEs offered simpler models and fitting approaches with far fewer439

tuning parameters and better reproducability.440

Before we move on the Bayesian calibration we would like to make a quick remark about441

the speed up in computational time. Recall that a single run for the full simulation takes442

approximately three hours on a supercomputer. The surrogate, on the other hand, can run443

in less than a tenth of a second on a standard laptop. Thus, the surrogate runs about one444

hundred thousand times faster, i.e., a speed up of five orders of magnitude, with far less445

computational power! The caveat is that, of course, the generation of the training data and446

the subsequent training of the surrogate model itself are not trivial tasks. Still, without447

the surrogate, it would be impossible to perform any sort of gradient-based parameter448

optimization or Bayesian calibration, which requires thousands or even millions of model449

evaluations, in any reasonable amount of time.450

Next, in Sec. 6, we use the newly constructed ROM-based PCE surrogate to perform451

Bayesian calibration of the HIFiRE-1 experiment. We will show that the Bayesian approach452

not only provides a better overall model, i.e., improved match to the HIFiRE experiment,453

but also a measure of the uncertainty for the heat flux and pressure fields via the joint454

parameter probability density function.455

6 Bayesian calibration of the HIFiRE-1 experiment456

As in Section 3.2, we use a squared error discrepancy term, which equates to standard457

additive Gaussian white noise model (Eq. 5; also Ref. [86, Section 2.5]), between the sur-458

rogate predictions and the experimental data. Since we are attempting to simulatenously459
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use both the heat flux and the pressure field during the calibration, our final discrepancy460

error is actually a normalized average of the error in the heat flux and the pressure field,461

with the same shared x parameter, but separate noise models θq and θp. This implies that462

the mismatch between model predictions and measurements at a point for the heat flux is463

assumed to be independent of the mismatch observed for the pressure. Denote dq(x; θq)464

and dp(x; θp) to be the heat flux and pressure log-likelihood discrepancy terms respectively,465

where θp and θq represent the noise parameters of the log-likelihood. Then, the full model466

posterior form is given by467

log p(x; θq, θp) ∝ −wqdq(x; θq)− wpdp(x; θp) + log π(θq) + log π(θp) + log π(x), (9)

where log π(θq), log π(θp), and log π(x) are the log priors, and wp,wq are weights chosen to
give equal weighting to pressure and heat flux calibration.8 The explicit posterior is given
by

log p(x; θq, θp) ∝ −
wq

2θ2q

nqobs∑
i=1

(
ỹq(r

Exp
i ; x)− yExpq,i

)2
− wqn

q
obs log θq

− wp

2θ2p

npobs∑
i=1

(
ỹp(r

Exp
i ; x)− yExpp,i

)2
− wpn

p
obs log θp

+ log π(θq) + log π(θp) + log π(x), (10)

where nqobs is the number of experimental observations for heat flux, rExpi ’s are the loca-468

tions at which the observations were made (different from ri), y
Exp
q,i is the experimental469

observations for heat flux, and ỹq(r
Exp
i ) is the surrogate prediction at the observed location.470

The terms are analogous for pressure. It is clear from Fig. 3 that the discrepancy between471

the model and the observations are higher for the heat flux than the pressure (even after472

weighting), thus the reason for the two θ’s.473

We briefly discuss the choice of the prior distributions next. The feature vector x are474

divided into two sets. The first set, consisting of the (scalings for) freestream (or shock-475

tunnel inlet) conditions, are modeled using uniform distributions as ρs ∼ U(0.98, 1.02), vs ∼476

U(0.98, 1.02) and us ∼ U(0.85, 1.15), where U(a, b) denotes a uniform distribution between477

(a, b). The bounds for ρs and vs reflect the ±2% uncertainty in the freestream conditions478

for density and velocity (see Sec. 3). The measured quantities are only weakly sensitive to479

the freestream temperature and so the bounds on us are the same as those used for training480

the surrogate model (Table 1). The second set consists of the SST model parameters whose481

prior densities are cast as uniform distributions with the bounds specified in Table 2. We482

use a gamma prior on the inverse variance parameter, which is the conjugate prior for the483

Gaussian likelihood, where we denote the precision as τq = θ−2q and τp = θ−2p with shape484

and scale parameters for their respective gamma densities set to k = 2, θ = 2, chosen to485

encapsulate the “model errors”.9 “Model errors” here refer to a composite of model-form486

errors, measurement errors and discretization error of the mesh. For our HIFiRE-1 case,487

8Since the number of heat flux, nqobs, and pressure, npobs, observations are different, we set wq = 1/nqobs
and wp = 1/npobs or, equivalently, wq = 1 and wp = nqobs/n

p
obs, to give equal weight to all observations.

9The log gamma prior for τ is log(τ ; k, θ) ∝ (k − 1) log(τ)− τ
θ
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the model-form errors dominate due to the existence of a separation zone, which is poorly488

modeled by RANS.489

6.1 MCMC results490

In order to obtain samples from our posterior distribution, we use Markov Chain Monte491

Carlo (MCMC) [87, 88]. The idea of MCMC is to derive a Markov chain, with a prescribed492

transition probability, such that the chain converges to a stationary distribution equal to the493

posterior distribution. A modified version of the classic Metropolis-Hastings algorithm [86]494

which adapts the covariance kernel of the transition probabilities [89] was used, often referred495

to as an adaptive MCMC methods (AMCMC). 32 parallel chains were run, each with a496

50,000 burn-in period and 750,000 post burn-in runs, for a total of 24 million samples. The497

resulting chains had an average autocorrelation of ≤ 500 and all chains had an acceptance498

rate of 0.21−0.22. We aggressively thinned the chain by 1000 for a total of effective samples499

size of 24,000 samples. See Appendix C for autocorrelation diagnostics.500

The thinned chains provide samples from the 12-dimensional JPDF that is the solution501

of the Bayesian inverse problem for the freestream scalings and SST parameters. These502

samples are marginalized (integrated over all dimensions except one) to compute the poste-503

rior probability density functions (PDFs) of each of the features i.e., elements of x. These504

are plotted in Fig. 9 with a solid line. The prior distribution (plotted with a red dashed505

line) and the nominal value taken from Table 1 and Table 2 (vertical dashed line), are506

also shown. A posterior PDF that differs significantly from the prior density implies a507

calibrated parameter that has assimilated information from the measurements. It is clear508

that the freestream scaling (ρs, vs, us) can be inferred quite easily - the PDFs’ peaks are509

sharp and distinct from the nominal values. The performance of the SST parameters are510

mixed. Some like a1 and σk2 have sharp PDFs whereas others such as σk1 and κ are not511

well informed by the measurements.512

Scaling/multiplier MAP Value Freestream quantity Nominal value

ρs 0.981 ρ (density) 0.066958

vs 0.980 v (velocity) 2170

us 0.856 u (temperature) 226.46

Table 3: Same as Table 1 but with the optimal MAP parameters.

