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Researh Artile Statistisin MediineReeived XXXX(www.intersiene.wiley.om) DOI: 10.1002/sim.0000A Bayesian approah for estimatingbioterror attaks from patient dataJ. Ray1�, Y. M. Marzouk2, and H. N. Najm1Terrorist attaks using an aerosolized pathogen have gained redibility as a national seurity onern after the anthraxattaks of 2001. Inferring some important details of the attak quikly, for example, the number of people infeted, the timeof infetion, and a representative dose reeived an be ruial to planning a medial response. We use a Bayesian approah,based on a short time series of diagnosed patients, to estimate a joint probability density for these parameters. We �rsttest the formulation with idealized ases and then apply it to realisti senarios, inluding the Sverdlovsk anthrax outbreakof 1979. We also use simulated outbreaks to explore the impat of model error, as when the model used for generatingsimulated epidemi urves does not math the model subsequently used to haraterize the attak. We �nd that in allases exept for the smallest attaks (fewer than 100 infeted people), 3{5 days of data are suÆient to haraterize theoutbreak to a spei�ity that is useful for direting an emergeny response. Copyright  0000 John Wiley & Sons, Ltd.Keywords: Bayesian inferene; anthrax; Sverdlovsk outbreak; bioterrorism
1. IntrodutionThe anthrax attaks of 2001 [1℄ raised the redibility of aerosolized pathogens being used in a bioterror attak. Early warning, inthe form of an anomalous inrease in syndromes deteted by publi health monitoring networks [2℄ or alternatively via detetionof the aerosol by environmental sensors, holds the highest potential for reduing asualties. However, syndromi surveillane anonly provide heightened awareness; it results neither in de�nitive evidene of an attak nor in identi�ation of the pathogen.Further, environmental sensors may not always apture the introdution of an aerosolized pathogen into a population; examplesinlude small releases that do not travel far, oarse partiulate formulations that preipitate easily, and releases in areas whihare not well instrumented. In these ases, the �rst intimation of an attak (i.e., identi�ation of the pathogen, on�rmationthat the outbreak was not being aused by natural auses, et.) will follow the diagnosis of the �rst few patients, but by thenthe disease may have established itself in the population. Inferring more information about the release (heneforth referred toas the bioterror, or BT, attak) by omputing the number N of people infeted, the time � of infetion, and a representativedose D reeived by the infeted individuals has important rami�ations in planning a response, as undersored by the \Dark1 Sandia National Laboratories, PO Box 969, Livermore, CA, 94550-0969 2 Massahusetts Institute of Tehnology, 77 Massahusetts Avenue, Cambridge, MA02139-4307�Correspondene to: MS 9159, PO Box 969, Sandia National Laboratories, Livermore, CA, 94550-0969. Email: jairay�somnet.sandia.govContrat/grant sponsor: US Dept of EnergyStatist. Med. 0000, 00 2{30 Copyright  0000 John Wiley & Sons, Ltd.Prepared using simauth.ls [Version: 2009/09/02 v2.00℄



J. Ray et al Statistisin MediineWinter" exerise [3℄. The inferred harateristis an serve as initial onditions for ensembles of preditive epidemi simulationsthat guide the optimal alloation of medial resoures under unertainty.Inferring the harateristis of an outbreak an be hallenging. Data for inferene onsist of the time eah diagnosed patientbeame symptomati, known to within a �nite time interval, and perhaps the loation of eah patient's residene and plae ofwork. The time at whih eah patient's symptoms �rst appear is related to the genesis of the outbreak via the inubation period,typially modeled as a random variable whose probability distribution may be dependent on the dose reeived. For relevaneto response planning and onsequene management, inferenes should be drawn early in the outbreak|from a 3{5 day timeseries of patient data, for instane. We also note that the inubation period distribution used for inferene may be a poor modelfor the partiular instane of the disease. This mismath, and the pauity of data in a short observational period, suggest thatthe inferred harateristis will be rather approximate and that quantifying unertainty in the haraterization will be a keyrequirement of the inferene proess.Few studies have used statistial methods to haraterize the genesis of a partially observed epidemi arising from the releaseof an aerosol. Here, we use the term \haraterize" to denote estimating the number of index ases, the time of infetion and arepresentative dose (of the pathogen) reeived by the infeted people. Thus, it should not be interpreted as a full haraterizationof a bioattak whih would inlude, among other things, the extent of ontamination, the nature of the aerosol et. Our useof this term is onsistent with studies similar to ours e.g., [4, 5℄. Walden & Kaplan [6℄ introdued a Bayesian formulation forestimating the size and time of a bioterror attak and tested it on a low-dose (less than ID25, the dose at whih a person has a25% probability of inurring the disease) anthrax release orresponding, approximately, to the Sverdlovsk anthrax outbreak [7℄ of1979. Their formulation inorporated an inubation period model developed by Brookmeyer et al. [8℄ and demonstrated the use ofprior distributions on N to redue unertainty in the inferred harateristis. Brookmeyer & Blades [9℄ used a maximum likelihoodapproah, along with the anthrax inubation model in [8℄, to infer the size of the 2001 anthrax attaks [1℄ before estimatingthe redution in asualties due to the timely administration of antibiotis. Both [6℄ and [9℄ developed similar expressions for thelikelihood funtion, i.e., the probability of observing a patient time series given an attak at time � with N infeted people. Theinubation period model in [8℄ was not dose-dependent, and hene no doses were inferred in these two studies.Signi�antly more e�ort has been spent in haraterizing the inubation period of inhalational anthrax. Most work has beenexperimental, with non-human primates subjeted to anthrax hallenges [10, 11, 12, 13, 14, 15℄. Brookmeyer et al. [8℄, on theother hand, used data from the Sverdlovsk outbreak to �t a log-normal distribution of inubation periods valid at low doses; theirmore reent work, based on a ompeting risks formulation, inludes dose-dependene [16℄. Wilkening [17℄ ompares four dose-dependent models for the inubation period distribution, one of whih (termed Model D) is struturally idential to Brookmeyer's[16℄, with updated parameters. Compared to Model D, Wilkening's Model A2 provides slightly better agreement with the spatialand temporal distribution of anthrax ases observed in Sverdlovsk. Yet experimental results by Ivins et al. [14℄ and Brahmanet al. [15℄ show signi�ant departures from the results of both models, espeially in the 103{104 spore dose range (see Fig. 1).Thus both A2 and D must be onsidered approximate, though useful, preditive tools. In this study, we will explore the impatof model error by using Model D to simulate epidemi urves arising from BT attaks while using Model A2 for inferene. Amore detailed disussion of the anthrax inubation period models is provided in Setion 2.2.The issue of dose-response funtions|whether a person exposed to a number of spores will atually ontrat the disease|will not be addressed in this study. We onentrate on inferring the number of people who are atually infeted, not merelyexposed to the pathogen. The problem of estimating the probability of infetion from D spores was addressed by Brookmeyeret al. [16℄ as well as by Glassman [18℄ and Druett et al. [19℄. Haas [20℄ has established that exposure to low doses an still posea statistially signi�ant risk to large populations.The BARD [4℄ e�ort also seeks to identify (provide early warning of) a BT attak from the presentation of symptoms.The observables onsist of respiratory visits to emergeny departments, as might be obtainable from syndromi surveillanesystems suh as RODS [21℄. The model that relates these observables to the testing of ompeting hypotheses (normal morbidityversus a BT attak-generated spatiotemporal morbidity pattern) of the outbreak inludes a Gaussian dispersion plume [22℄ andWilkening's A2 model [17℄. However, BARD's use in an urban ontext is only approximate sine Gaussian plumes are suitedmainly for open spaes [22℄. In the tests doumented in [4℄, BARD ould detet anthrax attaks with 900 (or more) index asesStatist. Med. 0000, 00 2{30 Copyright  0000 John Wiley & Sons, Ltd. www.sim.org 3Prepared using simauth.ls



