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ABSTRACT 

Data-driven turbulence models have been created for a k-ε RANS model based on PIV data in a jet in crossflow.  In 
the simpler of two implementations, the nominal value of the model coefficient Cµ was replaced with an optimized 
value calibrated to the PIV results.  Despite being based on only four flow cases of a canonical configuration, the 
optimized model demonstrated superior performance over 48 flow cases of increasing complexity.  A second, more 
sophisticated data-driven model has been created by mapping a spatially variable Cµ to flow state variables using 
machine learning of experimentally measured flow field properties of the turbulence.  This second model has been 
implemented in a production RANS code but requires further improvements before it can return results deviating 
from either the nominal or calibrated Cµ models. 
 

 

1. Introduction 

Most practical Computational Fluid Dynamics (CFD) simulations continue to rely on Reynolds-Averaged 

Navier Stokes (RANS) approaches, including the jet interaction applications upon which the present effort 

is focused.  Although Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) produce greatly 

superior results in terms of accuracy (e.g., [1]), RANS remains the predominant means of providing 

engineering predictions for the simple reason that it is much less computationally expensive.  For 

engineering campaigns that may require simulation of scores or even hundreds of cases, no alternative to 

RANS is presently feasible.  Even as hybrid RANS/LES methods mature, turbulence closure models remain 

an inherent component of the simulation. 

One of the most utilized RANS turbulence models is the k-ε model, which introduces coupled conservation 

equations for the turbulent kinetic energy (k) and the dissipation rate (ε) of that energy [2, 3].  This model 
then uses the turbulent-viscosity hypothesis to approximate the unresolved Reynolds stresses (𝑢!"𝑢#") using 

the mean rate-of-strain tensor via the Boussinesq approximation.  This typically takes a linear form as 

 2𝜈$𝑆!# = −𝑢ʹ!𝑢 #́ +
%
&
𝑘𝛿!#  (1) 
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where the overbars represent Reynolds averages, νt is the scalar eddy viscosity, 𝑆!# =
'
%
,()!
(*"
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-	is the 

mean rate-of-strain tensor, and δij is the Kronecker delta, though non-linear models have also been 

proposed and used (e.g., [4]).  One of the primary parameters in any k-based RANS model, including k-ε, is 

the model coefficient Cµ, which is used to define the eddy viscosity based on k and ε as 

 𝜈$ =
+#,$

-
 (2) 

This relationship is a key link between the evolution of the turbulent kinetic energy and the conservation 

equations for momentum and energy, and thus the specification of Cµ is pivotal in the fidelity and 

robustness of any RANS simulation.  The value of Cµ and the other coefficients of the k-ε model ordinarily 

are presumed to be universal for a wide variety of canonical flows. 

It may be recognized that all the terms to determine the eddy viscosity in Eqs. (1) and (2) are, in principle, 

accessible via modern PIV technology, and in fact eddy viscosity has been measured experimentally [5-8].  

The dissipation rate, ε, is more challenging to estimate given that it occurs at small scales that may lie below 

the spatial resolution of PIV, but nonetheless several methods have successfully estimated values of ε (e.g., 

[9-12]).  Therefore, a well-crafted PIV experiment can measure the properties that underlie turbulence 

models for at least a portion of the flow field, and thereby produce means of adjusting the value of Cµ or 

other modeling parameters to potentially improve performance in a selection of flows. 

Meanwhile, the advancement of PIV capability, especially volumetric measurements, has leveraged fluid 

dynamics governing equations and numerical methods at the heart of CFD, an approach typically labelled 

as data assimilation.  The rich data fidelity of time-resolved PIV in concert with volumetric methods, usually 

Lagrangian Particle Tracking (LPT), provides higher-fidelity velocity fields determined using fits to governing 

equations such that the results must reflect what is physically permitted.  Moreover, the pressure field is 

determined through solution of the momentum equation as an inherent part of solving for the flow field 

that best fits the measured velocity data.  Such methods were initiated from the seminal vortex-in-cell (VIC) 

technique based on a vorticity transport equation [13], expanded to include minimizing material derivative 

disparities in VIC+ [14] or additional continuity constraints in VIC# [15].  The related code FlowFit, tailored 

to LPT volumetric methods, minimizes incompressible velocity field divergence in both space and time to 

obtain reconstructions of the velocity and pressure fields onto regular grids [16, 17]. 

