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BAYESIAN CALIBRATION OF THE COMMUNITY LAND MODEL USING SURR OGATES∗

J. Ray†¶, Z. Hou‡, M. Huang,‡K. Sargsyan† and L. Swiler§

Abstract. We present results from the Bayesian calibration of hydrological parameters of the Community Land Model
(CLM), which is often used in climate simulations and Earth system models. A statistical inverse problem is
formulated for three hydrological parameters, conditioned on observations of latent heat surface fluxes over 48
months. Our calibration method uses polynomial and Gaussian process surrogates of the CLM, and solves the
parameter estimation problem using a Markov chain Monte Carlo sampler. Posterior probability densities for
the parameters are developed for two sites with different soil and vegetation covers. Our method also allows
us to examine the structural error in CLM under two error models. We findthat accurate surrogate models
could be created for CLM in three out of the four cases we investigated. The posterior distributions lead to
better prediction than the default parameter values in CLM. Climatologically averaging the observations does
not modify the parameters’ distributions significantly. The structural error model reveals a correlation time-scale
which can potentially be used to identify physical processes that could be contributing to it. While the calibrated
CLM has a higher predictive skill, the calibration is under-dispersive.
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Carlo
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1. Introduction. The Community Land Model (CLM, [36]), the land component of the Com-
munity Earth System Model (CESM, [10]), is used to simulate terrestrial water, energy, and biogeo-
chemical processes in offline and coupled climate simulations. The CLM contains a large number of
parameters that govern its behavior, many of which are not directly measurable. They are estimated
from indirect measurements, and are therefore subject to great uncertainty. Further, many parameters
are site-dependent i.e., they vary within certain ranges [17, 22, 23]. In addition, due to difficulties in
estimating such parameters at a global scale, CLM is released with default values for these parame-
ters obtained by benchmarking its simulations against global datasets using simple statistics [11]. The
predictive accuracy of CLM is, to a large degree, dependent on obtaining “correct” values of these
parameters, and calibrating to site-specific observational data is the best means of doing so. Model
calibration, to date, has meant optimizing parameter values to reduce the discrepancies between histor-
ical observations and their corresponding model predictions (e.g., fromCLM). This leads to a number
of practical challenges. For example, gradient-descent optimization methodse.g., L-BFGS-B [6] are
sensitive to their starting guesses and can yield multiple “optimal” parameter combinations. More
seriously, due to the limited amount of observational data, the measurement errors in observations,
and the modeling shortcomings/simplifications in CLM, parameters cannot be estimated with a high
degree of accuracy. As a result, the parameter estimates are uncertain, but such parametric uncertainty
has not been well quantified. Consequently, CLM is not distributed with “error bounds” that reflect
parametric uncertainty after calibration.
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The problem of parametric uncertainty can be addressed using Bayesiancalibration. It develops
parameter estimates as probability density functions (PDFs). The PDFs can be general i.e. we do
not have to stipulate a canonical family of distributions like Gaussian, log-normal etc. or make any
approximations in the numerical scheme if the Bayesian calibration problem is solved using a Markov
chain Monte Carlo (MCMC) method. The PDF captures parametric uncertaintyand the correlation
between parameter estimates concisely. Further, such a calibration also improves the predictive skill
of CLM; instead of attempting to predict observations with one “optimal” parameter combination, one
samples the PDF and constructs an ensemble of CLM predictions. Simple statistical measures [16, 15]
can be used to summarize the “goodness of fit”; further, the statistical measures also reveal other as-
pects of the fit (e.g., over-/under-dispersive calibrations) that provide specific directions to pursue to
improve CLM. However, Bayesian calibration poses two technical challenges. Firstly, like contem-
porary optimization methods, Bayesian calibration minimizes the model-observationdiscrepancy. In
addition, it also requires one to specify a statistical model for the discrepancy (henceforth called the
structural error model). The sensitivity of calibration to this choice then hasto be gauged. Secondly,
MCMC can require many (O(104)-O(105)) CLM evaluations to reach converged posterior estimates,
which is prohibitive. Thus, while Bayesian calibration holds much promise forCLM calibration, its
use has been rare [53, 59].

In this paper, we will describe a method that can allow MCMC calibration of CLM. The method
is based on surrogates of CLM - inexpensive polynomial or Gaussian process representations of the
mapping between CLM parameters being calibrated and the CLM outputs for which we have measure-
ments. We therefore build on, and extend, recent developments on the useof surrogates to calibrate
computationally expensive models [30, 28] and MCMC calibration of complex (e.g., those based on
partial differential equations) models including structural errors (i.e., thefundamental inability of the
model to reproduce observations due to modeling simplifications) [8, 9]. Our method is general, but
we will demonstrate it in the estimation of three hydrological parameters using observations from
two sites, US-ARM, located in Oklahoma, and US-MOz, located in Missouri. The method will also
yield an approximation of CLM’s structural error. Our method is dependent on an accurate surrogate
model; in its absence, our calibration method does not work. We will also present an example of this
shortcoming.

The novel contributions of this paper are:
1. Procedure for building CLM surrogates:While the idea of building surrogates for compu-

tationally expensive models is not new [29], the particular form chosen for the surrogate is problem
dependent. We describe the practical details of sampling the space of calibration parameters, perform-
ing the runs (which, in our case, produce a time-series of outputs), and the process of constructing
surrogates while simultaneously simplifying them using sparsity. In particular,we will exploit a sparse
reconstruction method, Bayesian compressive sensing [4], to perform model simplification.

2. Choice of error model and their ramifications:Bayesian calibration requires one to specify
an error model. If competing models exist (as they do in our case), there has to be a systematic way of
selecting one. We present an illustration of how to select an error model.

3. Gauging the post-calibration predictive skill of CLM:When one has a “point” estimate of
parameters (the defaults or optimal values obtained from deterministic optimization), the predictive
skill of a model is estimated by calculating bias and root-mean-square-error(RMSE) with respect to
observations. When parameters are estimated as PDFs, a different set of error metrics can be used.
Further, some of them can reveal how the model needs to be improved. We will compute these error
metrics as a demonstration of the usefulness of Bayesian calibration beyondjust parameter-estimation-
with-uncertainty-quantification.

The paper is organized as follows. In §2, we review background literature on surrogate models,
sparse reconstruction, kriging and MCMC methods. We also review our previous work, based on sen-



BAYESIAN CALIBRATION OF CLM 3

sitivity analysis of CLM at the two chosen sites, which underlie the selection ofcalibration parameters
given the observational dataset at hand.In addition, we provide a brief description of the hydrologic
modules and their parameters in version 4 of CLM. We also describe the observational dataset used to
drive, parameterize and calibrate the model used in this study. In § 3 we construct surrogate models.
In § 4, we use them to perform the calibration and discuss the implications of the results. We conclude
in § 5.

2. Background.

2.1. Probabilistic calibration of climate models. The implications of parametric uncertainty in
climate models (or their submodels) have long been appreciated and there have been efforts to estimate
them as PDFs [25]. Due to the computational cost of such models, these methods have soughtto reduce
the number of model invocations necessary, largely via approximations in thenumerical formulation
of the estimation problem. Variants of the Very Fast Simulated Annealing Method (VFSA, [24, 25])
have been used to tune parameters of the CAM5 Zhang-McFarlane convection scheme [57]. VFSA
leverages simulated annealing to reduce CAM5 (Community Atmosphere Model, version 5) runs,
whereas multiple starting points allowed an efficient search in a high-dimensional parameter space.
The same method was used to tune 6 parameters in the Weather Research and Forecasting (WRF, [48])
model in [58]. In order to address the high-dimensionality of the problem, the authors used three
separate starting points and a total of 150 WRF runs. PDFs of parameters that had higher predictive
skill than the default parameter settings were plotted but the quality of the calibration was checked
only using an optimal parameter estimate from the calibration i.e., the accuracy ofa point summary,
rather than the full probabilistic calibration was checked. The ensemble Kalman filter (EnKF, [12])
provides a scalable Bayesian calibration technique, under the assumption that the calibrated PDFs of
the parameters are Gaussian. In [2], the authors calibrated a coupled AOGCM (atmospheric ocean
coupled general circulation model) of intermediate complexity using EnKFs.In [37], the authors used
EnKFs to optimize a hydrology-crop model using data from central Belgium.