Statistisin Mediine J. Ray et alwith 100% sensitivity at a low false-alarm rate (FAR). Smaller attaks ould also be deteted but at a higher FAR. Note thatBARD uses syndromi surveillane data; i.e., ases must exhibit symptoms but do not have to be diagnosed with anthrax for theapproah to work. Further, detetion generally takes 3{5 days, post{release, during whih only a small fration of the index asesdevelop symptoms. Even in fast-ating, high-dose releases, BARD ould detet outbreaks with less than 15% of the infetedpeople showing symptoms. The paper by Legrand et al. [5℄ investigates simulated anthrax outbreaks with a view of inferring theloation and time of release and the quantity released. It was demonstrated that about 15 diagnosed patients were suÆient toinfer the harateristis of the release with enough auray to make an appreiable impat on a targeted prophylaxis ampaign.They also investigated the e�et of model unertainty, i.e., when the model used for inferene is at variane with the model usedfor generating the syntheti data. The e�et of a Gaussian plume model (versus a more sophistiated Gaussian pu� model) onthe auray of inferenes was also investigated.In this study, we develop a Bayesian formulation for inferring BT attak harateristis in the form of probability distributionsfor N, � , and D, using data from the �rst 3{5 days of an outbreak, ounted from the day of �rst diagnosis. Note that weinfer a single representative dose (of anthrax) for the entire infeted population, rather than a distribution (e.g., a mean and aninterquartile range). This is driven by the tests performed in [5℄ where an inferene approah based on a spatially variable doseperformed no better than an older, single-representative-dose version of the inferene tehnique presented in this paper. Theobservables onsist of the number of patients who show symptoms and are diagnosed by a ertain point in time. The approah isintended to be used within the ontext of medial resoure planning in the aftermath of a BT attak (see [23, 24℄ for examples).We therefore rely on simple temporal input data, reduing the omplexity of data olletion and the potential for signi�antobservational errors [5℄. All tests are performed with anthrax as the pathogen. Compared to [6℄ and [4℄, we introdue a newdegree of detail to outbreak data and its analysis. Unlike [6℄, we onsider dose-dependent inubation periods and populationsinfeted by a broad range of doses, ommensurate with atmospheri dispersion, and infer a representative dose for the population.Sine aerosol releases in on�ned spaes an lead to high doses (omparable to or greater than ID50), the inferred dose serves asa useful indiator of the indoor versus outdoor nature of the release. Model unertainty is examined here in order to assess howlarge an error one might enounter under realisti onditions. We also explore how the auray and unertainty of estimatesare a�eted by the size of the outbreak, the dose reeived, and the frequeny with whih patient data is olleted. Further, weidentify orrelations between the inferred parameters of the attak, demonstrating realisti ases in whih sare data mightsupport multiple haraterizations. These haraterizations were not explored in [6, 4℄. We then use our method to analyze theSverdlovsk outbreak of 1979 [7℄.2. The Inverse Problem2.1. FormulationWe now formulate a Bayesian parameter estimation problem for some of the harateristis of a BT attak. A detailed derivationan be found in [25℄; we reprodue a summary here.Consider a time series of infeted patients fti ; nig, i = 0 : : :M, where ni is the number of people developing symptoms inthe time interval (ti�1; ti ℄. For simpliity, we let the intervals be of uniform length �t = ti � ti�1. We will onsider two values of�t, 6 hours and 24 hours, to explore the impat of time resolution in the observations. At time t0 the �rst patient(s) beomesymptomati; given the �nite resolution of our time series, we allow that this patient may have developed symptoms anytimebetween t0 and t�1 = t0 � �t. M is the total length of the time series and is expeted to be small, e.g., 3{5 days. We seek aprobabilisti model for these observables, onditioned on an attak that infets N people at time � with a uniform dose of Dspores. By onvention, we set t0 to zero, and thus � , the time of infetion, is always negative.The dose-dependent inubation period is desribed by its umulative distribution funtion (CDF) C(T;D), where T , theinubation period, is the time elapsed sine infetion. The probability of an infeted individual developing symptoms in theinterval (ti�1; ti ℄ is thus fC(ti � �;D)� C(ti�1 � �;D)g. Let L =PMi=0 ni be the total number of people who have developed4 www.sim.org Copyright  0000 John Wiley & Sons, Ltd. Statist. Med. 0000, 00 2{30Prepared using simauth.ls



J. Ray et al Statistisin Mediinesymptoms by the end of the observation period tM . Then N � L infeted people are still asymptomati; the probability ofsomeone remaining asymptomati at tM is the survival probability, Psurv(tM � �;D) = 1� C(tM � �;D). Sine the inubationtimes of eah individual are onditionally independent given N, � , D and the disease model, the probability of the entire timeseries fti ; nig obeys a multinomial distribution with M + 2 outomes. One outome orresponds to remaining asymptomatiat tM ; the M + 1 others orrespond to developing symptoms in a preeding time interval. The resulting onditional probabilitydistribution is given by the following expression:P “fti ; nigMi=0jN; �;D”= N!(N � L)!QMi=0 ni ! � fPsurv(tM � �;D)gN�L� M
Yi=0 (C(ti � �;D)� C(ti�1 � �;D))ni� L (N; �;D) : (1)In the last line of this equation, we rewrite the probability of the observables as a likelihood funtion L(N; �;D). We then useBayes rule to obtain the posterior probability of the attak parameters:p “N; �; log10(D)jfti ; nigMi=0” / L(N; �;D)�N(N)�� (�)�D(log10(D)): (2)Note that we have written the posterior density in terms of log10(D) rather than D; this is in keeping with [18, 17, 26℄, whereresponse to infetion is generally modeled as a funtion of the log-dose. Here �N , �� , and �D are prior densities on N, � , andlog10(D). Presuming a lak of additional information (and without any reason to believe the ontrary), we use broad uniform priorson all three parameters. The joint posterior density an then be marginalized to obtain individual probability density funtions(PDFs) for N, � and log10(D). Integrals yielding these marginal densities are evaluated using the VEGAS algorithm [27℄, aniterative adaptive Monte Carlo method implemented in the GNU Sienti� Library [28℄.2.2. Anthrax inubation modelsThis setion briey reviews two mathematial models of the inubation period of inhalational anthrax. One of these models isused in the inferene proedure. The seond is used to simulate anthrax attaks in Se. 3.2 where we investigate the e�etof model unertainty, i.e., the unertainty in the inferene when the model used for inferene is an inexat representation ofthe proesses that generate the data. We also present a omparison of the models versus experimental results (mostly fromnon-human primates) to provide an estimate of the auray (and appliability to humans) of both the models. These modelsare from Wilkening [17℄; details of their derivation an be found in [17, 29℄. In both the models, the time of onset of symptomsin a person exposed instantaneously to D anthrax spores is onsidered to be a random variable, desribed by its umulativedistribution funtion (CDF).The CDF for Wilkening's Model D is given by [17, 29℄CModelD(T;D) = Z T0 F (T � s;D;�; �)g(s)ds; (3)whih is a onvolution of F (T ;D)|the probability that at least one spore out of a dose of D spores will germinate into avegetative anthrax ell by time t|and g(s), whih is the PDF of the time s taken, post-germination, to reah a baterial loadat whih symptoms appear. F and g are de�ned asF (T ;D;�; �) = 1p „1� exp„� D��+ �Q(T )«« ; whereQ(T ) = 1� exp (�(�+ �)T ) ; (4)Statist. Med. 0000, 00 2{30 Copyright  0000 John Wiley & Sons, Ltd. www.sim.org 5Prepared using simauth.ls