Par. Value Par. Value Par. Value Par. Value

σk1 0.717 σw2 0.715 a1 0.399 β1 β∗/β1,r
σk2 1.183 β∗ 0.079) β1,r 1.304 β2 β∗β2,r
σw1 0.686 κ 0.382 β2,r 1.219

Table 4: Same as Table 2 but with MAP values

The final analysis involves pushing through a few hundred samples of the posterior back513

through the RANS model in order to determine if our Bayesian procedure actually results514

in a better calibration. These “pushed-forward-posterior” simulations lead to a distribution515
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Figure 9: Marginalized posterior PDFs for the 12 features, plotted using a solid line. The
uniform priors are plotted using red horizontal lines. The vertical line denotes the nominal
value of the parameters. The green dashed line plots are the same except that the freestream
parameters are fixed at the nominal. A one-dimensional Gaussian kde algorithm, with
automatic bandwidth determination, was used to smooth out the univariate histograms.

of predicted heat fluxes and pressures, which are summarized in Fig. 10 for the heat flux516

predictions and Fig. 11 for the pressure. The prediction using the nominal SST model is517

plotted with a dashed red line, the median prediction with a solid blue line, the [.025, .75]518

quantiles with a gray band and the [.05, .95] quantiles with a blue band. The experimental519
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data is plotted with symbols. We see that in the region over the cone with turbulent flow520

(0.4 ≤ r ≤ 1.1), calibration reduces the agreement with heat flux measurements (Fig. 10)521

though the agreement improves in the highly instrumented separation zone at the back of522

the HIFiRE-1 geometry (1.5 ≤ r ≤ 1.6). A similar effect, though much more muted, occurs523

with pressure predictions (Fig. 11). Despite the improvement, RANS’s predictive skill in524

the separation zone remains low. It is unlikely that any parameter (SST or freestream525

conditions) adjustment, within physical bounds, will drive RANS predictions closer to the526

experimental data. This is the definition of model-form error, caused by physics missing in527

the model.528

Figure 10: Comparison of heat flux predictions before and after calibration. The prediction
using the nominal SST model is plotted dashed red line, the median prediction with a solid
blue line, the first and third quartiles with a dashed blue line and the [.05, .95] quantiles
with a dotted blue line. The experimental data is plotted with symbols. The MAP estimate
is show in orange.

The improvement in predictive skill, post calibration, can be quantified using both the529

mean absolute error (MAE; [90, 91]) and continuous rank probability score (CRPS; [90, 91]).530

These can be computed for the predictions using samples picked from the posterior JPDF531

(as illustrated in Fig. 10 and Fig. 11) and compared to their counterparts computed using532

samples picked from the prior density [92]. Plots of the actual distributions (not summaries)533

of heat flux and pressure predictions are in Appendix C (Fig. 17 and Fig. 18). For each534

of the experimental data points, we compute the CRPS scores in Fig. 12. Overall, the535

CRPS averaged over all experimental observations is reduced by the Bayesian calibration536

procedure compared with the prior predictive, which is an indication of success (CRPS537

error is roughly the same for the the heat flux, but reduced by roughly 10% for pressure).538

Likewise, if we look at the MAE averaged over all experimental points in Fig. 13, we see the539

same result, to a slightly higher degree (a decrease in error of about 5% for the heat flux540

and 20% for pressure). We note that in order to average different MAE and CRPS score541

over different experimental points over different scales, we weigh each of the experimental542

data points by the inverse mean squared error of the magnitude of observations. The net543
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Figure 11: Comparison of pressure predictions before and after calibration. The prediction
using the nominal SST model is plotted dashed red line, the median prediction with a solid
blue line, the first and third quartiles with a dashed blue line and the [.05, .95] quantiles
with a dotted blue line. The experimental data is plotted with symbols. The MAP estimate
is shown in orange.

field/ prediction prior predictive CRPS error posterior predictive CRPS error

heat flux 0.302 0.307

pressure 0.976 0.837

Table 5: Average CRPS errors for heat flux and pressure fields for the prior predictive and
posterior predictive densities. A decrease in CRPS is preferred.

effect of this is that the errors can be interpreted as relative errors. In both cases, the544

calibration results seem to favor improvement of the pressure field, as opposed to the heat545

flux which sees almost no change between prior and posterior predictive results. This is546

because the model discrepancy error in the pressure field dominates the heat flux errors (see547

Fig. 3 which shows how the LHS runs envelope heat flux better than pressure). A summary548

of the average CRPS and MAE errors for the prior predictive versus the posterior predictive549

are shown in Table 5 and Table 6.550

field/ prediction prior predictive MAE error posterior predictive MAE error

heat flux 0.366 0.342

pressure 1.072 0.878

Table 6: Average MAE errors for heat flux and pressure fields for the prior predictive and
posterior predictive densities. A decrease in MAE is preferred.

21



Figure 12: Continuous rank probability score (CRPS) for posterior predictive versus the
prior predictive for heat flux (top) and pressure (bottom). The dotted horizontal lines
represent the average CRPS scores at the different observation points, rExpi ’s. The average
CRPS scores are simply the uniform average over the different observed data points.