These data assimilation methods as applied to PIV greatly boost the fidelity of the information returned, 

but they suffer from a fundamental restriction: they apply only to the test case measured.  They cannot 

return data predictive of the flow as governing parameters or geometries are altered.  In contrast, RANS 

models offer a generalized predictive capability for a class of flows – but they suffer from the well-known 
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accuracy limitations inherent in turbulence closure models. 

Can the performance of RANS models be improved through use of PIV for determination of the turbulence 

model parameters based on the real physics of an experiment?  The present insights suggest that PIV data 

may be used to determine the eddy viscosity and the dissipation rate and thus also Cµ.  This maintains the 

architecture of existing RANS closure models, thereby expanding their functionality to data-driven models 

without necessitating creation of a new computational structure.  With Cµ calculated directly from relevant 

experimental data, RANS models developed on simpler canonical flows may be adapted to offer improved 

predictive accuracy on a targeted class of flows. 

2. Previous PIV Experiments 

The PIV data are of a jet-in-crossflow configuration which has been studied and reported on for many years 

[18-21] and is depicted in Fig. 1.  The reader is referred to the cited works for finer details on the 

experiments while only a brief synopsis is presented here. 

Experiments were conducted in a Mach 0.8 flow through the 305 × 305 mm test section of Sandia National 

Laboratories’ Trisonic Wind Tunnel (TWT).  A supersonic jet was exhausted transversely into the flow from 

a Mach 3.73 nozzle positioned upstream of the region from which data were collected and mounted into 

one wall of the tunnel’s test section. The conical nozzle was designed with an expansion half-angle of 15° 

with an exit diameter of 9.53 mm. The ratio of the dynamic pressure of the jet to that of the freestream 

Fig. 1  Mean streamwise velocity data collected via PIV downstream of the jet nozzle from the 

experimental campaigns described in Beresh et al [20, 21]. Previously published in Ray et al [24]. 
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was nominally J = 10.2 but varied as a test parameter.  The freestream Reynolds number based on the jet 

exit diameter was 2×105. 

Stereoscopic PIV data were collected on two orthogonal planes downstream of the jet nozzle.  The first 

plane was the wall-normal x-y plane oriented along the jet centerline (z = 0), perpendicular to the wall.  The 

second plane was a y-z plane oriented orthogonally to the freestream, positioned downwind of the nozzle 

at x = 219 mm in one experiment and x = 321 mm in another. 

The PIV data were processed using LaVision’s DaVis v8.4.  A total of 1500 vector fields were acquired for 

the x-y plane, while 9600 independent fields were used for the y-z plane.  Optimal PIV image interrogation 

techniques were necessary to determine eddy viscosity and dissipation rates with sufficient precision, 

which are detailed in Beresh et al [22] and Miller and Beresh [23]. 

3. Calibrated RANS Model  

Due to the complex flow topology of a turbulent jet in crossflow, RANS models built upon simpler canonical 

flows have struggled to quantitatively reproduce experimental measurements of the richer physics of the 

jet in crossflow.  The most straightforward approach to incorporating PIV data into a RANS model is to 

recast the value of Cµ from its nominal value of 0.09 to create better performance for this targeted class of 

flows.  With this in mind, Ray et al [24] used data from four cases of the transonic jet-in-crossflow 

experiment studied here, along with a Bayesian optimization, to determine refined values for the k-ε model 

coefficients that better aligned the primary vortex pair in the CFD results to that measured in the PIV.  The 

improvement in the induced vortical velocity along the centerline of the interaction is evident in Fig. 2.  

This was made possible by use of a specific value for Cµ of 0.1025 rather than the broadly accepted 0.09.  

In a follow-up paper, Ray et al [25] applied the same calibration procedure to a wider range of experimental 

jet-in-crossflow data and again determined that a value of Cµ = 0.1025 was appropriate for these flows. 