Statistisin Mediine J. Ray et alp = 1� exp„� D�� + �« (5)and g(s) = 1p2��ss exp„�12 log2(s=Ms)�2s « : (6)The probability of showing symptoms in in�nite time, denoted p, is also alled the attak rate. These distributions depend on anumber of parameters:� Nthresh, a threshold baterial load in a person that auses symptoms;� t2, the baterial load doubling time in a given medium (e.g., mediastinal lymph nodes where the spores germinate), whihan be obtained from in vitro laboratory experiments;� tM , whih is the time required to reah a baterial load of NthreshtM = tlag + t2log(2) NthreshD ;� tlag, a lag time in baterial growth experiments (typially 1 hour);� �2s , the variane of the log of the time required to reah the symptomati baterial load;� �, the probability rate of learane of a spore (by the immune system), spei�ed in terms of probability of learane perspore per day;� �, the probability rate of germination of a spore, spei�ed in terms of probability of germination per spore per day.In the present models, Ms , the median time to symptoms, is set to tM . The values of the parameters for Model D are� = 0:109 day�1, � = 8:79� 10�6 day�1, tlag = 1 hour, t2 = 2:07 hour, Nthresh = 109 and �s = 0:544 day�1.Sartwell [30℄ found that the inubation period for a number of diseases was log-normally distributed, whih is at odds withEq. 3. Wilkening's Model A2 aptures this alternative by assuming a log-normal distribution,CModelA2(T;D) = 12 »1 + erf „ ln(T=T0)p2S «– ; S = 0:804� 0:079 log10(D); (7)where T0, the median inubation time, is obtained by solving an integral equation derived from Eq. 30:5 = Z T00 F (T0 � s;D;�; �)g(s)ds:However, in solving for T0, Wilkening used a slightly di�erent set of parameters: � = 0:11 day�1, � = 8:84� 10�6 day�1,tlag = 1 hour, t2 = 2:06 hour, and �s = 0:542 day�1. The reason for the slight hange in parameters as well as the di�erenebetween Models A2 and D is disussed below.Parameters in Eqs. 3 and 7 were obtained by �tting the models to the median inubation periods observed in experiments withnon-human primates (performed by Henderson et al. [10℄ and Friedlander et al. [13℄) and to the data from the Sverdlovsk anthraxoutbreak. The average dose in the Sverdlovsk outbreak, however, had to be inferred from atmospheri dispersion models and theprobability of exhibiting symptoms (in in�nite time) given a dose of D spores. This is the proedure adopted by Wilkening [17℄.Using Glassman's model [18℄ for the probability of infetion, one obtains an average dose of 2.4 spores. Alternatively, if oneemploys Eq. 5 (whih is similar in form to Druett's [19℄ and was used by Brookmeyer in [16℄) one obtains a dose of 300 spores.Wilkening retained both possibilities and inorporated them into separate models. Model D is based on a dose of 300 spores atSverdlovsk while A2 assumes 2.4 spores.In Fig. 1, we plot the median inubation period predited by Models A2 and D as a funtion of dosage D. The dosage atSverdlovsk, estimated as 2.4 spores (represented by �) is used to alulate parameters for Model A2 (solid line); the alternativeestimate of 300 spores (represented by a �lled r) is used for Model D (dashed line). Studies by Henderson [10℄ with 2:1� 105,3:9� 105 and 7:6� 105 spores (represented as �lled �) and Friedlander with 3:5� 105 spores (represented by �lled 4) were6 www.sim.org Copyright  0000 John Wiley & Sons, Ltd. Statist. Med. 0000, 00 2{30Prepared using simauth.ls
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Figure 1. The median inubation period (in days) for anthrax as a funtion of dose D. The solid line is Model A2, whih assumes a dose of 2.4 spores atSverdlovsk; the dashed line is Model D, whih assumes 300 spores. The solid symbols are median inubation periods obtained from experimental investigationsor from Sverdlovsk data. The �lled irle (Sverdlovsk; Wilkening Model A) refers to both Models A1 and A2, though only Model A2 is used in the urrent study.Symbols whih are not �lled denote experiments where the population of primates was too small to draw statistially meaningful results. The experiments byBrahman et al. [15℄ are shown by vertial lines between symbols. In these experiments, only the lower and upper bounds of the inubation period were provided.These ranges were not used for determining model parameters and are only provided for referene.also used to alulate the parameters of both models. Studies by Ivins et al. [14℄ (un�lled 4) and Gleiser et al. [12℄ (un�lled 2)were onduted with very few primates and onsequently are plotted only for referene. Primate experiments by Brahman [15℄simulated the e�et of prolonged regular exposure to low doses, as might be the ase in a ontaminated wool-sorting mill. Theprimates experiened extended periods during whih they reeived no spores at all. The dose was de�ned as the total numberof spores inhaled and was generally low, between 1000 and 10,000 spores. We plot the resulting ranges of inubation periodsobserved at various dosages, also for referene.We see that the tests by Gleiser et al. and Ivins et al. agree with both models, whih in turn agree with eah other. However,signi�ant di�erenes arise when D <� 103 spores. (Note that the vertial axis is logarithmi.) Brahman's tests show medianinubation periods whih are at odds with the models' preditions; however the mode of infetion (a ontinuous low-level infetionproess spread over days or months) was very di�erent from the rapid (timesale of an hour) hallenge one would expet in a BTattak. Both models show a \kink" at D � 103; this is beause they are evaluated with a lower value of � (1:3� 10�6 day�1),orresponding to a primate ID50 of 55,000 spores, for omparison with primate results at the high dose limit, while the low dosepreditions were developed with a human ID50 of 8600 spores for omparison with Sverdlovsk data. To the best of the authors'Statist. Med. 0000, 00 2{30 Copyright  0000 John Wiley & Sons, Ltd. www.sim.org 7Prepared using simauth.ls