6.2 Discussion551

The marginal posterior PDFs in Fig. 9 (solid lines) show that only a handful of SST pa-552

rameters can be estimated well from the heat flux and pressure measurements. Since the553

heat flux and pressure measurements depend strongly on freestream quantities, there is554

always a doubt whether the difficulty in estimating SST parameters could be due to the555

uncertainties in the freestream quantities. Therefore, we reran the Bayesian procedure556

while the freestream quantities were held at their nominal values i.e., ρs = vs = us = 1.557

The marginalized posterior PDFs so obtained are plotted in Fig. 9 using a green dashed558

line. There is not a big change in the posterior PDFs, indicating that the inclusion of the559

freestream quantities did not negatively impact the estimation problem. This is probably560

due to the very narrow priors U(0.98, 1.02) used for ρs and vs. Temperature, as expected,561

had no effect on the estimation of SST parameters. The prior and posterior for σk1 are562

about the same, indicating that there is little information about it in the observations.563

Note that sensors are densely clustered in the separation zone and the parameters’ PDFs564

are strongly influenced by it.565

We also notice that the peaks of the parameters’ PDFs are near their prior bounds. This566

a classic sign of large model-form errors. The Bayesian calibration drives the parameters567

to extremes in an effort to match experimental data, and in the process, adjust parameters568
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Figure 13: Mean absolute errors (MAE) for posterior predictive versus the prior predictive
for heat flux (top) and pressure (bottom). The dotted horizontal lines represent the average
MAE scores.

to compensate for model-form errors, the primary one being RANS’s inability to model569

separation zones correctly. However, the parameters are expected to stay within physical570

bounds, causing the most promising values to be drawn from the extremities of their range571

(and hence the peak in the PDF). One could presumably expand the priors in an effort572

to match experimental data. However, for SST parameters, they would then violate the573

range of values observed in literature. For the freestream parameters, it would require us574

to assume that the measurement error in LENS-I are far larger than usually stated. That575

is unlikely - LENS-I is very well-characterized facility.576

If we ignore the PDFs (in Fig. 9) that show peaks only at their extremities (since they are577

adversely affected by model-form errors), we find that σw1 and β2,r can be estimated quite578

well; they show a well-defined peak within the support of their prior. Some confirmation of579

this behavior can be drawn from Ref. [93] where the authors performed a global sensitivity580

analysis of the SST turbulence model. They used a double ellipsoid (M = 7.8, unit Re =581

2.2× 107/m) and the X-33 launch vehicle (M = 7.4, unit Re = 1.64× 107/m) as their test582

cases. These flow conditions are similar to our HIFiRE-1 test case (M = 7.16, unit Re =583

1.02×107/m), as are the characteristics of the flow, especially the existence of flow separation584

and reattachment. The studies found that σw1 was by far the most influential parameter, as585

it appears very prominently in the equation for ω, the specific rate of turbulent dissipation.586

Since ω controls the rate of conversion of turbulent kinetic energy into heat, and since587
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the wall heat flux is measured and used as calibration data in our estimation process,588

it is not surprising that σw1 can be estimated well, even in the presence of model-form589

errors. In addition the σw1 PDF peaks close to the nominal value, providing some degree of590

confidence in it. β2,r, the other parameter that we can estimate stably, was not found to be591

very influential in Ref. [93]. However, it also appears in the ω−equation (and only there)592

and is informed by the heat flux. The heat flux undergoes a large change when the flow593

transitions to turbulence and again at the junction of the cone and cylindrical mid-section594

(which contains an expansion fan), and these variations likely help constrain the PDFs of595

the parameters that are strongly informed by the heat flux. The model-form errors in these596

regions are much smaller than those observed near the separation zone, which allows the597

PDFs for σw1 and β2,r to emerge from the data, clearly distinguished from the prior.598

The sharpness of the PDFs for the SST parameters could perhaps be improved by re-599

moving some of the hard-to-estimate SST parameters (i.e., the ones whose posterior and600

prior PDFs do not differ significantly). Such an exercise is left for future work, but it601

would, undoubtedly, require the use of surrogate models (Sec. 4) to perform global sensi-602

tivity analysis (GSA) to choose the influential subset of SST parameters. Fig. 16 in the603

Appendix C shows, via pair plots, that the SST parameters are not very correlated in the604

12-dimensional JPDF, indicating that the removal of less influential SST parameters will605

not adversely affect the performance of the calibrated SST model.10606

Fig. 10 and Fig. 11 show the effect of model-form errors in the SST model which prevent607

it from modeling the separation zone accurately. The net effect of calibration is to improve608

the prediction of pressure and heat flux in the separation zone while degrading it elsewhere.609

The large number of measurements in the separation zone also contributed to the outsized610

importance of this zone during calibration. It may be possible to obtain an arguably better611

SST model by removing all measurements from the separation zone i.e. r ' 1.5. While such612

a model would not be very predictive in the separation zone, it would be highly accurate613

over the cone and the cylindrical sections 0.4 / r / 1.5 which accounts for a large fraction of614

the heating of the HIFiRE-1 geometry. The poor agreement of RANS versus experiments,615

even after calibration, in the separation zone (1.4 ≤ r ≤ 1.7) is expected. RANS’s model-616

form errors do not allow it to model separation zone well, and the calibration resulted in617

predictions marginally better than the nominal model. However, the MCMC calibration618

yielded signatures (parameter PDFs peaked at the lower or upper bounds) that allow us619

to diagnose the data - model disagreement as model-form errors, rather than an issue that620

could be ameliorated with more sensors or an error model more sophisticated than the621

Gaussian used in this paper.622

Note that in this study we have not used the enthalpy of the incoming flow and its static623

pressure, both of which were measured in the HIFiRE-1 experiment. This is because they624

only help with estimation of the freestream quantities and carry no information at all about625

the turbulence model.626

The preceding paragraphs reveal some very useful and practical information about hy-627

personic turbulence and shock-tunnel experiments. The freestream uncertainties in the628

HIFiRE-1 experiment were inconsequential to the turbulence model calibration. The infor-629

mation content in the heat flux and pressure measurements on the HIFiRE-1 geometry is630

10The ability to easily perform sensitivity analysis using Sobol indices is another motivation for using
PCEs, from which Sobol indices can be easily extracted due to their orthogonal basis representation.
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limited and informs only a few turbulence model parameters. However, it is the RANS’s631

model-form uncertainties that are the calibration bottleneck. These findings do not exist632

in fluid dynamics literature for realistic hypersonic flows in engineering geometries, and633

were made possible only by our ability to construct surrogate models of fields encountered634

in hypersonic turbulent flows and use them within a Bayesian inference framework. The635

closest equivalent to our work is Ref. [75] which targets a Mach 6.1 hypersonic turbulent636

flow over a flat plate.637

7 Summary and conclusions638

In this paper we formulated a surrogate which combines projection-based model reduc-639

tion techniques with machine learning regressors for the prediction of scalar-valued fields.640