Miller et al [26] examined the performance of the calibrated RANS model over a much larger parameter 

space.  A total of 48 test cases from various Beresh et al publications were tested, involving a variety of jet 

interaction strengths, nozzle inclinations, and measurement stations.  A flight vehicle configuration 

incorporating spin rockets was included as well.  Figure 3 shows an example of the results, here for a metric 

of the mean-squared error of the simulation with respect to the PIV velocity field, which is essentially an 

overall picture of the agreement of the RANS computation and the PIV.  Nearly every case shows a dramatic 

reduction in the error when using the optimal calibrated model (Copt) as opposed to the nominal model 

(Cnom).  Five additional metrics were considered in Miller et al and all but one showed similarly strong 

improvement. 
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Remarkably, this recalibration of Cµ based on only four cases of a transverse jet yielded accuracy 

improvements in nearly every case among the 48.  Even simulations of a flight vehicle configuration with 

substantial complexity beyond the canonical jet-in-crossflow improved markedly in its comparison to PIV 

data [27] (the pink five-pointed stars in the figure). 

These efforts demonstrate that if a universal value for Cµ exists and is applicable for this jet-in-crossflow 

interaction, small changes in its value produce large variation in the behavior of the simulations, and that 

the resulting improvements are sufficiently robust to aid cases well beyond the canonical geometries from 

which it was calibrated. This indicates that a concerted effort to refine the value of Cµ may pay great 

dividends.  The Ray et al approach to recalibrating Cµ merely uses the mean velocity field from PIV.  But of 

course modern PIV techniques are capable of delivering much higher fidelity data, and therefore more 

sophisticated approaches may be considered. 

Fig. 2  Centerline velocity induced by the vortex 

pair in a jet-in-crossflow for a standard k-ε model 

with Cµ of 0.09, a calibrated k-ε model with Cµ of 

0.1025, and the matching PIV data. Ray et al [24]. 

Fig. 3  Mean-square error (MSE) of 48 test cases compared to the 

PIV, with the standard k-ε model (Cnom) and the calibrated k-ε 

model (Copt). Mean velocity and vorticity both are tested.  Miller 

et al [26]. 
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4. Variable Cµ RANS Model 

A more sophisticated approach to determining Cµ is possible using the spatial fidelity of PIV.  If all the values 

in Eqns. (1) and (2) are available from the PIV, Cµ may be calculated directly from the PIV data.  In this 

manner, Cµ can be optimized locally in a flow rather than just an optimal constant throughout the flow as 

in the calibrated model of Section 3. 

The details of this approach are lengthy and provided in Miller and Beresh [23], but they are briefly 

described here.  The stereoscopic planar PIV data provided all six unique components of the Reynolds stress 

tensor and thus all components of the anisotropy tensor (right side of Eq. 1).  The data only provided three 

of the unique components of the mean rate-of-strain tensor (left side of Eq. 1) because out-of-plane 

gradients are not resolved by planar PIV.  The absent terms could be approximated by leveraging the 

orthogonal data planes as shown in Fig. 1 and employing reasonable assumptions such as divergence-free 

flow and negligible out-of-plane gradients along the centerline.  With all terms in Eq. (1) thusly present, the 

scalar eddy viscosity νt was found via a least-squares fit across all components of the tensors.  It is shown 

in Fig. 4 on both x-y and y-z planes. 

Direct calculation of Cµ also requires the determination of k and ε from the PIV data, as per Eq. (2).  The 

turbulent kinetic energy k was readily available from the Reynolds stress data and its determination did not 

require any complex methods.  It is given in Fig. 5.  The dissipation rate ε was estimated using its relationship 

to Kolmogorov’s similarity hypotheses and their application via the second-order longitudinal structure 

function [28].  These hypotheses can be simplified for application to a single axis in which the mean-square 

differences of velocities separated by a variable distance r along a coordinate axis are expected to vary as 

r2/3 when r is within the inertial subrange.  This relationship remains robust even when approaching the 

inertial subrange.  Conveniently for present purposes, the scaling parameter is a known constant multiplied 

with the dissipation rate ε.  This relationship has been exploited to calculate ε in a variety of applications 

(e.g. [29, 30]) and has been shown to be a stable and accurate way for estimating dissipation with 

stereoscopic PIV data [9].  The present ε fields are shown in Fig. 6. 