Statistisin Mediine J. Ray et alTable 1. Time series obtained from six di�erent outbreaks, simulated with the parameters fN; �;Dg as noted at the bottomof the table. The table has been divided into 24-hour setions, where the ni in eah setion are summed to produe the low-resolution time series (24-hour resolution) used to investigate the e�et of temporal resolution. Time is measured in days anddose in spores.Time is measured from the exhibition of �rst symptoms.time Simulation A Simulation B Simulation C Simulation D Simulation E Simulation F0.00 1 1 1 1 2 10.25 0 2 2 7 13 70.50 0 1 1 12 18 240.75 1 1 1 39 39 291.00 2 2 2 50 38 601.25 0 3 3 77 64 961.50 1 2 3 77 84 1531.75 2 1 1 98 116 1642.00 1 1 2 126 130 1932.25 1 1 2 162 137 2232.50 2 3 3 146 141 2582.75 3 1 4 148 160 3023.00 2 1 3 149 190 2993.25 1 3 3 163 175 3123.50 1 1 2 181 182 3043.75 1 1 3 162 201 3354.00 2 1 2 165 200 3734.25 1 5 5 177 238 3404.50 1 4 4 169 202 3274.75 3 2 2 217 216 3325.00 1 1 1 167 217 3505.25 1 3 4 182 237 3215.50 1 1 5 163 207 316N 100 100 100 10,000 10,000 10,000� -0.75 -2.25 -2.25 -0.5 -1.0 -1.25D 1 100 10,000 1 100 10,000knowledge, this is the sum total of experimental data obtained from anthrax hallenges of non-human primates where inubationtimes were measured. We have omitted a study by Klein et al. [31℄ in whih an inubation period inrease was observed withinreasing doses, beause only one primate was subjeted to eah dose, making the behavior statistially unreliable.2.3. Inferene of attak parameters with ideal asesIn this setion we test the Bayesian estimation proedure desribed above. We use Wilkening's Model A2, desribed in Se. 2.2,to simulate symptomati times for inhalational anthrax outbreaks of di�erent sizes. The same model is used for inferene;that is, there are no systemati errors between the inferene and data-generation models. Thus, posterior unertainties maybe asribed to (1) inomplete observation of the outbreak, spei�ally �nite time resolution �t and a short time series, and(2) the probabilisti harater of disease inubation. We investigate how the quality of the inferene varies with the size of theoutbreak and the dose reeived. We also investigate whether a higher-resolution time series spanning a given observation periodperforms signi�antly better than a lower-resolution one. Heneforth, per the derivation in Se. 2.1, time will be measured fromthe exhibition of �rst symptoms.In Table 1, we list time series at 6-hour resolution: the number of patients showing symptoms olleted over 6-hour intervalsobtained from 6 simulated outbreaks, heneforth alled Simulations A{F. Eah infeted patient reeived an idential dose D. Nindiates the number of people infeted and � is the time of attak, measured in days prior to the exhibition of symptoms in the�rst diagnosed patient.8 www.sim.org Copyright  0000 John Wiley & Sons, Ltd. Statist. Med. 0000, 00 2{30Prepared using simauth.ls



J. Ray et al Statistisin MediineWe use the proedure outlined in Se. 2.1 to develop posterior PDFs for N, � , and log10(D) in Simulations A{F. Figs. 2, 3,and 4 plot the resulting marginal densities for fN; �; log10(D)g. These are onditioned on the 6-hour resolution time series listedin Table 1. In Table 2, we summarize the maximum a posteriori (MAP) estimates and 90% posterior redibility intervals (CIs) forN, � , and log10(D) obtained with 5 days of data. We see that the marginal MAP estimate of N (the value of N orrespondingto the peak of p `Njfti ; nigMi=0´) is generally lose to the orret value after 5 days of data (see Table 2). Even with 3 daysof data, the PDFs in Figs. 2, 3, and 4 are quite informative. Inreasing the length of the observation period to 5 days usuallysharpens the PDF, reeting a redution in unertainty. This trend holds true for small attaks (N = 102) as well as for largeones (N = 104). An exeption is Simulation F, whih will be disussed below. The marginal MAP estimate of the time of attak� is also lose to the orret value, exept for the small-N low-dose Simulation A. Larger attaks (Simulations D, E, and F)have narrower PDFs for � ompared to Simulations A, B, and C. Higher values of ni in Eq. 1 (whih generally result from largeN attaks) provide struture in L and allow a more aurate estimation of the attak.The dose D is the most diÆult parameter to infer. PDFs for Simulations A, B and C in Figs. 2 and 3 show that it isvirtually impossible to estimate the dose for small (N = 102) attaks; appreiable posterior probability is spread over 5 ordersof magnitude. Table 2 on�rms that MAP estimates of the dose in these small attaks are inorret. Larger attaks (N = 104)yield more informative PDFs for D. Note that the sensitivity of C(T;D) to D is rather small for Model A2 (see the expressionfor S in Eq. 7), suggesting that dependene of the likelihood funtion on D will be weak unless ni or M is large.Simulations D, E, and F (Figs. 3 and 4) demonstrate how early observations of an outbreak may support multiple hypotheses,and at times favor a \wrong" hypothesis over the orret one. For instane, Simulation D exhibits peaks in p(N) at N � 4� 103and N � 104. Peaks in the PDF of log10(D) our at 1 spore and between 104 and 105 spores. For this simulation, both marginalPDFs overwhelmingly favor a large N, low-dose attak, whih is the orret haraterization. A similar ambiguity is observedin Simulation E. Marginal PDFs in Simulation F (Fig. 4) are muh more strongly bimodal, however. In Fig. 5 we plot the jointposterior density p(N; log10(D)) to examine orrelations among these parameters; it learly shows two distint islands|oneorresponding to a large-N low-dose attak, and the other orresponding to a small-N high-dose attak. Up to Day 5, the datafavor the wrong hypothesis (a larger, low-dose attak) over the orret one. Note also that the large low-dose attak orrespondsto larger (i.e., later) values of � , as evidened by the posterior density p(�) for Days 3{5 (Fig. 4, right olumn). With moredata (Day 6 and 7), the orret values for fN; �; log10(D)gare reovered, with peaks at N � 104, � � �1:2, and log10(D) � 4.However, suh a long observation period would not be relevant for onsequene planning purposes. We stress that a Bayesiananalysis is free to identify ompeting hypotheses, and that the degree of belief assigned to eah is determined by the data and theprior information. In a partially observed attak, the MAP estimate may be erroneous, espeially if data are sare. One possibleremedy is the use of informative priors for N, � , and/or log10(D) instead of the broad uniform priors used here. Otherwise,natural ambiguities may remain and should be aounted for in onsequene management plans based on these inferenes.Coarser time resolution (�t = 24 hours instead of 6 hours) was investigated in [29℄ and generally yielded only a mild degradationin the smoothness of the PDFs. In simulations where a multimodal PDF evolves into a unimodal PDF over time (e.g., SimulationsD, E, and F), evolution is more rapid when the observations are olleted in 6-hour intervals.To summarize, solution of the inferene problem suessfully provides N and � for small and large attaks. After 5 days ofobservations, the error in the MAP estimate for N (versus the true value) is less than 50% for small attaks (100 infetedpeople) and less than 5% for large attaks (10,000 infeted people). The same holds true for � , exept the errors are smallerthan for N. D an be estimated only for large attaks (errors less than about 25%). This may be due to the low sensitivity ofthe early symptomati patient stream to dose, an observation that was also made by Legrand et al. [5℄ where they haraterizedan anthrax BT attak with a low-dose inubation period model, without too muh error. Posterior PDFs are sharper for largeattaks and for high-dose attaks. Higher temporal resolution may smooth the PDFs slightly. When onditioning on a short timeseries, the Bayesian method may suggest multiple hypotheses, supported to di�ering degrees by the data. In some simulations,e.g., Simulation F, the data might initially support the wrong hypothesis, but the orret haraterization is reovered as moredata beome available.
Statist. Med. 0000, 00 2{30 Copyright  0000 John Wiley & Sons, Ltd. www.sim.org 9Prepared using simauth.ls
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Figure 3. Posterior PDFs for N (top), � (middle), and logD (bottom) based on the time series for Simulation C (left) and Simulation D (right), as tabulated inTable 1. Data are olleted at 6-hour intervals in both simulations. The orret values for fN; �; log10(D)gin Simulation C are f102;�2:25; 104g; in SimulationD they are f104;�0:05; 100g. In both simulations, PDFs are reported after 3-, 4- and 5-day observational periods (dotted, dashed, and solid lines respetively).Statist. Med. 0000, 00 2{30 Copyright  0000 John Wiley & Sons, Ltd. www.sim.org 11Prepared using simauth.ls