We used principal component analysis to perform the dimension reduction and then ex-641

plored a variety of different machine learning regressors to fit the projection coefficients of642

the learned components. We experimented with Gaussian process regression, polynomial643

chaos expansions, random forests, kernel ridge regression, support vector machines, and644

multi-layer perceptron models. In order to tune each scalar regressor over a given set of645

hyperparameters and perform model selection, k-fold cross validation was used. Ultimately,646

for the final surrogate, a multivariate polynomial representation, i.e., a polynomial chaos647

expansion with multivariate Legendre polynomials, was chosen to fit our reduced space pro-648

jection coefficients. The ML experiments showed that polynomials provided the greatest649

amount of expressivity and accuracy, while being the easiest and simplest to train. They650

also provided the most consistent answers (e.g., without dependence on say random seeds651

like MLPs) which is critical for reproducibility. We demonstrated the efficacy and accuracy652

of these surrogates for predicting the heat flux and pressure fields on the surface of the653

HIFiRE geometry in a Mach 7.16 turbulent flow using m = 2500 simulation runs. The sur-654

rogate was then used in a first-ever Bayesian calibration of the HIFiRE experiment, using655

an adaptive MCMC method to construct a joint density. The posterior predictive samples656

from the JPDF matched the experiment data better than the prior predictive samples for657

both heat flux and the pressure fields in terms of both the CRPS (continuous rank probabil-658

ity score) and MAE (mean absolute error), thus resulting in an improved predictive model659

and reduced mismatch between prediction and experimental data.660

The Bayesian calibration of the SST model parameters was also able to construct poste-661

rior PDFs, compare them with the prior and discern which SST model parameters could be662

estimated well from the heat flux and pressure measurements. We discovered that the range663

over which the freestream quantities were controlled in the LENS-I shock-tunnel during the664

HIFiRE-1 experiment was sufficiently narrow that the uncertainty did not impact the tur-665

bulence model estimation problem. The limiting factor was the model-form error in the666

RANS model which made it infeasible to capture the separation zone at the extreme aft of667

the test geometry. Further improvement in the calibrated model may be had by performing668

a GSA to pick the most sensitive SST model parameters and calibrating them to the same669

dataset. These findings are novel and were made possible by the numerical and statistical670

tools developed in this paper. In addition, the same tools can be used to perform the GSA.671

Last, but not least, we have provided software, tesuract (Tensor Surrogate Automation672

and Computation), to build the types of surrogates used in this paper. tesuract is built on673
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top of the scikit-learn API [85] and utilizes scikit-learn’s vast library of machine learning674

estimators, model selection techniques, and dimension reduction methods in a unique ML675

pipeline which allows the construction of surrogates for both single target scalar outputs676

and scalar-valued fields (i.e., multi-target correlated outputs). This allows flexibility, utility677

and easy-of-use for many applications related to surrogate construction. This software is678

freely available on github (https://github.com/kennychowdhary/tesuract).679
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A Grid resolution studies for HIFiRE-1688

A solution verification study was performed for HIFiRE-1 at the flow conditions used in689

this paper. Three axisymmetric structured meshes were made, with 256× 512, 512× 1024,690

and 1024× 2048 cells in the wall normal × streamwise directions. The coarser meshes691

were constructed from the finer by removing every other mesh node, preserving regular692

refinement. The solution verification procedure produces numerical error estimates for the693

heat flux and the pressure on the wall at locations where the corresponding experimental694

diagnostics were installed. The solution values on each mesh are interpolated to these695

locations, and an extrapolated value at each location is computed from the well-known696

order-of-accuracy equation. Second order accuracy is assumed, which holds except possibly697

for isolated locations. Fig. 14 (top) shows the heat flux for the solutions on the three698

meshes as lines and the extrapolated solution at points. We see that in the transition699

region (Fig. 14 (top left)) the solutions from the 3 meshes are visually indistinguishable,700

but the extrapolated heat fluxes (under a second order assumption) do not agree with any701

of the numerical solutions. In the aft region (Fig. 14 (top right)) a similar issue is seen702

near the separation region abutting the flare. Elsewhere, the numerical simulations on the703

three meshes and the extrapolated values are visually indistinguishable. Recall that the704

heat flux on the flare is highly sensitive to the separation bubble size and the consequent705

shock structure. Fig. 14 (bottom) presents corresponding pressure data. Again, the only706

visible differences are on the flare, for the same reasons as for the heat flux. Since the707

extrapolated values from the 256× 512 and 512× 1024 meshes agree with what is achieved708

on the 1024× 2048 mesh, we see that SPARC is largely achieving second-order behavior.709
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Figure 14: Top: Heat flux profiles computed on 256× 512, 512× 1024 and 1024× 2048
meshes. The symbols are values of heat flux at the sensor locations, extrapolated from
256× 512 and 512× 1024, meshes to the 1024× 2048 mesh, assuming second-order accu-
racy. The left figure shows the results upstream of the separation point while the right figure
shows results downstream of separation. Bottom: The same, but done for the pressure field.

B Final ROM machine learning models710

Here we discuss the hyper-parameter tuning procedure and the final ROM-based model711

architectures for both heat flux and pressure fields. Recall that we have chosen four PCA712

components for our reduced order model. The corresponding projection coefficients associ-713

ated for each of the four components is then fit with six different machine learning regressor714

models, and each of these regressors is hyper-parameter tuned over a set of possible parame-715

ter combinations. These parameter combinations are listed below, of which more detail can716

be found in the documentation of our surrogate construction software tesuract and sklearn’s717

website. A 5-fold cross validation score was computed for every single combination of grid718

values.719

# polynomial chaos regressor720

pce_grid = {721

’order’: list(range(1,11)),722
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’mindex_type’: [’total_order’,’hyperbolic’],723