Of late, due to advances in computational resources, there have been attempts to perform the cal-
ibration without any approximations i.e., to solve the Bayesian calibration problem using MCMC.
In [53], 10 hydrological parameters of the CLM version 4 (CLM4) were calibrated using latent heat
flux measurements from the flux tower sites at US-ARM and US-MOz. Parameter samples from the
posterior PDF (the post-calibration PDFs of the parameters) provided better predictions compared to
the default CLM4 settings when their predictions were model averaged. In[59], the authors present a
MCMC calibration of 6 parameters of a CLM crop model. The convergence of the MCMC chain was
checked via the Brooks-Gelman-Rubin statistic [5]. The paper does not contain any plots of the pa-
rameter PDFs or any discussion on estimates of structural error of the model.The improved ability of
the calibrated PDFs to predict observations is shown. In [55], the authors applied Bayesian uncertainty
analysis to 12 parameters of the Bern2.5D climate model. They first defined a nonparametric set of
prior distributions for climate sensitivity and then updated the entire set using MCMC. Motivated by
practical needs in estimating parameters of climate and Earth system models, the authors in [50] eval-
uate the computational gains attainable through parallel adaptive MCMC and Early Rejection using a
realistic climate model.In [26] the authors use an adaptive MCMC method (DRAM, [20]) to estimate
four parameters of a general circulation model, ECHAM5, using measurements of radiative fluxes at
the top of the atmosphere (TOA). The study develops joint posterior PDFs of the four parameters and
investigates multiple likelihood formulations which differ in the type and number of summary statistics
(of the TOA radiative fluxes) which are included in the likelihood function. The runs were performed with
ECHAM5 (and not its surrogates) and the longest run involved 5600 ECHAM5 evaluations. Rather than
using a conventional method such as the Gelman-Rubin-Brooks statistic or the Raftery-Lewis test as
the stopping criteria for the MCMC run, the sampling was stopped when the tenth, fiftieth and ninetieth
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percentiles of all four parameters were deemed to have reached a stationary value. The posterior dis-
tributions were used to predict global annual mean radiative fluxes and compared with measurements
to identify the best likelihood formulation (alternatively, the best set of summary statistics of the TOA
radiative fluxes to be used for parameter calibrations).

2.2. The Community Land Model. Community Land Model, Version 4 (CLM4), was released
by the National Center for Atmospheric Research to serve as the land component of the Community
Earth System Model [36, 31]. It simulates biogeophysical processes such as energy and water fluxes
from canopy and soil, heat transfer in soil and snow, hydrology of soil, canopy and snow and stomatal
physiology and photosynthesis. Even though most of its applications are conducted at continental
or global scales [33, 32], CLM4 can be run at any resolution such as flux tower sites [22] or small
watersheds [23].

In CLM4, soil water up to a depth of 3.8 meters from the surface is simulated using the one-
dimensional Richards equation

(2.1)
∂θ
∂t

= −∂q
∂z

−S

whereθ [mm3/mm3] is the volumetric soil water content,z is the height above some datum in the soil
column,t is time andS is a soil moisture sink (e.g., extraction by roots, or subsurface drainage). q
is the moisture flux through the soil[kg m−2 s−1]. The moisture fluxq is driven by the soil matric
potentialΨ[mm] by the equation

q = −K
∂(Ψ−ΨE)

∂z

whereK is the hydraulic conductivity[mm s−1] andΨE the equilibrium potential. BothK andΨE

depend on the local moisture content. This dependence is modeled with an exponential e.g.,

ΨE

ΨE,sat
=

(
θ

θsat

)−b

,

whereb is the Clapp-Hornberger exponent andθsat and ΨE,sat constants that depend on local soil
composition. The dependence ofK is more complex (as it includes the effect of ice), but in its absence,
a similar exponential model holds (and, correspondingly, introduces yetanother parameterKsat). b also
appears in that expression (see the CLM4 technical note [36] for details).

The upper boundary condition is the infiltration fluxqin f l , [kg m−2 s−1] into the top soil layer
given by

qin f l = qliq,grnd−qover−qevp

whereqevp is the evaporation from the top soil layer,qliq,grnd is the liquid precipitation reaching the
ground plus any snow melt andqover is the surface runoff, parameterized as [34, 35]

qover = fsatqliq,grnd +(1− fsat)max
{

0,(qliq,grnd−qin f l ,max)
}

whereqin f l ,max is the maximum soil infiltration capacity,fsat = fmaxexp(−Cs foverz∇) is the saturated
fraction of the location,z∇ is the water table depth andfmax,Cs, fover are model parameters.

The lower boundary condition, parameterized as the recharge to the subsurface aquifer (qrecharge,
[kg m−2 s−1]) is given by

qrecharge=
∆θliq,N +∆zN

∆t
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where∆θliq,N and∆zN are changes in liquid water content at the bottom of the soil column, obtained
by solving equation (2.1) numerically. The aquifer recharge, alternatively, the subsurface runoff into
the aquifer (qdrai) is modeled as distributed sinksS in (2.1) and is expressed as

qrecharge= qdrai = Qdmexp(−Fdraiz∇) ,

whereFdrai[m−1], the runoff decay factor andQdm[kgm−2s−1, the maximum subsurface drainage, are
model parameters. The aquifer, which lies beneath the soil column, and exchanges water with it, has
an average specific yield ofSy.

Thus the hydrological dynamics in CLM4 are governed by 10 parameters -fmax,Cs, fover,Fdrai,
Qdm,Sy,b,ΨE,sat,θsat andKsat. The sensitivity of latent heat fluxes to these 10 parameters were in-
vestigated in [22]. For the US-ARM site,{Fdrai,Qdm,b} were found to be most important; their
counterparts for US-MOz were{Fdrai,Qdm,Sy}.

2.3. Surrogate models. The task of calibrating computationally expensive models can be con-
siderably eased if one can devise a computationally inexpensive surrogate. A surrogate model approxi-
mately captures the input-output mapping of the true (computationally expensive) model. It can prove
to be an efficient solution to problems in sensitivity analysis and optimization that require multiple
model invocations; see [28, 30] for some examples of their use in aerodynamics. Frequently surro-
gates are lower-fidelity or statistical models (e.g., regression models) obtained by fitting to a limited
number of sample runs of the true model (also called the training data). In [51, 52], the authors com-
pare various smoothing predictors and non-parametric approaches thatcan act as surrogate models.
In [47] the authors provide an overview of statistical surrogates and lower-fidelity models that can be
used as proxies for computationally expensive models.

Polynomials and kriging (also called Gaussian process or GP models) are twovery common sur-
rogates, and they can also used together (called regression kriging models). Polynomial surrogates are
called trend functions when used together with GP models. Polynomials are very efficient in captur-
ing large-scale variations/trends in the parameters space. A multivariate polynomial form is postulated
(with unknown coefficients multiplying the terms) and their values are estimated from the training data
via regression. The orders of the polynomial and the terms to be retained are dictated by the training
data. One can incrementally simplify (remove terms from) the polynomial expression, refit to data
and gauge the improvement in fit using the Akaike Information Criterion [56]. Alternatively, one may
use shrinkage regression methods like Bayesian compressive sensing (BCS, [4]) to simplify an overly
complex model; see [46] for an example of its use to make a polynomial surrogate for CLM4. Note that
the terms retained in the polynomial are dependent on the training data. K-foldcross-validation [21]
of the model is recommended.

Stationary smooth Gaussian processes [40, 44, 45] are the approach we adopted for some of our
surrogate models. They embody the input-output mapping via a set of multivariate normal random
variables. A parametric covariance function (alternatively, a semi-variogram) is then constructed as a
function of the inputs. The covariance function is based on the idea that when the inputs are close, the
correlation between the outputs will be high. As a result, the uncertainty associated with the model’s
predictions is small for input values that are close to the training points, and large for input values that
are further away. Gaussian processes are popular surrogate modelsbecause they (1) typically interpo-
late the data from which they are built, (2) provide a spatially varying estimate ofthe variance of the
error in their predictions, and (3) do not require a specific type of inputsample design. As mentioned
above, they are often used in conjunction with simple polynomial models (linear or quadratic), which
model the large-scale trends whereas the GP represents short-range deviations from the polynomial
predictions. A Bayesian perspective on such models is in [29].
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2.4. Bayesian inverse problems and their MCMC solution. Estimation of parameters from ob-
servations can be cast as a Bayesian inverse problem. Lety = m(p) be a model with parametersp.
The model outputs are related to observationsy(obs) as

(2.2) y(obs) = y+ ε = m(p)+ ε, ε ∼N (0,Γ)

whereε is a combination of measurement and structural error andN (0,Γ) denotes a multivariate
Gaussian distribution with zero mean andΓ as the covariance matrix. Letπ(p,Γ) be the prior belief
regarding the distribution of the parameters and the structural error. By Bayes’ theorem, the posterior
PDFP(p,Γ|y(obs)) of the parameters, conditioned on observations, can be given by