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J. Ray et al Statistisin MediineTable 2. Simulations A{F; MAP estimates and 90% redibility intervals (in parentheses) for N, � , and log10(D), onditioned onthe high-resolution time series at Day 5. The number in the urly brakets fg is the orret value.Simulation N � log10(D)A 70, (39.45 { 123.3) -1.75, (-2.90 { -1.04 ) 0.0, (0.18 { 4.12)f100g f�0:75g f0gB 110, (65.7 { 148.4) -2.0, (-3.1 { -1.33) 0.00, (0.14 { 3.97)f100g f�2:25g f2gC 150, (88.78 { 194.7) -1.75, (-2.85 { -1.22) 0.0, (0.153 { 4.13)f100g f�2:25g f4gD 9800, (9439 { 10,350) -0.50, (-0.85 { -0.44) 0.00, (0.024 { 1.03)f10;000g f�0:50g f0gE 10,200, (8396 { 10,890) -0.9, (-1.41 { -0.67) 1.75, (0.87{ 3.23)f10;000g f�1:00g f2gF 18,500, (10,500 { 19,290) -0.5, (-0.99 { -0.34) 0.75, (0.16 { 3.84)f10;000g f�1:25g f4g
3. Inferene of Attak Parameters Under Variable DosesIn this setion we ondut eight tests orresponding to more realisti onditions. In the �rst four (Simulations I, Ia, II, andIIa) we relax the assumption of a onstant dose D; instead, the infeted people reeive a range of doses ommensurate withatmospheri dispersion. However, the disease is still assumed to evolve per Wilkening's Model A2, with the same model providingC(T;D) to the inferene proedure. In the seond set of tests (Simulations III, IIIa, IV, and IVa), we retain distributed dosesand additionally relax the seond assumption: data are generated with Model D, while the inferene proedure still uses ModelA2 to evaluate the inubation period distribution. This mismath introdues a degree of realism into the inferene proess sinethe host-pathogen interation for humans and anthrax will seldom be haraterized aurately.In order to obtain a realisti distribution of doses in a geographially distributed population, we �rst simulate an explosivepoint release of spores at a height of 100 meters with a Gaussian plume model, thus exposing di�erent numbers of people tovarying doses as desribed in Appendix A. We see from Fig. 13 that given a quantity of spores, the number of people infeteddepends on the total population in the domain, the orientation of the plume, and the population distribution. A release doesnot lead to many infeted people if the high onentration isopleths of the plume miss the loalized regions of high populationdensity.The series of symptomati times arising from suh a simulated attak will reet the evolution of inhalational anthrax in aninfeted population that reeives a range of doses. These data will be \�t" using the model desribed in Se. 2.1, whih assumesa uniform dose for all infeted individuals. The uniform dose thus inferred is, in a sense, a representative dose for the entireinfeted population; however, it is not rigorously linked to the median or mean of the atual distribution of doses. To avoidonfusion, we therefore refer to the inferred (uniform) dose as the \representative" dose.Tables 3 and 4 list the time series obtained from all eight simulations. The time series have a resolution of 6 hours, withsuessive 24-hour intervals indiated in the tables. As noted in Appendix A, these simulations orrespond to two hoies ofpopulation size (pexposed = 103 for Simulations Ia, II, IIIa and IV; pexposed = 104 for Simulations I, IIa, III and IVa) ombinedwith two hoies of plume orientation (� = 170Æ for Simulations I, Ia, III and IIIa; � = 125Æ for Simulations II, IIa, IV andIVa). The latter orientation direts the plume over a more population-dense region. Tables 3 and 4 also report quantiles of theStatist. Med. 0000, 00 2{30 Copyright  0000 John Wiley & Sons, Ltd. www.sim.org 13Prepared using simauth.ls
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Figure 5. The joint probability density p(N; log10(D)) obtained after 5 days of data for Simulation F. We learly see a dual haraterization|a larger low-doseattak and a smaller high-dose attak.dose distribution D1; D25; D50; D75, and D99. That is, 1% of the population reeives a dose of D1 spores or less, 75% of thepopulation reeives less than D75 spores, and D99 is near the maximum dose. In Fig. 14 (Appendix A), we plot dose distributionsorresponding to the simulations listed in Tables 3 and 4. Note that while the doses may easily span two orders of magnitude,about 80% of the infeted people lie within a one-deade range of doses. The inferred representative dose D may reet thisrange, and thus for limited veri�ation purposes, we will ompare D to the atual median dose D50. Estimating a single D is,of ourse, a soure of model error, adding to the unertainty aused by inomplete observations and the inherent stohastiityof the data. This model error is not expeted to diminish with additional data, and one of the aims of this investigation is toquantify it.3.1. Inferene of attak parameters without inubation model mismathWe begin with results from Simulations Ia, I, II, and IIa|i.e., eliminating the assumption that eah infeted person reeives thesame dose of anthrax spores, but simulating and inferring disease progression with Wilkening's Model A2.Figs. 6, 7, 8, and 9 show posterior PDFs for fN; �; log10(D)g onditioned on the time series in Tables 3 and 4. Table 5 reportsthe MAP estimates and the 90% CIs for fN; �; log10(D)g after 5 days of data. Sine the true doses are distributed, we use thelog of the median dose, log10(D50), as a reasonable value for omparison to the posterior log10(D).First onsider Figs. 6 and 7, orresponding to Simulations Ia and I. These attaks have similar dose distributions but di�er byan order of magnitude in N. In both simulations, the MAP estimate of � nearly oinides with the true value after only 3 days14 www.sim.org Copyright  0000 John Wiley & Sons, Ltd. Statist. Med. 0000, 00 2{30Prepared using simauth.ls



J. Ray et al Statistisin MediineTable 3. Time series obtained from eight simulated outbreaks with variable doses. Simulations I, Ia, II, and IIa are simulatedusing Wilkening's Model A2, with the attak parameters|N, � , and the dose distribution|indiated at the bottom of the table.Simulations III, IIIa, IV and IV are simulated using Wilkening's Model D. �D is the average dose for the N infeted individuals. Thetable has been divided into 24-hour setions, where the values ni in eah setion an be summed to produe the low-resolutiontime series used to investigate the e�et of temporal resolution. The dose distribution is represented by its quantiles D1, D25,D50, D75, and D99; x% of the population reeives a dose of Dx or less. Table 4 ontinues the time series from Day 5 to Day 8.Time (days) Sim. Ia Sim. I Sim. II Sim. IIa Sim. IIIa Sim. III Sim. IV Sim. IVa0.0 1 3 2 5 1 1 1 30.25 2 3 2 8 1 8 5 140.50 0 6 1 8 0 20 6 360.75 4 12 5 27 1 16 13 811.00 1 14 7 46 3 9 12 771.25 2 26 12 57 2 18 14 941.50 2 28 9 85 2 28 13 1231.75 6 49 16 94 1 30 13 1322.0 6 57 9 133 2 37 17 1292.25 5 65 20 134 2 27 15 1592.50 7 68 12 139 4 41 17 1262.75 6 53 18 163 2 39 14 1493.0 11 80 15 138 3 34 9 1313.25 8 62 15 180 2 32 14 1293.50 9 89 21 140 3 25 16 1363.75 8 106 16 164 6 33 12 1004.00 17 70 20 180 4 27 14 1254.25 12 65 21 136 5 33 11 1044.50 9 87 8 147 3 33 6 1104.75 3 87 8 151 5 23 11 1065.0 6 76 7 127 6 23 15 90N 318 2989 454 4537 161 1453 453 4453� -1.5 -1.5 -1.5 -1.25 -0.75 -0.75 -0.75 -0.5�D 2912.8 2776.8 13,870.5 13,150.4 3603.5 3660.77 16,941 16,532D1 � 10�2 0:53 0:65 1:39 1:32 3:41 2:65 3:1 3:0D25 � 10�3 1:23 1:15 3:96 3:47 1:99 2:13 9:8 9:45D50 � 10�4 0:29 0:26 1:34 1:24 0:33 0:35 1:65 1:57D75 � 10�4 0:41 0:39 1:91 1:87 0:48 0:48 2:09 2:07D99 � 10�4 0:83 0:87 5:79 5:91 0:92 0:95 6:74 6:52of data. In Simulation Ia, the MAP estimate of N deviates from the true value by approximately 20%, but the 90% CIs braketthe orret N quite easily. In Simulation I, the PDF for N initially favors an inaurate haraterization (a peak at N � 4000)but by Day 5, assumes a bimodal shape with a peak lose to the orret haraterization. Dose is the most diÆult parameterto estimate in Simulation Ia|the marginal PDF of log10(D) remains rather broad at all times. In the