’fit_type’: [’LassoCV’,’ElasticNetCV’,’linear’]}724

725

# random forest regressor726

rf_grid = {727

’n_estimators’: [200,500,1000,5000],728

’max_features’: [3,’sqrt’,’auto’],729

’max_depth’: [5,10,50]}730

731

# multi-layer perceptron regressor732

mlp_grid = {733

’hidden_layer_sizes’: [(50,),(50,)*2,(50,)*4,(50,)*6734

(100,),(100,)*2,(100,)*4,(100,)*6735

(500,),(500,)*2,(500,)*4,(500,)*6],736

’solver’: [’lbfgs’,’adam’,’sgd’],737

’activation’: [’relu’],738

’max_iter’: [2500],739

’batch_size’: [’auto’],740

’learning_rate’: [’invscaling’],741

’alpha’: [1e-4,1e-6,1e-2],742

’tol’: [1e-6,1e-4],743

’random_state’: [0,99,324]}744

745

# kernel ridge regression regressor746

krr_grid = {747

’kernel’: [’polynomial’],748

’kernel_params’: [{’degree’:1},{’degree’:2},{’degree’:3},{’degree’:4}],749

’alpha’: [1e-4,1e-2,1e-1,1.0]}750

751

# gaussian process regressor752

gpr_grid = {753

’kernel’: [1.0 * RBF(.1) + .1**2 *WhiteKernel(.1),754

1.0 * RBF(.1) + .1**2 *WhiteKernel(.1) + 1.0*DotProduct(.1),755

1.0 * Matern(length_scale=.1, nu=1.5) + .1**2 *WhiteKernel(.1)],756

’alpha’: [1e-10],757

’optimizer’: [’fmin_l_bfgs_b’],758

’n_restarts_optimizer’: [2],759

’random_state’: [0]}760

761

# k-nearest neighbor regressor762

knn_grid = {763

’n_neighbors’: (1,5,8,10),764

’leaf_size’: (20,30,40,1),765

’p’: (1,2),766

’weights’: (’uniform’, ’distance’),767
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’metric’: (’minkowski’, ’chebyshev’)}768

769

# support vector machine regressor770

svr_grid = {771

’kernel’: (’linear’,’poly’, ’rbf’, ’sigmoid’),772

’degree’: (2,4,8),773

’gamma’: (’scale’,’auto’),774

’C’: (1,5,10)}775

To give an example, consider the the polynomial chaos regressor parameter grid above. A776

5-fold cross validation score was computed for each and every combination of the order,777

the polynomial total degree, mindx_type, which controls the number of interaction terms,778

and fit_type, the algorithm for solving the least squares problem. There are 60 parameter779

combinations and, thus, a total of 300 PCE fits were computed (five for each of the 60780

parameter combinations since we are using five-fold cross-validation) for each of the four781

components. This method was repeated for each of the regressors listed above in order782

to obtain the penultimate model for both heat flux and pressure fields. Thus, each model783

comparison involves hundreds or thousands of ML regression fits, all of which is handled784

neatly and efficiently within the tesuract and the sklearn framework so that the user does785

not need to bother with the cumbersome nesting and splitting of the test and train data.786

The PCE and MLP models had the highest cross-validation scores among the regressors.787

For heat flux, the PCE model with the highest cross-validation score had polynomial orders788

of degrees {2, 2, 4, 4} for each of the four components, and for pressure the PCE model with789

the highest cross-validation score had polynomial orders of {4, 4, 4, 4}. In contrast, the best790

MLP network for each projection coefficient had 4 hidden layers of 50 nodes each for both791

the pressure and heat flux fields. The network used rectified linear units for the activation792

functions, a tolerance of 10−6 for the LBFGS solver, and an inverse scaling for the learning793

rate, which gradually decreases as the time step progresses. The rest of the parameters794

were set to their default values [85].795

C Bayesian calibration results796

The adaptive MCMC algorithm described in Sec. 6 yielded a chain of that was thinned to797

reduce the autocorrelation in the sequence of samples. The autocorrelation vs lag time is798

plotted in Fig. 15. 11
799

The full JPDF, illustrated as a matrix of pair plots, is shown in Fig. 16. While Fig. 9800

shows the SST parameters that could be estimated from the HIFiRE-1 measurements,801

Fig. 16 shows the correlations that exist between the various SST parameters in the posterior802

JPDF. We see that the correlations are mild i.e., the structures in the 2D plots are mostly803

horizontally or vertically aligned. This is fortunate as it implies that the SST parameters804

that cannot be inferred well (i.e., where prior and posterior PDFs in Fig. 9 are similar) can805

11The aggressive thinning accounted for the variability in the autocorrelation amongst the different param-
eters and was chosen so that all twelve parameters has sufficiently converged according to the autocorrelation
lag plot in Fig. 15.
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Figure 15: Autocorrelation time for each of the twelve calibration parameters, including the
two noise parameters, η1, η2. The horizontal dotted line represents the amount by which
we thin the chain, giving us an effective sample size of roughly 24k samples in our twelve-
dimensional sample space (plus two noise parameters, i.e., Γ distributed random variables
η1 and η2 representing the inverse variance of the model discrepancy errors).

be simply removed to yield a smaller estimation problem without materially (negatively)806

impacting the accuracy of the SST turbulence model.807

The posterior predictive densities, computed by simulating the HIFiRE-1 experiments808

with x drawn from the posterior JPDF (as plotted in Fig. 16 and marginalized in Fig. 9)809

are plotted in Fig. 17 (heat flux) and Fig. 18 (pressure) in blue. The prior predictive are810

plotted in red. These predictive densities were used to compute the CRPS and MAE in811

Fig. 12 and Fig. 13. These plots are colloquially known as joy plots. The y-axis represents812

the locations of the observed data point and the x-axis represents the log values of the heat813

flux and/or pressure.814
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Figure 16: Corner (pair) plot for the posterior distribution over the twelve calibration or
tuning parameters. The maximum a posteriori estimate is displayed above the univariate
plots. Given that the priors are chosen to be uniform, all parameters are informed, to some
extent, from the observed data.
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Figure 17: Prior versus the posterior predictive distributions for log-scaled heat flux, de-
noted by log(q). r-axis is displayed on the vertical, the blue histogram represents the
posterior predictive, while the red shows the prior. The green dot shows the single observed
data.
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Figure 18: Prior versus the posterior predictive distributions for log-scaled pressure, denoted
by log(p). r-axis is displayed on the vertical, the blue histogram represents the posterior
predictive, while the red shows the prior. The green dot shows the single observed data.