(2.3) P(p,Γ|y(obs)) ∝ |Γ|− 1
2 exp

[

−1
2

(

y(obs)−m(p)
)T

Γ−1
(

y(obs)−m(p)
)]

︸ ︷︷ ︸

Likelihood,L(y(obs)|p,Γ)

π(p,Γ)

This is the post-calibration or posterior distribution of the parametersp. It can be constructed by
sampling from the right hand side of (2.3) and generating a histogram of the samples. Markov chain
Monte Carlo (MCMC) methods [14] allow the sampling to be performed efficiently. In MCMC, one
starts with a guess of the parameterp0. Using this as the base, a proposalp′ is chosen from a proposal
PDF (often, but not necessarily, a multivariate Gaussian)Q(p′|p0). p′ is retained according to certain
acceptance criteria, which ensure that the chain is ergodic (so that a chain of infinite length visits all
parts of the parameter space) and satisfies detailed balance (i.e., high-probability parameters are visited
more often than the low probability ones). The mixing of the MCMC chain in the parameter space
is largely dependent onQ(:). Adaptive MCMC methods [20] seek to tune an optimalQ i.e., estimate
its covariance periodically using samplespi that have already been collected by the MCMC chain.
Multichain MCMC methods [50, 7] that use multiple concurrent chains to explore the parameter space
have been used in the estimation of climate model parameters [26]. The MCMC chain is stopped
when the samples it collects results in a stationary posterior distributionP(p,Γ|y(obs)). An efficient
MCMC method can requireO(104) samples to represent a posterior distribution for 3-4 parameters; for
complex-shaped distributions, far more samples may be required. The convergence of a MCMC chain
can be judged using the Raftery-Lewis [39] or Brooks-Gelman-Rubin [5] statistics. An unconverged
MCMC chain usually leads to parameter PDFs that are too narrow i.e., it underestimates parametric
uncertainty, and provides erroneous estimates of high-order moments of the distribution such as inter-
parameter correlations. The quality of a Bayesian calibration is gauged by posterior predictive tests
(PPTs; chapter on “Model Checking and Improvement” in [13]). Samples of(p,Γ) are drawn from
the posterior distribution and used to replicate observations via an ensemble of model simulations
using (2.2). The predictive skill of the ensemble is gauged by metrics such as the cumulative rank
predictive score (CRPS), verification rank histogram (VRH), mean absolute error (MAE) etc. [16, 15].
The significance of these metrics will be discussed in §4 where we use them to test our calibration.

Note that the formulation used for Bayesian calibration in (2.2) and (2.3) is a standard one. However,
the model m(p) used in the calculation of the likelihood is not. m(p) provides monthly averaged
predictions of latent heat fluxes and consists of a set of surrogates of CLM4, one for each month. In
the studies presented here, the set consisted of 12 or 48 surrogates, depending on the length of the
observational datastream. The surrogate models are novel. Each model consists of a polynomial trend
function paired, in some cases, with a Gaussian Process model. When constructing each model, we
investigate polynomials of orders 1 to 5, using a rigorous process of shrinkage regression and cross-
validation to simplify them (i.e., remove superfluous polynomial terms). This is done to ensure that the
surrogate models do not overfit the training data, and thus display a spurious degree of accuracy. If the
resultant polynomial surrogate fails to achieve a minimum acceptable level of fidelity (with respect to
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CLM4 predictions), it is augmented with a Gaussian Process model. In addition, we consider two forms
for ε in (2.2), to account for uncorrelated and correlated errors. Details are in § 3 and § 4. This degree
of rigor is necessary because (1) the simplifying assumptions underlying surrogate models hold only
approximately for complex, nonlinear models such as CLM4 and (2) the data-model discrepancy has the
potential to vary drastically as the Markov chain explores the entire parameter space i.e., the behavior
of the data-model discrepancy in the vicinity of an optimal point may not be very representative of the
entire parameter space. In return, the rigor confers accuracy and robustness to the MCMC results.

2.5. Observational data. The dataset used in the calibration was provided by the North American
Carbon Program (NACP) Site-Level Synthesis. The synthesis provides various measurements for 47
sites (called flux towers), including US-ARM and US-MOz. The spatial extent of each site is modest;
the largest, US-ARM, contains instruments arrayed over 143,000 squarekilometers. The following
data are available:

1. Meteorology data including air temperature, specific humidity, wind speed,precipitation, sur-
face pressure, surface incident shortwave radiation, surface incident long-wave radiation, and
CO2 concentration. The data were gap-filled by the NACP teams using the sameprotocol.
This data was used to drive CLM4 in our study.

2. Measured fluxes of latent and sensible heat at the native time resolutionof the observations
(30 or 60-minute) as well as the diurnal, seasonal, and annual time scales.The data were
gap-filled following a standard protocol as well. Measurements were performed using the
eddy-covariance method [3] i.e., the fluxes were not directly measured, unlike, for example,
temperature or wind speed. The observed data are not provided with measurement uncertain-
ties.

3. Remotely sensed NDVI (Normalized Difference Vegetation Index), LAI(Leaf Area Index),
and fPAR (fraction of Photosynthetically Active Radiation) phenology dataderived from
MODIS (MODerate-resolution Imaging Spectroradiometer; an instrument orbiting on NASA’s
Earth Observing System program of satellites). MODIS-based LAI wereused to parameterize
CLM4 in this study.

4. Ancillary data and information describe tower location and physical characteristics, distur-
bance history, and biological and ecological attributes of the vegetation, litter, and soil. These
data were also used to parameterize CLM4.

Measurement details and the data themselves can be obtained from [1].

2.6. Calibration parameters and sites. This paper is one in a series of studies focused on CLM
calibration using data from Ameriflux towers: US-ARM (US Atmospheric Radiation Measurement
Climate Research Facility, Southern Great Plains site,http://www.arm.gov/sites/sgp) and US-
MOz (the Missouri Ozark tower,http://ameriflux.lbl.gov/SitePages/siteInfo.aspx?US-MOz).
US-ARM, located in Oklahoma, has clay soils and a vegetation cover of shallow-rooted grasses [43,
54]. US-MOz has loamy soil and deciduous broadleaf vegetation [19, 18]. The energy closure in
these Eddy Covariance measurements ranges between 75%—90% (i.e., the 10%—25% error is split
between latent, sensible and ground heat measurements) with an uncertaintyof around 5% for Latent
Heat. Significant differences from the measurements have been observed in energy fluxes and runoff
at these sites when simulated using default CLM4 parameters, making them attractive calibration test
cases. Due to the high-dimensionality of input parameter space, and the complexity in model behav-
ior, sensitivity analyses have to be performed first, to identify a subset ofparameters that could be
optimized with the available observational data. In [22, 23] the authors examined the sensitivity of
Latent Heat (LH) fluxes and runoff computed using CLM4 to 10 hydrological parameters with a view
of ranking the important parameters. In [53], the authors leveraged the sensitivity analysis to calibrate
all 10 parameters, using LH and runoff observations. It was found that LH was more informative than

http://www.arm.gov/sites/sgp
http://ameriflux.lbl.gov/SitePages/siteInfo.aspx?US-MOz
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runoff for calibration purposes. The study also identified parameters whose posterior distributions
were appreciably different from the prior. The study used daily and monthly observations, collected
over 2003-2006, for US-ARM; for US-MOz, the duration was 2004-2007. Meteorological forcing,
site information (vegetation, soil type etc.), satellite-derived phenology, and validation data (water and
energy fluxes) were obtained from the North American Carbon Program;see [22, 53] for details on
site information and calibration data.In [53], a slightly modified version of MCMC, with a user-defined
“reference acceptance probability” input, was integrated with CLM4 and used to calibrate its param-
eters. The study does not present any of the statistical details such as convergence analysis and
posterior predictive tests. However, the authors did present results onthe improvement in predictive
skill, post-calibration. Issues related to structural error were not investigated.