At this point, a variable Cµ is now available at all spatial locations at which PIV data were acquired.  However, 

simulation of an entire flow field requires Cµ at every point.  To bridge this gap, a functional mapping 

between Cµ and the flow state variables is achieved using deep neural networks to train the algorithm via 

machine learning based on the available PIV data.  The desired state variables that serve as model inputs 

are chosen from those identified by Pope [3] and include parameters such as mean strain rates and mean 

vorticity.  The desired output is the three-dimensional field of Cµ, which then provides the Reynolds stresses 

needed to close the Reynolds-averaged conservation equations at any point in the simulation 
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Fig. 5  The turbulent kinetic energy k calculated from PIV data; (a) y-z plane at x = 219 mm; (b) x-y plane at z=0. 

Fig. 6  The dissipation rate ε calculated from PIV data; (a) y-z plane at x = 219 mm; (b) x-y plane at z=0. 

Fig. 4  The eddy viscosityνt calculated from PIV data; (a) y-z plane at x = 219 mm; (b) x-y plane at z=0. 
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domain, not just those at PIV measurement locations.  These state variables all are found in the PIV data 

and span across all test cases and spatial locations, freeing the mapping from dependance on any one 

particular flow condition.  Once this mapping is complete, Cµ is obtainable over the entire computational 

domain, as shown in Fig. 7 for the case of a transverse jet.  Other flow configurations are derived similarly 

by training to the same underlying PIV data sets but the resulting algorithm adapts to the local flow 

behavior such as to map Cµ to each flow topology.  In this manner, a predictive capability may be generated 

that is generalized to jet interactions however they may be simulated rather than restricted to a single test 

case. 

The process of determining an appropriate Cµ field for an individualized flow simulation must be 

incorporated into the RANS computational code itself.  It is a substantial and specialized task to recraft a 

production k-ε simulation code to function with the present variable Cµ model, which is not described here.  

As this document is written, this task has been completed and verified and shown to yield a realistic jet-in-

crossflow flow field, as seen in Fig. 8.  However, early results demonstrate that the flow field simulated with 

the variable Cµ model is nearly identical to that produced by the original k-ε model without any Cµ 

modification, shown in Fig. 9.  This disappointing result has been traced to three challenges. 

The first challenge is that the PIV data comprises a limited portion of the simulation domain, and thus 

training data is not available for large portions of the domain containing important physics (e.g., the jet 

Fig. 7  Spatial mapping of the k-ε modeling parameter Cµ based on a machine-learned relationship 

to flow state variables trained from PIV data. 
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nozzle).  In these locations Cµ cannot be found reliably from the data and a default Cµ is employed to avoid 

excessive model extrapolation in unmeasured regions or those in which the calculation “blows up” due to 

small values of one parameter or another.  This default value, though predominantly in locations away from 

the core of the jet interaction, appears to wield a strong impact due to its prevalence throughout the 

computational domain.  Preliminary results suggest that if the default Cµ is altered from the nominal value 

of 0.09 to the calibrated value of 0.1025 (section 3), the simulated flow field instead closely resembles the 

flow field predicted by the calibrated model.  This supports the view that the choice of a default Cµ when a 

machine-learned value is unavailable tends to dominate the result. 

The second challenge is that the data-driven model is designed to optimally predict an intrinsic model 

parameter (Cµ) as opposed to an extrinsic output quantity-of-interest (e.g., velocity fields).  As a result, 

improved predictions for output quantities-of-interest rely on the assumption that the “truth” Cµ field 

computed from the PIV dataset will propagate through to improved quantity-of-interest predictions.  This 

is in direct contrast to most calibration approaches such as the earlier calibrated Cµ that was directly tuned 

to optimally predict the counter-rotating vortex-pair. 

Fig. 8  Demonstration of the variable Cµ model for a k-ε RANS simulation on a jet-in-crossflow case. 