33



References815

[1] Alizadeh, R., Allen, J. K., and Mistree, F., “Managing computational complexity using816

surrogate models: a critical review,” Research in Engineering Design, Vol. 31, 2020,817

pp. 275–298.818

[2] Yondo, R., Andrés, E., and Valero, E., “A review on design of experiments and surro-819

gate models in aircraft real-time and many-query aerodynamic analyses,” Progress in820

Aerospace Sciences, Vol. 96, 2018, pp. 23–61.821

[3] Sudret, B., Marelli, S., and Wiart, J., “Surrogate models for uncertainty quantifica-822

tion: An overview,” 2017 11th European Conference on Antennas and Propagation823

(EUCAP), 2017, pp. 793–797.824

[4] Asher, M. J., Croke, B. F. W., Jakeman, A. J., and Peeters, L. J. M., “A review of825

surrogate models and their application to groundwater modeling,” Water Resources826

Research, Vol. 51, No. 8, 2015, pp. 5957–5973.827

[5] Kou, J. and Zhang, W., “Data-driven modeling for unsteady aerodynamics and aeroe-828

lasticity,” Progress in Aerospace Sciences, Vol. 125, 2021, pp. 100725.829

[6] Swischuk, R., Mainini, L., Peherstorfer, B., and Willcox, K., “Projection-based model830

reduction: Formulations for physics-based machine learning,” Computers and Fluids,831

Vol. 179, 2019, pp. 704–717.832

[7] Wadhams, T. P., Mundy, E., MacLean, M. G., and Holden, M. S., “Ground test833

studies of the HIFiRE-1 transition experiment Part 1: Experimental results,” Journal834

of Spacecraft and Rockets, Vol. 45, No. 6, 2008, pp. 1134–1148.835

[8] MacLean, M., Wadhams, T., Holden, M., and Johnson, H., “Ground test studies of the836

HIFiRE-1 transition experiment Part 2: Computational analysis,” Journal of Space-837

craft and Rockets, Vol. 45, No. 6, 2008, pp. 1149–1164.838

[9] Wilcox, D. C., Turbulence Modeling for CFD , D C W Industries, La Canada, CA,839

USA, 3rd ed., 2006.840

[10] Menter, F. R., “Two-equation eddy-viscosity turbulence models for engineering appli-841

cations,” AIAA Journal , Vol. 32, No. 8, August 1994, pp. 1598–1605.842

[11] Guillas, S., Glover, N., and Malki-Epshtein, L., “Bayesian calibration of the constants843

of the k-ε turbulence model for a CFD model of street canyon flow,” Computer Methods844

in Applied Mechanics and Engineering , Vol. 279, 2014, pp. 536–553.845

[12] Ray, J., Dechant, L., Lefantzi, S., Ling, J., and Arunajatesan, S., “Robust Bayesian846

calibration of a k-ε model for compressible jet-in-crossflow simulations,” AIAA Journal ,847

Vol. 56, No. 12, 2018, pp. 4893–4909.848

[13] Zhang, J. and Fu, S., “An efficient approach for quantifying parameter uncertainty in849

the SST turbulence model,” Computers and Fluids, Vol. 181, 2019, pp. 173–187.850

34



[14] Viana, F. A. C. and Subramaniyan, A. K., “A Survey of Bayesian Calibration and851

Physics-informed Neural Networks in Scientific Modeling,” Archives of Computational852

Methods in Engineering , Vol. 28, 2021, pp. 3801–3830.853

[15] McPhee, J. and Yeh, W. W.-G., “Groundwater Management Using Model Reduction854

via Empirical Orthogonal Functions,” Journal of Water Resources Planning and Man-855

agement , Vol. 134, No. 2, 2008, pp. 161–170.856

[16] Dunbar, W. S. and Woodbury, A. D., “Application of the Lanczos Algorithm to the857

solution of the groundwater flow equation,” Water Resources Research, Vol. 25, No. 3,858

1989, pp. 551–558.859

[17] Woodbury, A. D., Dunbar, W. S., and Nour-Omid, B., “Application of the Arnoldi860

Algorithm to the solution of the advection-dispersion equation,” Water Resources Re-861

search, Vol. 26, No. 10, 1990, pp. 2579–2590.862

[18] Willcox, K. and Megretski, A., “Fourier Series for Accurate, Stable, Reduced-Order863

Models in Large-Scale Linear Applications,” SIAM Journal on Scientific Computing ,864

Vol. 26, No. 3, 2005, pp. 944–962.865

[19] Gugercin, S. and Willcox, K., “Krylov projection framework for Fourier model reduc-866

tion,” Automatica, Vol. 44, No. 1, 2008, pp. 209–215.867

[20] Ly, H. V. and Tran, H. T., “Modeling and control of physical processes using proper868

orthogonal decomposition,” Mathematical and computer modelling , Vol. 33, No. 1-3,869

2001, pp. 223–236.870

[21] Higdon, D., Gattiker, J., Williams, B., and Rightley, M., “Computer model calibra-871

tion using high-dimensional output,” Journal of the American Statistical Association,872

Vol. 103, No. 482, 2008, pp. 570–583.873

[22] Audouze, C., De Vuyst, F., and Nair, P., “Reduced-order modeling of parameterized874

PDEs using time–space-parameter principal component analysis,” International jour-875

nal for numerical methods in engineering , Vol. 80, No. 8, 2009, pp. 1025–1057.876

[23] Audouze, C., De Vuyst, F., and Nair, P. B., “Nonintrusive reduced-order modeling877

of parametrized time-dependent partial differential equations,” Numerical Methods for878

Partial Differential Equations, Vol. 29, No. 5, 2013, pp. 1587–1628.879

[24] Wirtz, D., Karajan, N., and Haasdonk, B., “Surrogate modeling of multiscale models880

using kernel methods,” International Journal for Numerical Methods in Engineering ,881

Vol. 101, No. 1, 2015, pp. 1–28.882

[25] Mainini, L. and Willcox, K., “Surrogate modeling approach to support real-time struc-883

tural assessment and decision making,” AIAA Journal , Vol. 53, No. 6, 2015, pp. 1612–884

1626.885

[26] Ulu, E., Zhang, R., and Kara, L. B., “A data-driven investigation and estimation886

of optimal topologies under variable loading configurations,” Computer Methods in887