Our study is an extension of the calibration performed in [53]. We limit ourselves to the top three
parameters that could be calibrated from observations; these parameterswere identified via the sen-
sitivity analysis in [22] and the preliminary tuning that was performed in [53]. These parameters are
{Fdrai, log(Qdm) ,b} for US-ARM and{Fdrai, log(Qdm) ,Sy} for US-MOz. Fdrai represents the recip-
rocal of the effective storage capacity of the subsurface aquifer used in subsurface runoff generation
and is positively correlated to LH. Small values ofFdrai lead to quick drainage of water away from
the shallow root zone, reducing evapotranspiration and LH fluxes. Beyond Fdrai ≈ 2, the sensitivity
of LH to Fdrai decreases.Qdm is the maximum subsurface drainage rate and its high values lead to
water depletion in the shallow root zone i.e., it is negatively correlated with LH.Sy is the drainable
porosity (i.e., average specific yield) under gravity and it is positively correlated with LH.b is the
Clapp-Hornberger exponent [27] describing the characteristic curves that relates the soil potential to
the volumetric water content.These parameters control the seasonality of heat fluxes (i.e., processes
far slower than diurnal variations) but whose accurate prediction is a fundamental requirement of any
climate model. In this study, we perform our calibration using quick running surrogatesof CLM4 so
that the MCMC scheme can be run to convergence. The surrogates also introduce an approximation
error (the inability of the surrogate to reproduce CLM4 outputs) motivating us to model and estimate
structural error. We will perform our calibration using both monthly and climatologically averaged
observations, such that daily / stochastic variability in observations can beaveraged out, and struc-
tural error models other than i.i.d. Gaussians can be examined. PPTs and metrics such as CRPS etc.,
discussed in §2.4 are used to gauge the quality of the calibration and also identify shortcomings in
the model (surrogate or CLM4). Thus the aim of this study is to investigate, in detail, the preliminary
calibration performed for US-ARM and US-MOz in [53], with emphasis on statistical rigor of the
calibration e.g., structural errors, predictive skill, and the effect of climatological averaging.

3. Surrogate models. In this section we will develop polynomial and GP surrogates foryc(p) =
log(LH) where LH are the monthly-averaged latent heat fluxes predicted by CLM4for parameter
settingp = {p1, p2, p3} = {Fdrai, log(Qdm) ,b} for US-ARM and{Fdrai, log(Qdm) ,Sy} for US-MOz.
The fluxes are averaged over a month. The surface fluxes are log-transformed to reduce the dynamic
range of LH, which spans an order of magnitude. The prior distributions [22] are:

Fdrai =U(0.1, 5.0)

log(Qdm) =U(log(10−6), log(10−2))

Sy =U(0.09, 0.27)

b =U(1, 15)(3.1)

whereU(a, b) denotes a uniform distribution with(a,b) as the lower and upper limits. The parameter
space(p1, p2, p3) is thus a cuboid, which is also the domain of applicability of our surrogate models.
The default values of the parameters areFdrai = 2.5, log(Qdm) = log(5.5× 10−3), Sy = 0.18 and
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b= 9.76. The bounds in the uniform priors were obtained from literature as well as via discussions with
CLM4 developers and generally reflect physically realistic values; the precise sources and rationale are
in [22].

In order to construct surrogate models, we generate a training set of CLM4 runs. We draw 256
samples from the(p1, p2, p3) cuboid via quasi Monte Carlo sampling; see [22] for details. This training
set is augmented with the 8 corners, 6 face-centers and 12 edge-centers of the parameter cuboid,
leading toN = 282 parameter samples where CLM4 is evaluated. For each parameter set, at each
site, the model is spun up by cycling the forcing at least five times (i.e., 282×5 for the entire set of
parameter samples) until all state variables reach equilibrium. Using the initial conditions generated by
the spin-up, CLM4 simulates hourly latent heat (LH) fluxes over 2003-2006 for US-ARM and 2004-
2007 for US-MOz. These are archived and averaged over each month to generate a monthly time-
series of LH predictions. The training set consists of{pl ,y

(l ,m)
c }, l = 1. . .N,m= 1. . .Nm, Nm being the

number of months in the time-series.y(l ,m)
c is the CLM4 output for thel th parameter combinationpl ,

for monthm.

Our interest in developing a new set of surrogate models arises from the challenges we faced when
trying to leverage “conventional” surrogate models based on polynomial chaos expansions (PCE) and
kriging (Gaussian Process or GP surrogates). PCE models consist of a series of weighted orthogonal
polynomial terms of increasing order; the weights are estimated from a training set of CLM4 runs
(CLM4 predictions at a set of points in the (p1, p2, p3) cuboid). Conventionally, the calculation of the
weights is performed using Galerkin projection (which leverages the orthogonal nature of the terms in
the series). These points may be chosen randomly in a space-filling manner (as we have done in this
study) or at a very precise set of quadrature points which (1) simplifies the computation of the Galerkin
projection and (2) minimizes the size of the training set. The latter approach (i.e., quadrature) is the
conventional one, and requires that CLM4 predictions be available at all quadrature points. Frequently,
the quadrature points involve non-physical parameter combinations where a complex, physics-based
simulator such as the CLM4 could potentially show (numerically) unstable behavior or outright crash.
This brittleness of the quadrature approach led us to generate the training set of runs via random
sampling. In such a situation, the weights, computed via Galerkin projection, are approximate and
have to be checked for statistical significance (since not all terms in the PCE model need be retained).
Such issues of the significance of model coefficients are routinely faced when fitting models to data via
regression, and the theory (and techniques) of model simplification and tests of model robustness are
well developed in that context. Consequently, we decided to dispense with projection-based estimation
of PCE model coefficients, and developed a method, based on shrinkage regression, of fitting the model
to data (described in § 3.1). As an added benefit (over conventional, projection-based construction of
PCE models), our new method does not require us to guess the order of the PCE model, but rather
“discovers” it in a data-driven manner.

GP modeling is another conventional way of developing surrogate models. The training data is
de-trended by fitting a linear model and the residuals are modeled as a multivariate Gaussian with a
stationary covariance. Challenges arise when the residuals are large and non-stationary, as was the
case in this study. The approximation introduced by the stationary assumption led to a model that
did not meet the minimum accuracy that we required of the models (described below). The simplest
solution to this problem is to reduce the magnitude of the residuals, for example, by using a more
sophisticated model for de-trending, so that the impact of the stationary assumption is muted. In our
new approach, we use a GP model paired with high-order PCE, which serves as the sophisticated
de-trending function. This is quite apparent in the structure of (3.2).
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3.1. Formulation. For a given month, we will represent the monthly-averaged, log-transformed
surface fluxes as

(3.2) yc(p) = y1(p;ΘΘΘ1)+y2(p;ΘΘΘ2)+δ

wherey1(p;ΘΘΘ1) is a polynomial surrogate,y2(p;ΘΘΘ2) is a GP surrogate andδ is a surrogate model
error. yc(p) is the CLM4 output for a month, for parameter settingp. In our model, we will aim for
‖δ‖2/‖yc(p)‖2 < 0.1. ΘΘΘ1 andΘΘΘ2 are parameters of the surrogate models that are estimated from the
training set. We postulate a polynomial surrogate model, of orderM, as

(3.3) y1(p;ΘΘΘ1) =
M

∑
i=0

M

∑
j=0

M

∑
k=0

ci jk pi
1p j

2pk
3, ci jk ∈ ΘΘΘ1, i + j +k≤ M.

Not all ci jk (or terms in the polynomial) are required to modelyc(p). Also, since they have to be
estimated from a limited training set, some of the estimates may have significant uncertainty, especially
if yc(p) is not very sensitive to them. Consequently, we estimate them using shrinkageregression,
specifically BCS. Separate surrogate models are made for each month.

The form of (3.2) is deliberate. The polynomial component y1(p;ΘΘΘ1) will be constructed first since
it is conceptually simple and the computational complexity of evaluating it (e.g., inside a MCMC loop) is
proportional to the number of terms in the polynomial. This is far smaller than the size of the training set.
If we fail to achieve an acceptable degree of accuracy with y1(p;ΘΘΘ1), we will progress to constructing
y2(p;ΘΘΘ2) which requires more sophisticated modeling (e.g., form of the correlation function / variogram
etc.). Further, evaluating y2(p;ΘΘΘ2) involves operations with the covariance matrix of the GP and the
computational complexity scales as the square of the size of training set. Thus, GP models y2(p;ΘΘΘ2)
are far more expensive than y1(p;ΘΘΘ1).

Modeling with polynomial chaos expansions: The pi
1p j

2pk
3 terms in (3.3) can be collated into

orthonormal polynomial chaos expansions. We normalizepi = Ci +Diξi , whereξi ∼U(0,1, ), ξi are
independently and identically distributed,i = 1. . .3. (3.3) can then be written as

(3.4) y1(p;ΘΘΘ1) =
M

∑
m=0

βmΨΨΨm(ξξξ),

whereΨΨΨm(ξξξ) is an orthonormal polynomial basis andξξξ = {ξi}, i = 1. . .3 i.e., we normalize each
parameter between the upper and lower bounds of its prior. Each indexmcorresponds to a multi-index
vectorr(m) = {r(m)

1 , r(m)
2 , r(m)

3 } such that

(3.5) ΨΨΨm(ξξξ) = ΨΨΨr(ξξξ) = Ψr1(ξ1)Ψr2(ξ2)Ψr3(ξ3), r i ∈ {1. . .M},
3

∑
i=1

r i = M.