larger-N Simulation I,however, the posterior on log10(D) at least indiates that the attak is not a low dose (i.e., D50 � ID25) event. Also in SimulationI, onditioning on the high resolution time-series provides more struture to the PDF; the posterior densities on log10(D) andeven on � are more prominently bimodal, indiating that inferene is inonlusive, and more observations will be required toobtain a unique haraterization. For referene, both Figs. 6 and 7 inlude a further set of PDFs onditioned on data throughDay 7; MAP estimates from these posteriors generally show even loser agreement with the true values of log10(D50) and N.Inferene is onsiderably less hallenging in Simulations II and IIa, orresponding to Figs. 8 and 9. Beause the doses arehigher (D50 > ID50), the variane of the inubation period distribution is smaller. The time of attak � is aptured with only 3days of data, as is a representative log10(D) for the large N attak (Simulation IIa). With 5 days of data, MAP estimates for Nare lose to the orret values in both simulations, as is the MAP estimate of log10D in Simulation II. Here, onditioning on thehigher-resolution time series yielded little gain over the lower-resolution time series. In Simulation II, MAP estimates of � basedStatist. Med. 0000, 00 2{30 Copyright  0000 John Wiley & Sons, Ltd. www.sim.org 15Prepared using simauth.ls



Statistisin Mediine J. Ray et alTable 4. Continuation of Table 3 beyond Day 5. Time series obtained from 4 simulated outbreaks with variable doses. SimulationsI, Ia, II, and IIa are simulated usingWilkening's Model A2, with the attak parameters|N, � , and the dose distribution|indiatedat the bottom of the table. �D is the average dose for the N infeted individuals. The table has been divided into 24-hour setions,where the values ni in eah setion an be summed to produe the low-resolution time series used to investigate the e�et oftemporal resolution. The dose distribution is represented by its quantiles D1, D25, D50, D75, and D99; x% of the populationreeives a dose of Dx or less.Time (days) Simulation Ia Simulation I Simulation II Simulation IIa5.25 9 70 16 1295.50 8 91 8 1095.75 10 79 9 1476.00 9 86 12 1266.25 8 82 13 1086.50 7 55 9 1146.75 7 69 7 907.0 6 75 8 967.25 8 61 6 887.50 4 67 6 777.75 6 65 8 758.00 2 62 6 69N 318 2989 454 4537� -1.5 -1.5 -1.5 -1.25�D 2912.8 2776.8 13,870.5 13,150.4D1 � 10�2 0:53 0:65 1:39 1:32D25 � 10�3 1:23 1:15 3:96 3:47D50 � 10�4 0:29 0:26 1:34 1:24D75 � 10�4 0:41 0:39 1:91 1:87D99 � 10�4 0:83 0:87 5:79 5:91on 6-hour data are in fat inaurate on Days 3 and 4, reovering the orret haraterization after 5 days of data.In general, therefore, many of the behaviors disussed in Se. 2.3 are repeated in the present simulations. The representativedose D is diÆult to estimate for small N attaks, while the time � is always easy to infer. We an bound the size N of theattak quite aurately for all simulations. MAP estimates of N obtained from 5 days of data are always within 20% of theorret value. Further, the 90% CIs at Day 5 for N, � , and log10(D) almost always braket the true attak parameters. Finertemporal resolution �t may better apture the evolution of the outbreak, but has a relatively minor impat on summaries of theposterior; MAP estimates obtained from the low and high-resolution time series are similar, as are the 90% CIs. Thus, whilethe errors inurred in �tting variable-dose data with a onstant-dose inferene model are not negligible, the urrent formulationprovides a reasonable and useful haraterization of the BT attak.3.2. Inferene of variable dose attak with inubation model mismathWe now proeed to Simulations III, IIIa, IV, and IVa. As noted above, these simulations introdue a systemati di�erene betweenthe simulated evolution of the disease in infeted persons and the model used to interpret the observed data. We simulate BTattaks using Wilkening's Model D (i.e., sampling the inubation period distribution in Eq. 3), but infer the attak parametersusing Model A2. As in Se. 3.1, the infeted population reeives a distribution of doses (see Appendix A) but the model used inthe inferene proess assumes a onstant dose.Figs. 10 and 11 show posterior PDFs for fN; �; log10(D)g onditioned on the time series in Table 3. As desribed in thepreeding setion, �ner resolution in the time series does not have a great impat on the posterior, and hene we only plot PDFsresulting from daily observations in eah ase. Several features are worth highlighting. First, the dose is identi�ed muh morelosely in Simulations IV and IVa, where both N and log10(D) are higher, than in Simulations III and IIIa. Indeed, p(log10(D)) inthe low-dose small-N Simulation IIIa remains broad at all times. In Simulation III, after only 3 days of data, we observe a dual16 www.sim.org Copyright  0000 John Wiley & Sons, Ltd. Statist. Med. 0000, 00 2{30Prepared using simauth.ls
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Figure 6. Posterior PDFs for N (top), � (middle), and log10 D (bottom) based on the time series for Simulation Ia, as tabulated in Tables 3 and 4. Lower-resolution data (olleted in 24-hour intervals) yield the PDFs on the left, while higher-resolution data yield the PDFs on the right. Corret values forfN; �; log10(D)g are f318;�1:5; 3:46g, where the \orret" representative dose is taken to be log10(D50). In both simulations, PDFs are reported after 3-, 4-,5-, and 7-day observational periods.Statist. Med. 0000, 00 2{30 Copyright  0000 John Wiley & Sons, Ltd. www.sim.org 17Prepared using simauth.ls
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Figure 8. Posterior PDFs for N (top), � (middle), and log10 D (bottom) based on the time series for Simulation II, as tabulated in Tables 3 and 4. Lower-resolutiondata (olleted in 24-hour intervals) yield the PDFs on the left, while higher-resolution data yield the PDFs on the right. Corret values for fN; �; log10(D)gare f454;�1:5; 4:13g, where the \orret" representative dose is taken to be log10(D50). In both simulations, PDFs are reported after 3-, 4-, 5-, and 7-dayobservational periods.Statist. Med. 0000, 00 2{30 Copyright  0000 John Wiley & Sons, Ltd. www.sim.org 19Prepared using simauth.ls
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Figure 9. Posterior PDFs for N (top), � (middle), and log10 D (bottom) based on the time series for Simulation IIa, as tabulated in Tables 3 and 4. Lower-resolution data (olleted in 24-hour intervals) yield the PDFs on the left, while higher-resolution data yield the PDFs on the right. Corret values forfN; �; log10(D)g are f4537;�1:25; 4:09g, where the \orret" representative dose is taken to be log10(D50). In both simulations, PDFs are reported after 3-,4-, 5-, and 7-day observational periods.20 www.sim.org Copyright  0000 John Wiley & Sons, Ltd. Statist. Med. 0000, 00 2{30Prepared using simauth.ls



J. Ray et al Statistisin MediineSimulation N � log10(D)Ia (6-hr resolution) 400, (233.6 { 581.9) -1.5, (-2.00 { -0.795) 3.0, (0.37 { 3.99)Ia (24-hr resolution) 400, (230.4 { 582.2) -1.5, (-2.04 { -0.78) 2.75, (0.32 { 4.00)f318g f�1:5g f3:46gI (6-hr resolution) 4100, (2334 { 4439) -1.4, (-1.57 { -0.64) 4.00, (0.715 { 4.147)I (24-hr resolution) 4000, (2281 { 4358) -1.4, (-1.59 { -0.70) 4.00, (0.91 { 4.173)f2989g f�1:5g f3:41gII (6-hr resolution) 400, (305.5 { 981.6) -1.5, (-1.98 { -1.08) 4.25, (0.68 { 4.72)II (24-hr resolution) 400, (327.0 { 984.7) -1.6, (-2.10 { -1.03) 4.25, (0.36 { 4.69)f454g f�1:5g f4:13gIIa (6-hr resolution) 3900, (3686 { 4340) -1.3, (-1.48 { -1.14) 4.25, (4.05 { 4.72)IIa (24-hr resolution) 4000, (3709 { 4433) -1.5, (-1.55 { -1.18) 4.25, (4.04 { 4.72)f4537g f�1:25g f4:09gTable 5. Simulations I, Ia, II, IIa; MAP estimates and 90% redibility intervals (in parentheses) for N, � , and log10(D) onditionedon data through Day 5. Corret values for N and � are in f g. The inferred representative dose is ompared with log10(D50),also in f g.