35

https://www.sciencedirect.com/science/article/pii/S0895717700002405
https://www.sciencedirect.com/science/article/pii/S0895717700002405
https://www.sciencedirect.com/science/article/pii/S0895717700002405
https://www.tandfonline.com/doi/abs/10.1198/016214507000000888
https://www.tandfonline.com/doi/abs/10.1198/016214507000000888
https://www.tandfonline.com/doi/abs/10.1198/016214507000000888
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2540?casa_token=utLvPmeWZpYAAAAA:TvAmGXkwD8qasAD3t4LPLMczOioxEUyrmJTAl8dPyxaImjraSaEN10QbpUaZicaVcEiqQvRVN_b5cPhz
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2540?casa_token=utLvPmeWZpYAAAAA:TvAmGXkwD8qasAD3t4LPLMczOioxEUyrmJTAl8dPyxaImjraSaEN10QbpUaZicaVcEiqQvRVN_b5cPhz
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2540?casa_token=utLvPmeWZpYAAAAA:TvAmGXkwD8qasAD3t4LPLMczOioxEUyrmJTAl8dPyxaImjraSaEN10QbpUaZicaVcEiqQvRVN_b5cPhz
https://onlinelibrary.wiley.com/doi/full/10.1002/num.21768?casa_token=CTeWEmFKDB8AAAAA%3AbnTdsc6R8YyCWWS5RjX9F4W3Ujaae6xZAMCKO-_nbVWLGNWzjKvSx7BWWRH0u30dxARyhwdKgBVdhpxD
https://onlinelibrary.wiley.com/doi/full/10.1002/num.21768?casa_token=CTeWEmFKDB8AAAAA%3AbnTdsc6R8YyCWWS5RjX9F4W3Ujaae6xZAMCKO-_nbVWLGNWzjKvSx7BWWRH0u30dxARyhwdKgBVdhpxD
https://onlinelibrary.wiley.com/doi/full/10.1002/num.21768?casa_token=CTeWEmFKDB8AAAAA%3AbnTdsc6R8YyCWWS5RjX9F4W3Ujaae6xZAMCKO-_nbVWLGNWzjKvSx7BWWRH0u30dxARyhwdKgBVdhpxD
https://onlinelibrary.wiley.com/doi/full/10.1002/nme.4767?casa_token=jLXRM09Hm_0AAAAA%3AyZeLiasySg5KB1JrFr9J-4vZS75AFIlv84jIKWQwrB-lv0211qO0uMp4MH_wfAXivwHVqufFDrReSe9L
https://onlinelibrary.wiley.com/doi/full/10.1002/nme.4767?casa_token=jLXRM09Hm_0AAAAA%3AyZeLiasySg5KB1JrFr9J-4vZS75AFIlv84jIKWQwrB-lv0211qO0uMp4MH_wfAXivwHVqufFDrReSe9L
https://onlinelibrary.wiley.com/doi/full/10.1002/nme.4767?casa_token=jLXRM09Hm_0AAAAA%3AyZeLiasySg5KB1JrFr9J-4vZS75AFIlv84jIKWQwrB-lv0211qO0uMp4MH_wfAXivwHVqufFDrReSe9L
https://arc.aiaa.org/doi/full/10.2514/1.J053464?casa_token=4rfVZAXT1xsAAAAA%3Ap2JLNGcU8cDE0EGzzdTX_jVIbV1HuZ6HjL9hsL_ShaQEG9prLeMtIc6ImfIlryNfZiAYeYmKddQ
https://arc.aiaa.org/doi/full/10.2514/1.J053464?casa_token=4rfVZAXT1xsAAAAA%3Ap2JLNGcU8cDE0EGzzdTX_jVIbV1HuZ6HjL9hsL_ShaQEG9prLeMtIc6ImfIlryNfZiAYeYmKddQ
https://arc.aiaa.org/doi/full/10.2514/1.J053464?casa_token=4rfVZAXT1xsAAAAA%3Ap2JLNGcU8cDE0EGzzdTX_jVIbV1HuZ6HjL9hsL_ShaQEG9prLeMtIc6ImfIlryNfZiAYeYmKddQ
https://www.tandfonline.com/doi/abs/10.1080/21681163.2015.1030775
https://www.tandfonline.com/doi/abs/10.1080/21681163.2015.1030775
https://www.tandfonline.com/doi/abs/10.1080/21681163.2015.1030775


Biomechanics and Biomedical Engineering: Imaging & Visualization, Vol. 4, No. 2,888

2016, pp. 61–72.889

[27] Hesthaven, J. S. and Ubbiali, S., “Non-intrusive reduced order modeling of nonlinear890

problems using neural networks,” Journal of Computational Physics, Vol. 363, 2018,891

pp. 55–78.892

[28] Maulik, R., Mohan, A., Lusch, B., Madireddy, S., Balaprakash, P., and Livescu, D.,893

“Time-series learning of latent-space dynamics for reduced-order model closure,” Phys-894

ica D: Nonlinear Phenomena, Vol. 405, Apr 2020, pp. 132368.895

[29] Rahman, S. M., Pawar, S., San, O., Rasheed, A., and Iliescu, T., “Nonintrusive reduced896

order modeling framework for quasigeostrophic turbulence,” Phys. Rev. E , Vol. 100,897

Nov 2019, pp. 053306.898

[30] Wang, Z., Xiao, D., Fang, F., Govindan, R., Pain, C. C., and Guo, Y., “Model iden-899

tification of reduced order fluid dynamics systems using deep learning,” International900

Journal for Numerical Methods in Fluids, Vol. 86, 2018, pp. 255–268.901

[31] Mo, S., Zhu, Y., Zabaras, N., Shi, X., and Wu, J., “Deep Convolutional Encoder-902

Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Het-903

erogeneous Media,” Water Resources Research, Vol. 55, No. 1, 2019, pp. 703–728.904

[32] Lee, K. and Parish, E. J., “Parameterized neural ordinary differential equations: appli-905

cations to computational physics problems,” Proceedings of the Royal Society A: Math-906

ematical, Physical and Engineering Sciences, Vol. 477, No. 2253, 2021, pp. 20210162.907

[33] Chen, W., Hesthaven, J. S., Junqiang, B., Qiu, Y., Yang, Z., and Tihao, Y., “Greedy908

nonintrusive reduced order model for fluid dynamics,” AIAA Journal , Vol. 56, No. 12,909

2018, pp. 4927–4943.910

[34] Fang, J., Sun, G., Qiu, N., Kim, N. H., and Li, Q., “On design optimization for911

structural crashworthiness and its state of the art,” Structural and Multidisciplnary912

Optimization, Vol. 55, 2017, pp. 1091–1119.913

[35] Dey, S., Mukhopadhyay, T., and Adhikari, S., “Metamodel based high-fidelity stochas-914

tic analysis of composite laminates: A concise review with critical comparative assess-915

ment,” Composite Structures, Vol. 171, 2017, pp. 227–250.916

[36] Laurent, L., Riche, R. L., Soulier, B., and Boucard, P., “An Overview of Gradient-917