In our case,Ψr i (ξi) are obtained from univariate Legendre polynomialsLn(ζ)

(3.6) L0(ζ) = 1, L1(ζ) = ζ, L2(ζ) =
1
2

(
3ζ2−1

)
and Ln+1(ζ) =

2n+1
n+1

ζLn(ζ)− n
n+1

Ln−1(ζ).

We will work with normalized Legendre polynomials i.e.,Ψn(ζ) =
√

2n+1Ln(ζ). Note that the RHS
of (3.5) and (3.3) are formally identical.The choice of Legendre polynomials as an orthogonal basis
set is a matter of convenience, since they have been used before to model CLM4 outputs [46]. We
formulate the shrinkage regression problem forβm next.

Shrinkage regression: For a given month, we divide ourN-member training set into a learning
set (LS) with 85% of the runs and a testing set (TS) with the remaining 15%. The set{pl ,y

(l ,m)
c }, l ∈ LS
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andm= 1. . .Nm are used to set up a shrinkage regression problem. We write the likelihoodL(y(LS)
c |βββ),

βββ = {βm}, as

(3.7) L
(

y(LS)
c |βββ

)

∝
(
2πς2)−

|LS|
2 exp

(

−‖y(LS)
c −∑mβmΨΨΨm(ξξξ(LS)

)‖2
2

2ς2

)

wherey(LS)
c is the vector of CLM4 predictions from theLS runs, ξξξ(LS) are the corresponding (nor-

malized) CLM4 parameters and the discrepancy between the CLM4 and polynomial surrogate model
predictions is modeled using i.i.d. normalsN (0,ς2). In order to estimate the sparsest model condi-
tional on the data, we impose a Laplace prior

π(βββ|λ) =

(
λ
2

)M+1

exp

(

−λ
M

∑
m=0

|βm|
)

and solve the deterministic optimization problem to obtain the maximuma posteriori(MAP) values
of βm

arg max
βββ

[

log
(

L
(

y(LS)
c |βββ

))

−λ‖βββ‖1

]

.

We cast this into a hierarchical Bayesian setting that removes the discontinuous nature of aℓ1 norm.
We modelβm with a Gaussian prior with standard deviationsm and, in turn, model allsm with a Gamma
prior

π
(
βm|s2

m

)
=
(
2πs2

m

)− 1
2 exp

(

− β2
m

2s2
m

)

andπ
(
s2
m|λ2)=

λ2

2
exp

(

−s2
mλ2

2

)

.

Note that if we integrate outs2
m, we recover the Laplace prior. This hierarchical formulation can be

solved using a greedy algorithm commonly used in BCS and described in [4]. It returns non-zero
values ofβm that can be estimated from theLS , revealing, in theory, the exact form of the polynomial
i.e., the terms in (3.3) that are required to modelyc. Further information on the use of BCS to develop
surrogate models of CLM4 is in [46].

Cross-validation studies revealed that BCS could be somewhat imperfect i.e., if we start with a
largeM (e.g.,M = 10) the non-zeroβm returned by BCS depend on theLS used. While some low-
order terms are always chosen, a significant number of high-order terms were chosen quite often (we
will provide an example of this uncertainty below). This uncertainty in the identityof high-order terms
led us to use cross-validation to choose an appropriateM. Note that choosing anMth order polynomial
for surrogate modeling does not imply that we retain all the terms in the polynomial.

Using cross-validation to choose the polynomial order M: We divided the training set intoK
distinctLS/TSpairs,K = 500, to performK-fold cross-validation. Polynomial models, withM = 1. . .5
were fitted using the CLM4 runs in theLS to estimateβm. Theβm were then used to predict log(LH)
usingpi in the TS. Relative errors were calculated for both theLSandTS, for all K LS/TSpairs and
then averaged to obtain the mean errors for a given orderM, as described below.

Let the vectory(LS)
c be the CLM4 output for an arbitrary month generated by the vector of param-

eter combinationsξξξ(LS) contained in a learning set,LS. Let βm be the model coefficients generated
from LS. We define a relative error for the learning set, for a polynomial model oforderM, as

E(LS)
M =

‖y(LS)
c −∑M

m=1 βmΨΨΨm

(

ξξξ(LS)
)

‖2

‖y(LS)
c ‖2

.
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Since we constructK LS/TSpairs duringK-fold cross-validation, it is more convenient to define the
relative error for an individual test i.e.

E(LS)
M,l =

‖y(LS)
c,l −∑M

m=1 βm,l ΨΨΨm

(

ξξξ(LS)
l

)

‖2

‖y(LS)
c,l ‖2

,

the relative error for thel th learning set,l = 1. . .K and the mean relative error (for the learning set)
over allK cross-validation tests

E(LS)
M =

1
K

K

∑
l=1

E(LS)
M,l .

In an identical manner, we can develop the relative errorsE(TS)
M,l andE(TS)

M for the testing sets. Note
that when computing the testing set errors, the model coefficientsβm,l are always computed from the
corresponding (i.e.,l th) learning set.

If the fitting is proper and no spurious terms are retained, thenE(LS)
M ≈ E(TS)

M , i.e., the fitted model
is equally predictive for theLS andTS. In case of overfitting, the polynomial model will be more
predictive for theLS. We will choose a value ofM for developing surrogate models if

(3.8) η =
E(TS)

M

E(LS)
M

≤ 1.05.

GP models : Fitting a polynomial model does not ensure that‖yc(p)− y1(p;ΘΘΘ1)‖2/‖yc(p)‖2 <
0.1. If ∆y(p) = yc(p)− y1(p;ΘΘΘ1), wherep are samples from the training set, is smoothly distributed
in the(p1, p2, p3) space, and the mean over the training set samples is zero, then the discrepancy can
be modeled as multivariate Gaussian i.e.,∆y(p) ∼N (0,Σ). The key is to modelΣ appropriately.Any
covariance/correlation model can be used for Σ; in this study, we will use a variogram model involving
distance (and a single range / lengthscale) in the (ξ1,ξ2,ξ3) normalized parameter space. We will
compute the empirical semi-variogram and fit various two-parameter variogram models – exponential,
linear, Gaussian, spherical etc. – via maximum likelihood estimation. In general, the estimation will
yield a magnitude (sill) and a lengthscale (range) of the variogram model, along with a goodness-of-fit
metric. The form of the variogram model and its parameters (the sill and the range) constitute the
parameterΘΘΘ2.

3.2. Models for US-ARM. As a first step we examine polynomial fits to theLSdata by BCS, for
April, climatologically averaged over 2003-2006. In Fig.1 we plot the distribution ofE(LS)

M,l andE(TS)
M,l

for M = {1,2,4} generated via a 500-fold cross-validation test. The top, middle and bottom rows of
plots are obtained forM = 1,2 and 4. The distribution of errors from theLS (240 CLM4 runs), in
the first column, is somewhat different from that of theTSerrors (42 runs); however, forM = 1 and
2, the average ofLSandTSerrors are very similar. This is not the case forM = 4. We also plot the
distribution of the number of terms retained in the polynomial by the BCS algorithm. For M = 1 and 2,
there is little uncertainty; all the terms in the polynomial are retained. The same behavior, i.e., linear
and quadratic models proving to be “well-behaved” was seen for other months too. This is not the
case for the quartic model, where there is considerable uncertainty in the number of terms retained (it
varies from 25 to 35), let alone the identity of the terms retained in polynomial. Itis this uncertainty
that led us to use cross-validation (CV) and (3.8) to choose the model orderM.

In Fig. 2 we examine the order of polynomial model to use. These models are obtained byBCS-

fitting of the model toLSdata. The data is obtained from a 500-fold CV. On the left, we plotE(LS)
M for
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Figure 1. Distribution of E(LS)
M,l and E(TS)

M,l for M = {1,2,4} as calculated from a 500-fold cross-validation test. In the
top row, we use M= 1. The corresponding values for M are 2 and 4 for the middle and bottom row of plots. In the first

column, we plot the distribution of E(LS)
M,l from a LS of 240 CLM4 runs. In the second column, we plot the distribution of

E(TS)
M,l from a TS of 42 runs. In the last column, we plot the distribution of the number of terms retained in the polynomial

model by the shrinkage regression algorithm.

all months using climatologically averaged CLM4 predictions over 2003-2006. We useM = 1. . .5.