haraterization of the outbreak: N � 700 and, to a larger extent, N � 2000. However, p(N) beomes unimodal as additionaldata beome available. In fat, PDFs for all three parameters in all four simulations are unimodal by Day 5. The resulting MAPestimates and 90% CIs for fN; �; log10(D)g are reported in Table 6. In ontrast to Se. 3.1, MAP estimates for N and � arenot within 20% of the true values. With the exeption of Simulation IIIa, N is smaller than it should be, and in all simulations� is more negative than it should be.A qualitative explanation for these disrepanies is advaned as follows. Sine Model A2 predits shorter inubation periodsthan Model D (reall Fig.1), the epidemi urve as simulated with Model D will rise more slowly that predited by ModelA2. When these data are interpreted using Model A2, it is reasonable to expet the posterior to ompensate for the slowerrise by underestimating N, i.e., by suggesting a smaller outbreak. Simultaneous estimation of D and � raises a few additionalompliations, however. Reall that the posterior of D is entered quite lose to its true value in Simulations IV and IVa, andto a lesser extent in Simulation III. But in the likelihood funtion, this dose enters the wrong model. Using a \orret" dose inModel A2 is akin to using a muh larger dose in Model D; both situations yield shorter inubation periods. Now draw a parallelwith Simulation F in Se. 2.3. There, we found that a large-dose small-N attak and a small-dose large-N attak gave rise tovery similar patient data during the �rst �ve days of an outbreak. Moreover, we found that N and � were positively orrelated(and that both were negatively orrelated with D): the small-N mode of the posterior also favored more negative � , i.e., attaksthat ourred approximately one day earlier. The very same orrelations a�et inferene in the present simulations. Inubationmodel mismath is roughly equivalent to an overestimation of D, whih is ompensated for by underestimating N and � .In summary, Table 6 shows that MAP estimates for N are typially within a fator of two below the true result and that � isestimated roughly a day too early.Statist. Med. 0000, 00 2{30 Copyright  0000 John Wiley & Sons, Ltd. www.sim.org 21Prepared using simauth.ls
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Figure 10. Posterior PDFs for N (top), � (middle), and log10 D (bottom) based on daily time series for Simulation IIIa (left) and Simulation III (right). Corretvalues for fN; �; log10(D)g are f161;�0:75; 3:52g (Simulation IIIa) and f1453;�0:75; 3:54g (Simulation III), where the \orret" representative dose is takento be log10(D50). In both simulations, PDFs are reported after 3-, 4-, and 5-day observational periods (dotted, dashed and solid lines respetively).22 www.sim.org Copyright  0000 John Wiley & Sons, Ltd. Statist. Med. 0000, 00 2{30Prepared using simauth.ls
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Statistisin Mediine J. Ray et alSimulation N � log10(D)IIIa (6-hr resolution) 170, (130.1 { 243.6) -1.5, (-2.3 { -0.86) 2.0, (0.23 { 3.74)IIIa (24-hr resolution 170, (125.1 { 238.8) -1.5, (-2.4 { -0.94) 2.5, (0.255 { 3.78)f161g f�0:75g f3:52gIII (6-hr resolution) 780, (722 { 945.5) -1.7, (-2.03 { -1.42) 4.25, (4.02 { 4.723)III (24-hr resolution 760, (701 { 891.7) -1.6, (-1.91 { -1.31) 4.25, (4.04 { 4.724)f1453g f�0:75g f3:54gIV (6-hr resolution) 330, (297.2 { 668.6) -1.7, (-2.23 { -1.40) 4.5, (1.4 { 4.72)IV (24-hr resolution) 330, (296.3 { 705.3) -1.7, (-2.26 { -1.38) 4.5, (1.45 { 4.72)f453g f�0:75g f4:22gIVa (6-hr resolution) 2900, (2728 { 3056) -1.5, (-1.90 { -1.1) 4.5, (4.275 { 4.725)IVa (24-hr resolution) 2900, (2741 { 3064) -1.5, (-1.97 { -1.26) 4.5, (4.275 { 4.725)f4453g f�0:5g f4:20gTable 6. Simulations III, IIIa, IV, and IVa: MAP estimates and the 90% redibility intervals (in parentheses) for N, � , andlog10(D) onditioned on data through Day 5. Corret values for N and � are in f g. The \orret" representative dose is takento be log10(D50), also in f g.4. The Sverdlovsk Anthrax Outbreak of 1979We now address the estimation of some of the parameters of the Sverdlovsk anthrax outbreak. It is suspeted that on 2 April1979, a high-grade anthrax formulation was aidentally released from a military faility in Sverdlovsk (today, Yekaterinburg),Russia. The resulting outbreak lasted 42 days, and patient data were olleted on a daily basis [7℄. Charaterizing the Sverdlovskase presents signi�ant hallenges. It orresponds to a low-dose \attak" infeting fewer than 100 people. Wilkening [17℄estimates that the average dose was either around 2{3 spores, based on his Model A, or around 300 spores based on his ModelD; Meselson [7℄ estimates 100{2000 spores as the likely dose. The �rst patient presented symptoms on 4 April 1979. Around12 April, tetrayline was administered around Sverdlovsk; around 15 April, people were vainated. Prophylati measures mayhave prevented the onset of symptoms in some people and inreased the inubation period in others. Further, the availabledata almost ertainly ontain some reording errors. Errors in the data, the e�et of prophylaxis (whih is not modeled in ourlikelihood funtion), and the small size of the infeted population are expeted to stress our inferene proedure.In Fig. 12 we plot the posterior densities of N and � based on the data in [7℄. Model A2 is used for inferene. After 9 daysof data, the time of release was easy to infer: the MAP estimate of � is �2 (i.e., 2 April 1979) and the 90% CI for � is[�3:22;�1:38℄. PDFs for the dose (omitted here) were indeterminate; the 90% CI for log10(D) spans [0:18; 3:5℄, and moreoverthe average dose at Sverdlovsk is unknown. The MAP estimate for N enters around 50, though the earlier PDFs underestimateN. The 90% CI for N after 9 days of data is [41:15; 66:49℄. Thus by 13 April (i.e., Day 9, the start of the prophylaxis ampaignand 2 days before the vaination ampaign), the PDF of N strongly suggests that the outbreak will a�et fewer than 200people. In omparison, 70 people are believed to have died [7, 8℄ and 80 are believed to have been infeted [8℄, though the truenumber is unknown. However, approximately 59,000 people in the Chkalovskiy raion were impated by the medial interventions;80% were vainated at least one [7℄.Guillemin [32℄ douments the publi health response undertaken by the Soviet authorities one the Sverdlovsk epidemi wasdeteted, illustrating the diÆulties and pitfalls faed by medial responders when the origin and the extent of an epidemi are24 www.sim.org Copyright  0000 John Wiley & Sons, Ltd. Statist. Med. 0000, 00 2{30Prepared using simauth.ls



J. Ray et al Statistisin Mediineunknown. Indeed, Soviet authorities held that the epidemi was aused by infeted meat and spent onsiderable e�ort searhingfor it. The response also engaged many medial personnel and oÆials from outside Sverdlovsk. Yet by Day 4 (8 April 1979)it was lear that the epidemi was small (Fig. 12, left) and ould be handled by loal authorities. (Sverdlovsk was a military-industrial ity with a population of 1.2 million [7℄.) Guillemin [32℄ also desribes e�orts to deontaminate buildings and treesby hosing them down with disinfetants; yet with knowledge of � (Fig. 12, right) and meteorologial onditions, the bounds ofthe a�eted region ould have been established (as Meselson did in 1994 [7℄) and the publi health response suitably targeted.A quantitative model and an inferential apability ould therefore have been of assistane in 1979. These lessons are equallyappliable to ontemporary bioterror senarios.
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Figure 12. PDFs of N (left) and � (right) for the Sverdlovsk outbreak.