Enhanced Metamodels with Applications,” Archive of Computational Methods in En-918

gineering , Vol. 26, 2019, pp. 61–106.919

[37] Swischuk, R., Mainini, L., Peherstorfer, B., and Willcox, K., “Projection-based model920

reduction: Formulations for physics-based machine learning,” Computers & Fluids,921

Vol. 179, 2019, pp. 704–717.922

[38] Cao, C., Nie, C., Pan, S., Cai, J., and Qu, K., “A constrained reduced-order method for923

fast prediction of steady hypersonic flows,” Aerospace Science and Technology , Vol. 91,924

2019, pp. 679–690.925

36

https://www.sciencedirect.com/science/article/pii/S0021999118301190?casa_token=nO5FSa3zTzYAAAAA:pp5fTfDBEuPTxWqmAC0nchM7uGaPK4BwqtsJdXoaWjQe2q_WTQGGEUM5UZwaYaLS_r_hm19thwk
https://www.sciencedirect.com/science/article/pii/S0021999118301190?casa_token=nO5FSa3zTzYAAAAA:pp5fTfDBEuPTxWqmAC0nchM7uGaPK4BwqtsJdXoaWjQe2q_WTQGGEUM5UZwaYaLS_r_hm19thwk
https://www.sciencedirect.com/science/article/pii/S0021999118301190?casa_token=nO5FSa3zTzYAAAAA:pp5fTfDBEuPTxWqmAC0nchM7uGaPK4BwqtsJdXoaWjQe2q_WTQGGEUM5UZwaYaLS_r_hm19thwk
https://arc.aiaa.org/doi/full/10.2514/1.J056161?casa_token=kRQpoBgK6rwAAAAA%3AZTYrKpThZkF3hLENSWZ54VW-TYTB2MAMG4pmM4BILlM52oh-s7FnZY-6c970N3uMCEkEX9fVq5M
https://arc.aiaa.org/doi/full/10.2514/1.J056161?casa_token=kRQpoBgK6rwAAAAA%3AZTYrKpThZkF3hLENSWZ54VW-TYTB2MAMG4pmM4BILlM52oh-s7FnZY-6c970N3uMCEkEX9fVq5M
https://arc.aiaa.org/doi/full/10.2514/1.J056161?casa_token=kRQpoBgK6rwAAAAA%3AZTYrKpThZkF3hLENSWZ54VW-TYTB2MAMG4pmM4BILlM52oh-s7FnZY-6c970N3uMCEkEX9fVq5M
https://www.sciencedirect.com/science/article/pii/S0045793018304250
https://www.sciencedirect.com/science/article/pii/S0045793018304250
https://www.sciencedirect.com/science/article/pii/S0045793018304250


[39] Dreyer, E. R., Grier, B. J., McNamara, J. J., and Orr, B. C., “Rapid Steady-State926

Hypersonic Aerothermodynamic Loads Prediction Using Reduced Fidelity Models,”927

Journal of Aircraft , Vol. 58, No. 3, 2021, pp. 663–676.928

[40] Chen, X., Liu, L., Long, T., and Yue, Z., “A reduced order aerothermodynamic model-929

ing framework for hypersonic vehicles based on surrogate and POD,” Chinese Journal930

of Aeronautics, Vol. 28, No. 5, 2015, pp. 1328–1342.931

[41] Chen, X., Zuo, G., Shi, Y., and Liu, L., An Efficient Integrated Aerothermoelasticity932

Analysis System Based on Surrogate-based Reduced Order Modeling for Hypersonic933

Vehicles, 2017.934

[42] Chen, Z. and Zhao, Y., “Aerothermoelastic Analysis of a Hypersonic Vehicle Based935

on Thermal Modal Reconstruction,” International Journal of Aerospace Engineering ,936

Vol. 2019, 2019, Article ID 8384639.937

[43] Crowell, A. R. and McNamara, J. J., “Model Reduction of Computational Aerothermo-938

dynamics for Hypersonic Aerothermoelasticity,” AIAA Journal , Vol. 50, No. 1, 2012,939

pp. 74–84.940

[44] Xiaoxuan, Y., Jinglong, H., Bing, Z., and Haiwei, Y., “Model reduction of aerothermo-941

dynamic for hypersonic aerothermoelasticity based on POD and Chebyshev method,”942

Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace943

Engineering , Vol. 233, No. 10, 2019, pp. 3734–3748.944

[45] Zhang, K., Yao, J., He, Z., Xin, J., and Fan, J., “Probabilistic Transient Heat Conduc-945

tion Analysis Considering Uncertainties in Thermal Loads Using Surrogate Model,”946

Journal of Spacecraft and Rockets, Vol. 58, No. 4, 2021, pp. 1030–1042.947

[46] Vollant, A., Balarac, G., and Corre, C., “Subgrid-scale scalar flux modelling based on948

optimal estimation theory and machine-learning procedures,” Journal of Turbulence,949

Vol. 18, No. 9, 2017, pp. 854–878.950

[47] Matai, R. and Durbin, P., “Large-eddy simulation of turbulent flow over a parametric951

set of bumps,” Journal of Fluid Mechanics, Vol. 866, 2019, pp. 503–525.952

[48] Duraisamy, K., Iaccarino, G., and Xiao, H., “Turbulence Modeling in the Age of Data,”953

Annual Review of Fluid Mechanics, Vol. 51, No. 1, 2019, pp. 357–377.954

[49] Xiao, H. and Cinnella, P., “Quantification of model uncertainty in RANS simulations:955

A review,” Progress in Aerospace Sciences, Vol. 108, 2019, pp. 1–31.956

[50] Zhang, X., Wu, J., Coutier-Delgosha, O., and Xiao, H., “Recent progress in augmenting957

turbulence models with physics-informed machine learning,” Journal of Hydrodynam-958

ics, Vol. 31, 2019, pp. 1153–1158.959

[51] Ling, J., Kurzawski, A., and Templeton, J., “Reynolds-averaged turbulence modelling960

using deep neural networks with embedded invariance,” Journal of Fluid Mechanics,961

Vol. 807, 2016, pp. 155–166.962

37



[52] Zhang, Y., Dwight, R. P., Schmelzer, M., Gómez, J. F., hua Han, Z., and Hickel,963
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