On the right, we plotη for the same months. We see, on the left, thatE(LS)
M decreases asM increases

i.e., model complexity improves predictive skill, even though shrinkage regression removes many
of the polynomial terms. However, this improvement is largely due to overfitting,as is shown in

the plot of η on the right. For cubic and higher-order models,E(TS)
M is larger thanE(LS)

M and the
improvement of predictive skill with model complexity is not seen. Since we wishto have models
that are equally predictive everywhere, we see that quadratic models (M = 2) offer the best solution.
Also, note that the relative errors are small, less than 2%. This allows us sety2(p;ΘΘΘ2) = 0 in (3.2)
i.e., skip any GP modeling for US-ARM, and yet meet the accuracy requirement for surrogate models
(‖yc(p)−y1(p;ΘΘΘ1)‖2/‖yc(p)‖2 < 0.1).

We repeated the same process with the models created for each of the 48 months in 2003—2006 for
US-ARM; the results are in the Supplementary Materials (Fig. S1) as well as in[41]. The same issues
were observed – BCS proved to be inadequate and 500-fold cross-validation was required.η < 1.05
was obtained for linear and quadratic models, and quadratic surrogate models, which provided< 4%
relative errors, were retained for further use.

As a check of the sufficiency of the training data, we halved it and refitted the surrogate models.
The smaller training set led to models that were less accurate, but nevertheless met the 10% surrogate
model error threshold, indicating that there was no need for expanding the dataset.
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Figure 2. Left: We plotE(LS)
M for US-ARM, for all months using climatologically-averaged CLM4 predictions over

2003-2006. We use M= 1. . .5. Right: We plotη for the same months. We see that, as expected, high-order polynomial
models provide lower errors when fitted to LS. This is largely due to overfitting sinceη ≈ 1 holds only for linear and
quadratic models; in the rest of the models, higher predictive skill in the LS does not carry over to the TS.

3.3. Models for US-MOz. We performed the same analysis, as described above, for US-MOz, but
only using climatologically averaged LH predictions. The results were much thesame. The shrinkage

regression algorithm is imperfect andE(LS)
M reduces with model complexity (when using theLS) but

the same predictive skill of the surrogate models is not evident when tested using theTS. The plots

of E(LS)
M and E(TS)

M for each month, for variousM can be found in Fig.3 (top). Again, quadratic

models provide the best balance between minimizingE(LS)
M while keepingη ≤ 1.05. Note thatE(LS)

M ,
M = 2, is between 15% and 20% (which does not meet our 10% surrogate modelerror threshold for
acceptability) and hence we will augment the polynomial model in (3.2) with a GP approximation
y2(p;ΘΘΘ2).

We construct GP modelsy2(p;ΘΘΘ2), for each month, using∆y(p) = yc(p)− y1(p;ΘΘΘ1) computed
from theLS data. In Fig. 3 (bottom left) we show the empirical semi-variogram for ∆y(p) in the nor-
malized (p1, p2, p3) space and its approximation using an exponential semi-variogram for the month of
April. A better fit could not be obtained using other semi-variogram models such as spherical, linear etc.
The resulting model, y2(p;ΘΘΘ2) in (3.2), is added to y1(p;ΘΘΘ1), and used to compute the relative error
for the TSdataset. The relative errors are averaged over a 500-fold cross-validation test and plotted in
Fig. 3 (bottom right) with a solid line. The errors without the GP augmentation are also plotted (dashed
line). We see that including the GP surrogate halves the surrogate modeling error to bring it below the
10% relative error target that we have adopted for surrogate models.

We next attempted to construct surrogate models without climatological averaging the data i.e.,
using the 48-month time-series spanning 2004-2007. We found that we could construct only 40 (out
of 48) such models that met the 10% relative error requirement. We conjecture that this may be due to
meteorological anomalies or extremes. This difficulty was not seasonal in nature - after climatological
averaging, surrogate models could be constructed for all the months. Thisalso implies that for US-
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MOz, we will only be able to calibrate CLM4 using climatologically averaged observations.
We checked whether the same level of accuracy could be obtained by halving the training data. We

could not achieve the requisite 10% surrogate modeling error indicating that (1) the training data was
barely sufficient for constructing acceptable (10% error) models and (2) a larger training dataset would
lead to better surrogates.

4. Calibration. In this section we use the surrogate models created in §3 to calibrate 3 hydrologi-
cal parameters of CLM4. Having established that quadratic polynomials andGPs with their covariance
modeled using an exponential variogram suffice, we remake the surrogates using all the training data.
We will use the surrogate models in an MCMC calibration effort to obtain PDFs of the parameters of
interest. We address the following issues:

1. Accuracy: Does calibration improve predictive skill vis-à-vis the default CLM4 parameter
setting?

2. Impact of climatological averaging:Does using the climatological mean of the observations
have a significant impact on the parameter estimates?

3. Impact of the structural error model:The 48-month time-series model allows us to explore 2
structural error models of differing complexities. What are the ramificationsof using a simple
versus a complex structural error model?

4.1. Formulation. Let Y(obs) = {y(obs)
m },m= 1. . .Nm be the observed values of log-transformed

latent heat surface fluxes, averaged over a month. We rewrite (3.2) for monthmas

yc,m(p) = ys,m(p)+δm = y1(p;ΘΘΘ1,m)+y2(p;ΘΘΘ2,m)+δm,

whereys,m(p) is the surrogate model prediction for monthm, for parameter settingp. Note that
y2(p;ΘΘΘ2,m) is zero for US-ARM. LetYs(p) = {ys,m(p)},m = 1. . .Nm. Since the surrogate model
parameters were estimated from the training set, we will consider them known constants. We relate
the observations to the model predictions as

(4.1) Y(obs) = Ys(p)+ εεε, εεε = {εm},m= 1. . .Nm, εεε ∼N (0,Γ).

Here, εεε is a combination of structural and measurement errors. The errors in dailymeasurements
of LH (not log(LH) as used in this paper) have been discussed in §2.6; however, we average these
measurements over a month and considerably reduce the stochastic component of the error. There is
currently no systematic study of the error in these measurements. The parameter vector isp = {pk} =
{Fdrai, log(Qdm) ,Sy} (for US-ARM) and{Fdrai, log(Qdm) ,b} for US-MOz. Per (2.3), the posterior
distribution is given by

(4.2) P
(

p,Γ|Y(obs)
)

∝ |Γ|− 1
2 exp

(

−1
2

[

Y(obs)−Ys(p)
]T

Γ−1
[

Y(obs)−Ys(p)
])

π(Γ)
3

∏
k=1

π(pk) ,

where we have explicitly imposed independent priors on the elements ofp, as given by (3.1). We will
consider two models forεεε:

1. Uncorrelated errors: We will assume that the monthly model-observation discrepanciesεi

are uncorrelated and can be modeled asεi ∼N (0,σ2). We will estimateσ2 along withp. We model
Γ = diag(σ2). We will estimate the precisionχ = σ−2 for convenience. The prior forχ is

χ ∼ Gamma

(
n0

2
,
n0S2

0

2

)

wheren0 andS0 are user-supplied values. The two parameters of the Gamma distribution are the shape
and the rate (the reciprocal of the scale) respectively. Since the likelihood in (4.2) is Gaussian (with
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Figure 3. Top left: We plot E(LS)
M for US-MOz, for all months using climatologically-averaged CLM4 predictions over

2004-2007. We use M = 1. . .5. Top right: We plot η for the same months. We see that, as expected, high-order polynomial
models provide lower errors when fitted to LS. This is largely due to overfitting since η ≈ 1 holds only for linear and quadratic
models; in the rest of the models, higher predictive skill in the LS does not carry over to the TS. Note that none of the
polynomial models provide surrogate modeling errors less than 10% for all months. Bottom left: Empirical semi-variogram
for the discrepancy yc(p)− y1(p;ΘΘΘ1) in the ξ1 − ξ2 − ξ3 space (in symbols) and its approximation using an exponential
variogram. Results are forlog(LH) in April, for US-MOz, climatologically-averaged over 2004-2007. Bottom right: The
relative error obtained using a quadratic polynomial model and a GP model is plotted (solid line) for all 12 month, for
US-MOz, using climatologically averaged CLM4 predictions for 2004-2007. The error obtained without the GP surrogate
is plotted with a dashed line. The horizontal line is the 10% accuracy thresholdfor surrogate models. These errors were
computed using only the TS data from a 500-fold CV test.
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a known mean, conditional onp), the inverse-Gamma distribution forσ2 is a conjugate prior, and
allows us to sampleχ using a Gibbs sampler [13, 41]. This circumvents issues regarding mixing and
efficiency of sampling. We usen0 = 0.1 andS2

0 = 0.01. The prior is essentially flat forχ > 3.
2. Temporally correlated errors: We will model εεε ∼ N (0,Γ). We assume a stationary distri-

bution and modelΓ using a two-parameter variogram. The variogram model will be chosen by fitting
to the defectγγγ = {Y(obs) −Ys(popt)}, wherepopt is obtained via a deterministic optimization method.
The variogram model’s parameters, sill (σ2) and range (τ), are calibrated along withp.