Fig. 9  Counter-rotating vortex pair at x = 219 mm visualized via the streamwise velocity deficit; 

(left) variable Cµ model; (right) nominal k-ε model with canonical constant Cµ = 0.09. 
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The final challenge pertains to data consistency. In the present approach turbulent kinetic energy k and 

dissipation rate ε are used to non-dimensionalize input features to the data-driven model.  It is well 

appreciated, however, that the k and ε fields predicted by RANS models differ significantly from their truth 

values.  This inadequacy introduces a “data-inconsistency” to the formulation: the data-driven model is 

trained with “truth values” of k and ε as extracted from PIV, but then relies on RANS-generated values of 

these fields when deployed in the RANS code.  This inconsistency can result in erroneous predictions of Cµ 

that limit the accuracy of the model (see Section 5.4 of [31]). 

Novel techniques, including inverse modeling [32] and extrapolation detection [33, 34], are under 

development to address the above issues.  These techniques directly couple training the data-driven model 

to the underlying RANS solver and aim to robustly classify extrapolation of the model.  Thereby, more 

sensible choices of Cµ may be implemented beyond the limited bounds of the experimental data.  

Regardless, the preliminary results such as those displayed in Fig. 9 indicate that some additional digestion 

of the PIV data is required before it may be incorporated into an altered RANS model with improved 

predictive capacity. 

However the spatially variable Cµ model evolves, it represents a blending of CFD with modern experimental 

techniques to craft a more successful predictive capability.  This variable Cµ approach may be characterized 

as a data-driven turbulence model because the modeling constant Cµ has been reshaped as a spatially 

dependent variable determined by experimentally measured flow field properties.  It also may be viewed 

as a data assimilation technique, but unlike those that have become common for volumetric TR-PIV 

measurements, it yields a generalized model capable of making flow predictions as in the ordinary 

application of RANS, as opposed to only serving the test case actually measured.  

5. Conclusions and Future Work 

The present effort seeks to improve the predictive capability of RANS models by incorporating PIV data 

through the use of deep learning in data-driven models.  The key parameters in a k-ε turbulence model are 

the turbulent kinetic energy, the dissipation rate, and the eddy viscosity, all of which may be directly 

measured in a well-crafted PIV experiment.  These flow field measurements allow determination of the 

modeling constant Cµ in a spatially varying manner rather than assuming it a universal constant as in a 

nominal k-ε model.  This approach is anticipated to introduce improved physical fidelity into the RANS 

model for the class of flows that the training data represent, without requiring alteration to the existing 

RANS closure models or computational structure. 
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In a simple initial implementation, the nominal value of the model coefficient Cµ was replaced with an 

optimized value calibrated to the PIV results from only four flow cases of a configuration of a transverse jet 

exhausting from a flat plate at varied jet strength.  Yet the optimized model demonstrated superior 

performance over 48 flow cases of increasing complexity, including a flight vehicle configuration 

substantially different from the canonical training data. 

A second, more sophisticated data-driven model was created by mapping a spatially variable Cµ to flow 

state variables using machine learning of experimentally measured flow field properties of the turbulence.  

This permits local optimization of the model parameter rather than simply selecting an optimal constant 

throughout the flow field.  This second model has been implemented in a production RANS code and has 

been shown to return physically plausible results, but these predictions closely match the results from 

either the nominal or calibrated Cµ models depending upon how values of Cµ are extrapolated beyond the 

core of the flow where PIV measurements are available.  Continued development of the spatially variable 

Cµ model will incorporate more advanced deep learning techniques such as extrapolation detection and 

discrepancy models using a RANS feedback loop to more broadly estimate Cµ from the experimental 

training data.  Then, in the same manner that the calibrated Cµ model was validated against a suite of 48 

cases plus a flight vehicle configuration, the new variable Cµ model may be tested for its predictive capability 

of jet interactions.  Whereas data assimilation techniques that have become common for volumetric TR-

PIV measurements can improve the physical fidelity only of the test case actually measured, the approach 

under development here yields a generalized RANS model with improved physical fidelity that can be 

applied to predict any relevant flow case. 
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