5. ConlusionsWe have developed a Bayesian approah to infer some important harateris of BT attaks from a time series of diagnosedpatients. Our tests with anthrax show that an observation period of 3{5 days, ounted from the day of �rst symptoms, maybe suÆient to estimate the number of asymptomati infeted people, the time of infetion, and a representative dose, andto provide quanti�ed unertainty intervals around these estimates. Note that sine the data onsist of the times of symptomsof diagnosed patients, the inferene an be performed only after the �rst patient is suessfully diagnosed. Sensitivity studiessuggest that when the disease model is not aurate, we may arrive within a fator of two of the size of the attak. The resolutionof the time series of diagnosed patients has a small impat if the disease model is aurate; otherwise, model errors dominate.This Bayesian approah may be extended and improved in many ways. One extension is to inlude hospital visit delay timesin the analysis. While we have used the time at whih eah patient beame symptomati to demonstrate our method, existingmedial informatis systems typially reord the time of linial enounter instead. The di�erene between the two|the hospitalvisit delay|an be modeled in a Bayesian manner (see [33℄ for a model of the hospital visit delay for inhalational anthrax) andinluded in the analysis. This would apture the e�et of the patients who have turned symptomati, but have not yet reportedto the hospitals, on the inferred quantities. However, it would introdue an additional soure of variability and require furthersensitivity analysis. Improved medial informatis systems that apture the time of symptoms would make our methodology moreuseful, eliminating the variability introdued by hospital visit delays. A seond soure of delay | the time required to performtests, et., that lead to a on�rmed diagnosis | an be another soure of unertainty, but ould be modeled in a manner similarto the hospital visit delay and inluded in the inferene proedure. Another potential shortoming of our approah is our inabilityto infer a distribution of doses (ommensurate with a spatially distributed population and atmospheri dispersion); instead weStatist. Med. 0000, 00 2{30 Copyright  0000 John Wiley & Sons, Ltd. www.sim.org 25Prepared using simauth.ls



Statistisin Mediine J. Ray et alrely on inferring a representative dose. However, the impat of this \shortoming" on the auray of the inferene is unlear;the tests performed by Legrand et al. [5℄ between their spatiotemporal inferene tehnique (whih, of ourse, inluded a fullyspatially distributed dosage pattern) and an older, single-representative-dose version of our urrent approah [25℄ revealed nomajor di�erenes in the quality of the inferene. However, unlike [5℄, our purely temporal approah annot infer ertain, mostlyspatial, harateristis of an aerosolized BT attak, e.g., the loation and height of a release.The ability to \fuse" disparate soures of data via prior distributions ontributes signi�antly to the robustness of Bayesianinferene in data-starved environments. Informative prior distributions for N and � , drawn from syndromi surveillane data, mayinrease the eÆieny of the inferene proess. Also, the present approah an immediately be applied to other nonontagiousdiseases, as well as to ontagious diseases with long inubation periods, suh as smallpox, where seondary ases do not appearin the early time series of patient data.The importane of quantitatively haraterizing a BT attak was expliitly identi�ed in the \Dark Winter" exerise [3℄.\Dark Winter" was a war-game/table-top exerise onduted in 2001 to assess the ability of key deision makers, e.g., thePresident of the United States, et., to respond to a smallpox BT attak. Partiipants inluded, among others, The Hon. SamNunn, the former senator, The Hon. R. James Woolsey, the former Diretor of the Central Intelligene Ageny and General J.Titelli (U.S.A, retd). The \lessons learned" setion of [3℄ lists the information gaps that the partiipants faed when formulatingthe response to the ensuing epidemi. (Estimates of the size of the problem at hand are often ruial in hoosing betweenompeting response strategies, and this exerise was no exeption.) Partiipants sought the ability \. . . to immediately preditthe likely size of the epidemi on the basis of the initial ases; to know how many people were exposed." Thus the primaryutility of our inferene proedure is in the ontext of a response plan, espeially when resoures have to be husbanded and usedarefully (e.g., if more attaks are feared). Preliminary results on how an inferene algorithm an be used within the ontext ofresoure alloation during single and multiple BT attaks an be found in [23, 24℄. Sine our inferene methodology is purelytemporal, data requirements are simple, thus reduing the opportunities for introduing signi�ant measurement errors. Forexample, a spatiotemporal approah would require the geographial loation of eah patient at the instant of infetion; in amobile population, loations an be a signi�ant soure of error sine a detailed movement shedule of the infeted patients israrely available. In the absene of suh data, the loation may be modeled probabilistially, and results from preliminary workby the BARD group an be found in [34, 35℄. The same tehnique was also used by Legrand et al. [5℄ in their investigationinto the spatiotemporal inferene of BT attaks. A disussion of the ambiguities and diÆulties introdued by loation data,within the ontext of the Sverdlovsk outbreak, an be found in [32, 36℄. Certainly a spatiotemporal approah, orretly applied,has the potential to unover more information (e.g., spatial information, whih an be ritial for prioritizing prophylaxis [5℄,deontamination, et.) from a partially observed epidemi, but the simpler temporal approah onsidered here may onstitute amore robust and pratial tool for early response and resoure alloation.
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Figure 13. Dosage plumes plotted over the population distribution for � = 170Æ (left) and 125Æ (right). We see on the right that the extremities of the plumeextend into a high population density region. Population density is measured in number of people per square kilometer. Thus we may expet a substantialnumber of high-dosage ases, resulting in a higher average dosage D.where (x 0; y 0) are Cartesian oordinates in a frame of referene where the x 0-axis is aligned with the wind. �x 0 ; �y 0 and �z 0 areoeÆients dependent on x 0 and on the Pasquill stability lass. H is the height of release and � is the onentration of theaerosol in spores per unit volume. u is the wind veloity. QT is the total number of spores released. The relation between x0 andx is given by
 xy ! =  os(� � �) � sin(� � �)sin(� � �) os(� � �) ! x 0y 0 !where � is the wind diretion. Assuming a minute ventilation � of 30 liters a minute [5, 7℄, one an obtain an expression forthe number of spores inhaled per unit time. Integrating to in�nite time, one obtains the total number of spores D inhaled by aperson positioned at (x; y) (or at (x 0; y 0)):D = QT�2��x 0�y 0�z 0 exp � (y 0)22�2y 0 ! exp„� (H0)22�2z 0 «`1 + erf(x 0)´ :The dosage assigned to a given blok is deided by the loation of its enter. If we hoose Model A2 to simulate the BT attak,we use Glassman's formula to model the probability a of showing symptoms (in in�nite time) given a dosage D [18℄:a(D) = 12 »1 + erf „ ln(D=D0)Sp2 «– (9)where D0 = 8600 spores and S = 3:44. These orrespond to a human ID50 of 8600 spores and a probit slope of 0.67 [17, 18℄.If Model D is hosen instead, we employ Eq. 5 to determine the probability of infetion given a dose D. Sine the population ina blok is known, we an then use the probability of infetion to alulate the number of people in the blok who will proeedto develop symptoms over time, per the inubation period model.In this study, we use Pdomain = 3� 106 and two plume diretions, � = 170Æ and 125Æ. The two releases result in, respetively,686,068 and 1,869,741 exposed individuals, i.e., individuals who have reeived a dose of one spore or more. The maximum dosesobserved in the two ases are 30,877 and 314,053 respetively. The dose range is divided into 100 equal bins and a histogram ofthe number of people in eah bin is developed for eah of the ases. The histogram is then normalized to obtain the \exposure"Statist. Med. 0000, 00 2{30 Copyright  0000 John Wiley & Sons, Ltd. www.sim.org 29Prepared using simauth.ls



Statistisin Mediine J. Ray et alTable 7. The wind diretion, �, and the size of the exposed population, pexposed, used to generate the infeted population invarious attaks. For Cases I, Ia, II, and IIa, Eq. 9 is used for the probability of infetion, while for Cases III, IIIa, IV, and IVa,Eq. 5 is used.pexposed = 103 pexposed = 104� = 170Æ Case Ia, Case IIIa Case I, Case III� = 125Æ Case II, Case IV Case IIa, Case IVaPDF, i.e, the PDF of the dose reeived by an individual in the exposed population. Given the large population (Pdomain = 3� 106),the PDF developed from a histogram with 100 bins is quite smooth. Note that only a fration of the exposed population willdevelop symptoms, with an individual's probability of being infeted (and subsequently developing symptoms) being given byGlassman's relation (Eq. 9) or Eq. 5.The \exposure" PDFs developed for � = 170Æ and 125Æ are then used to sample from a smaller exposed population of pexposedfor eah of the tests. Values of pexposed and � used for the di�erent ases are in Table 7. Eah exposed individual is then allowedto beome infeted with a dose-dependent probability. The resulting infeted sub-population yields the �nal dose distribution.Dose distributions resulting from this proess, for all the ases (viz. Cases Ia, I, II, IIa, IIIa, III, IVa and IV) are depited inFig. 14. We plot the inverse CDF of doses|i.e., the absissa is the fration of the infeted population whih reeives a doseless than or equal to the ordinate. In eah inset, we also plot a histogram of the dose distribution. Note that while the dosesmay easily span two orders of magnitude, about 80% of the infeted people lie within a one-deade range.
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Figure 14. The inverse umulative distribution of doses for Cases Ia, I, II, and IIa (left olumn) and Cases IIIa, III, IV, IVa (right olumn). The absissa is thefration of the infeted population whih reeives a dose less than or equal to the ordinate. Inset: we plot histograms ontaining the number of infeted peoplein eah dose bin. While the histograms have long tails, the bulk of the population reeives doses spanning one order of magnitude..
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