The inverse problem in (4.2) was solved using a combination of a Gibbs sampler (forχ) and the
adaptive MH sampler DRAM [20] (for the parameters without conjugate priors). Convergence of the
chain was monitored using the Raftery-Lewis (RL) statistic [39]. The RL statistic ensures that the
sampler has collected sufficient samples to estimate (in our case) the median value of each parameter
within a tight tolerance. It does so by recursively downsampling the chain (e.g., retain every alternate
sample in the stream of samples collected by the MCMC method) till the chain resembles a first-order
Markov process. It then checks whether there are sufficient samplesin the downsampled (or thinned)
chain to approximate the stationary solution of the Markov process within the specified tolerance. The
code was written in R [38] and we used the DRAM implementation in FME [49], which contains the
MH-Gibbs combination discussed above.

Posterior predictive test (PPT) and error metrics: MCMC solution yields the posterior distri-
bution P(p,σ2|Y(obs)) (or P(p,σ2,τ|Y(obs)), if using temporally correlated errors) which is checked
using posterior predictive tests (PPT). We chooseNs samples from the posterior distribution and
generate a set of predictionsY(ppt)

l = {yppt
l ,m} = {ys,m(pl )+ εεεl}, l = 1. . .Ns,m= 1. . .Nm, whereεεεl ∼

N (0,Γl ),Γl = diag(σ2
l ) or Γl = Γ(σ2

l ,τl ). Thus for each observationy(obs)
m , we obtainNs predictions

yppt
l ,m, l = 1. . .Ns. The quality of these predictions is gauged using the mean absolute error (MAE), con-

tinuous rank probability score (CRPS) and the verification rank histogram(VRH). CRPS and MAE
are integrated measures of the error in the ensemble predictions vis-à-vis observations. The VRH is a
metric that is used to probe the calibration further. The details of these metrics are in [16, 15], but they
are summarized below.

MAE: TheMAE is calculated as

MAE =
1

NmNs

Ns

∑
l=1

Nm

∑
m=1

|y(obs)
m −yppt

l ,m|

CRPS; The CRPS is calculated as a mean overNm CRPSm, the CRPS for monthm. For a given
monthm, we useNs predictions{yppt

l ,m}, l . . .Ns to compute the cumulative distribution function (CDF)
Fm(y). We use it in the computation ofCRPSm as:

CRPSm =
Z ∞

∞

(

Fm(y)−H(y−y(obs)
m )

)

dy.

H(z) is the Heaviside function.
VRH: For each monthm, we sort the predictions and the observations to find the rank of the

observation. TheNm ranks are binned and used to create a histogram. In a perfect calibration, the
ranks of the observed values should resemble draws from a uniform distribution. If the observations’
ranks are clustered at the lower or upper end, the calibration in under-dispersive i.e., model predictions
are not sufficiently sensitive to the model parameters. If the observations’ ranks are clustered in the
middle of the distribution, the calibration is over-dispersive. In either case,a change in CLM4 or the
structural error model is indicated.

4.2. Calibration using US-ARM data. The observational dataset for US-ARM consists ofNm =
48 months of log(LH) readings (2003-2006). As a first step towards calibration, we use the surrogate
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models to perform a deterministic calibration using a box-constrained optimizationmethod (L-BFGS-
B, [6]) to obtainpopt = {Fdrai, log(Qdm) ,b} = {0.97, log(10−2),0.1}. Note that the “optimal” values
for two of the parameters are at the edge of the prior distribution. In Fig.4, (top left) we plot 48 months
of observations of log(LH), and the predictions using surrogate models generated usingpopt andpde f,
the default values of{Fdrai, log(Qdm) ,b}= {2.5, log(5.5×10−3),9.76}. We see thatpopt provides far
better predictions thanpde f, which are largely over-predictions. Further, we clearly see that the model-
data discrepancy is correlated in time. We assume that the temporally correlateddiscrepancies are
stationary and modelΓ using a variogram. In Fig.4 (top right), we plot the empirical semi-variogram
and a fit with a spherical variogram model,

ρ(t) = σ2
[(

3t
2τ

− t3

2τ3

)

H(τ− t)+H(t − τ)
]

obtainingσ2
opt = 0.1515 andτopt = 7.32 months. Heret is time measured in months. Note that when

τ is small i.e., uncorrelated errors, the variogram model reduces to an i.i.d. Gaussian model for the
errors. Fits with exponential, linear, etc. variogram models were inferior.Note that the empirical
semi-variogram shows a decline (an improvement in correlation) beyond 8 months. This is because
CLM4 is seen to consistently underpredict LH during the winter months, leading to correlated winter
errors with an approximately 12-month period. This, in turn, leads to a downturn in the semi-variance.
The spherical variogram excludes the periodicity in errors. Since the variation in latent heat fluxes
is seasonal, errors with a 12-month periodicity can be expected and the correlation timescale of the
structural error should be less than a year. The structural error would repeat every season. In Fig. 4
(bottom row) we plot the auto-correlation function (ACF) and the partial auto-correlation function (PACF)
of the error (difference between observations and predictions generated using popt). Clearly, the errors
are correlated; a Durbin-Watson test rejects the hypothesis of i.i.d Gaussian errors comprehensively
(p-value of 6×10−11).

Next we use the dataset to estimatep with a temporally-correlated structural error model. We
use the spherical variogram above to modelΓ, and estimate{Fdrai, log(Qdm) ,b,σ2,τ}. The priors
areσ2 ∼ Exp(σ2

opt) andτ ∼ Exp(τopt). Note that the exponential priors are informative, and we will
need to check their impact on the parameter estimates. In Fig.5, we plot the priors (symbols), the
marginalized posterior distributions for{Fdrai, log(Qdm) ,b,σ2,τ}, along with their default values (or
σ2

opt or τopt). There is considerable uncertainty in the parameter estimates; the marginalized PDFs
are not narrow. For log(Qdm), the default value and the peak of the posterior PDF agree. ForFdrai,
there is considerable disagreement between the peak of the PDF and default parameter value. The
calibrated value of the Clapp-Hornberger exponentb bears little resemblance to the default CLM4
value. The exponential priors adopted forσ2 andτ accomplish two functions - they use the “optimal
values” from the L-BFGS-B fit, while expressing a prior belief that MCMC calibration could calibrate
them to smaller values. Small values ofσ2 definep that are more predictive. A smallτ indicates that
the structural error is uncorrelated in time. The PDFs in Fig.5 show that the PDF ofσ2 peaks to the
left of σ2

opt. The MCMC calibration provides realizations ofp that have smaller disagreements with
observations. The PDF forτ peaks to the left ofτopt, but is far from zero. The calibration indicates
that errors are correlated, though the correlation timescale is less than the 7.72 months obtained by
L-BFGS-B fit. Thus the spherical variogram does not reduce to i.i.d. Gaussian errors. 105 MCMC
steps (and model invocations) were required to obtain converged posterior distributions.

The ACF and PACF plotted in Fig. 4 (bottom row) show that in the vicinity of popt, the correlated
error model is strongly preferred. However, the PDFs in Fig. 5 are quite wide, indicating that the 5
parameters may be too many to be resolved from a 48-month time-series. Consequently, we repeat
the calibration after modeling the structural error as uncorrelated i.i.d. Gaussians. This calibration has
one less parameter to estimate (noτ). The prior onσ2 was the conjugate inverse Gamma distribution,
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Figure 4. Top left: Plots of log(LH) as observed at US-ARM over 2003-2006 (plotted with symbols). We plot the CLM4
predictions (using surrogates) generated withpopt. The predictions with default values ofp, pde f, are plotted with a dashed
line. Top right: We plot the empirical semi-variogram calculated from the defects γγγ and a spherical variogram fit to the
data. Bottom row: We plot the auto-correlation function (ACF, left) and partial ACF (PACF, right) of the discrepancy between
observations and popt predictions (black line top-left subfigure). The dashed lines indicate the bounds outside of which the
null hypothesis of no auto-correlation is rejected with a significance level of 5%. The existence of auto-correlated errors is
quite clear.

as discussed earlier. The marginalized posterior distributions are plotted in Fig. 5 using dashed lines.
We see that the peaks of the PDFs ofFdrai and log(Qdm) are approximately at the same location as
the PDFs obtained using the temporally correlated structural error model; however, the PDFs obtained
using the uncorrelated structural error model are sharper. The PDF for b, the Clapp-Hornberger ex-
ponent, shows that the default value is far too large. The PDF forσ2 is narrower for the uncorrelated
structural error model and peaks to the left i.e., calibration may be slightly morepredictive than the
one performed with temporally correlated errors. Comparing withpopt, we find that the deterministic
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Figure 5. Marginalized posterior distributions for{Fdrai, log(Qdm) ,b,σ2,τ}, after calibrating to US-ARM data. The
vertical line is the default value orσ2

opt or τopt. The symbols denote the prior distribution. The solid line denotes calibration
using a temporally correlated structural error model while the dashed lineis obtained when we assume the structural error
is uncorrelated and can be modeled as i.i.d. Gaussian.

calibration converges to the peak of the PDF forFdrai (at Fdrai = 0.97). It reached the boundaries for
the other two parameters.

We next perform PPTs for both the calibrations and plot their results in Fig.6. We useNs = 200
runs in our posterior predictive tests. Above, we plot the median predictions from PPTs generated
using both the calibrations. The error-bars denote the inter-quartile range (IQR). Observations and
predictions usingpopt are also plotted. There is little doubt that calibration draws predictions closer
to observations;pde f causes over-predictions. Further, the IQR captures all the observations except
in the latter half of 2005 (months 30-36), when all observations are systematically lower than the
predictions. The observations tend to be near the upper end of the IQR. There is little to choose
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between the PPTs generated using the competing structural error models. Lower left, we plot the
VRH for the two calibrations. An ideal calibration would have yielded a uniform distribution; clearly,
we are far from being so. The low observations during months 30-36 (which lead to low ranks for
the observations) are clearly seen in the peak at the lower end. Otherwise, the observation ranks are
clustered in the range 100-150, for both the calibrations. In Table1, we tabulate the CRPS and MAE
for the two calibrations; they are the same. Lower right, we plot an individual realization of predictions
generated by the two calibrations. The observations and the mean predictionare plotted for reference.
The prediction generated using correlated errors, which varies smoothlyaround the mean is plotted
with crosses. The prediction with unfilled circles varies in an uncorrelated fashion around the mean.
We see that these variations, due to differing structural error models, are insignificant compared to the
seasonal variations and are hardly distinguishable. This can be seen from Fig.5 - σ2 is around 0.1,
whereas log(LH) varies between 2.5—4.5 during a year. This also provides an estimate of the relative
magnitudes of the structural error vis-à-vis predictions.

Given the small differences in both the posterior distributions of the parameters and the predictive
skill of the models when the two structural error models are used, the simpler structural error model
based on uncorrelated errors is preferable. However, the use of thetemporally correlated model does
reveal the timescales of the structural error (around 5.5 months). This, inturn, can help identify and
improve parameterizations of physical processes that may be contributing to them and potentially
result in reduced model structural uncertainty.

Finally, we explore the impact of climatological averaging. This reduces the time-series from
48 months to 12; we model the structural error as uncorrelated to reduce the dimensionality of the
calibration problem. The deterministic calibration revealedpopt = {0.1, log(5.9×10−4),1.0}, which
shows that the optimization has reached the edge of the prior distribution for 2out of 3 parameters.
The deterministic optimization was seen to be sensitive to the starting guess and wereport the best of
10 runs, starting from different guesses. In Fig.7, top and middle rows, we plot the marginalized pos-
terior PDFs with solid lines; with dashed lines, we plot the calibration obtained without climatological
averaging and with uncorrelated structural errors. We see modest changes in the calibrations forFdrai

and log(Qdm). Further, we see that, like the calibration studies above, the peaks of the PDF do not
agree with the default values of the parameters. The calibrations forb are similar and very different
from the default value. We also see thatσ2 is far smaller when the observations are climatologically
averaged, as it reduces the impact of outliers e.g., the low log(LH) observations during months 30-36.
Further, the peak of the PDF corresponds to the value obtained via deterministic calibration.

In Fig. 7 (lower left) we plot the results from the PPT, along with the prediction usingpde f and
Ns = 200. Clearly, the default CLM parameters over-predict log(LH) and thecalibration largely rec-
tifies this shortcoming. The IQR of the predictions (the error bars) captures the observations. Lower
right, we plot the VRH from the calibration. Clearly, the calibration is not ideal,but since the histogram
reflects just 12 ranks, it is difficult to draw conclusions regarding the finer aspects of the calibration.
In Table1, we mention the MAE and CRPS for the calibration. These error metrics are almost half of
those achieved with the non-averaged data. The MCMC method required 50,000 model invocations
to reach a converged4-dimensional posterior distribution(125,000 for the 5-dimensional one), when
tested using the Raftery-Lewis method.

4.3. Calibration with US-MOz data. We next estimate{Fdrai, log(Qdm) ,Sy} using data from US-
MOz to check the variation of these parameters with sites. We could not construct accurate surrogates
for US-MOz without climatological averaging, and consequently, we will perform calibration only
with climatologically averaged data. The data (latent heat surface fluxes) spans 2004-2007, climato-
logically averaged monthly and log-transformed. Note that the surrogate models for US-MOz consist
of a quadratic and a GP component. The model-observation mismatch is modeled as uncorrelated-in-
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Table 1
CRPS and MAE for the four calibrations performed for US-ARM and US-MOz.The units of CRPS and MAE are the

same as those of observations.

Calibration test case MAE CRPS
US-ARM, 48-months of data, correlated errors 0.37 0.18

US-ARM, 48-months of data, uncorrelated errors 0.37 0.18
US-ARM, climatologically-averaged data, uncorrelated errors0.203 0.096
US-MOz, climatologically-averaged data, uncorrelated errors0.205 0.098

time. The MCMC chain was run 50,000 steps to convergence.popt = {2.639, log(4.43×10−3),0.2},
but the optimization method was seen to converge to multiple (local) minima depending upon the start-
ing guess; the figures provided here correspond to the best of 10 runs. Note that the second parameter
is not far from its default value (see §3).

In Fig. 8 we plot the marginalized PDFs for the CLM4 parameters being calibrated, along with
the prior.Fdrai and log(Qdm) how strong disagreement with the default CLM values, thoughSy peaks
close to it. The PDF forFdrai and log(Qdm) are bimodal, which also explains the inaccuracy inpopt.
The deterministic method correctly captured the peak in theSy PDF, but converged to the smaller peaks
(in fact, locations in the PDF with zero slope) in the PDFs for log(Qdm) andFdrai. MCMC, being a
global optimization method, has the practical benefit of being resilient to many of the complexities of
the optimization surface and locates the peak of the PDF which our 10 attempts witha deterministic
optimization method failed to capture.

The three parameters show complex interdependence. There is a negative correlation between
Fdrai and Sy, with high values ofFdrai compensating for lowerSy and a weak positive correlation
between log(Qdm) andSy. The plots of the samples that reveal these correlations are provided in the
Supplementary Materials (Fig. S2) as well as in [41]. In Fig. 8, bottom left, we plot the PPT runs
usingNs = 200. We see minor improvement over the default parameters.Thus the net contribution
of the calibration are not new values of {Fdrai, log(Qdm) ,Sy} but rather the variability/uncertainty in
their values that can be supported by the LH observations. Bottom right, we plot the VRH, which is
inconclusive due to the small number of ranks being histogrammed. The MAE and CRPS values are
in Table1, and the PPT for US-MOz is seen to have errors similar to US-ARM.

Finally, we check if the calibration performed with surrogates improves the predictive skill of
CLM4 (not the surrogates). We repeat the PPTs performed with surrogates for US-ARM and US-MOz
using CLM4. Due to the cost of the simulation, only 32 CLM4 runs (instead of 200 for the surrogates)
were used. In Fig.9, we compare the PPTs performed using surrogates and CLM4. The error bars
plot the median and IQR for surrogates; the+ symbol and dashed lines are the corresponding CLM4
plots. We see that the predictions using CLM4 are very close to those obtained using surrogates. Thus
the improvement in the predictive skill of the CLM4 surrogates carry over tothe original model itself.

4.4. Discussions. The four calibrations discussed above have led to parameter estimates that are
clearly more predictive than CLM4’s default settings. Further, they havedemonstrated the importance
of using MCMC for the calibration. Deterministic methods, in our case L-BFGS-B, showed a signifi-
cant sensitivity to the starting guess and frequently fell into local minima that welater isolated in the
PDFs of the parameters(for US-MOz) in Fig. 8. Further, the posterior distribution of the parameters
bears no resemblance to a Gaussian and methods such as Ensemble Kalman Filters (which assume
Gaussian distributions) should not be used to estimate them. Finally, the PDFs for the parameters are
quite wide and parameter estimates are uncertain. The width of the PDFs could be due to the fact that
the surrogates (and by implication, CLM4) are not sufficiently responsive to our three calibration pa-
rameters. This suspicion is bolstered by the VRH in Fig.6 which shows ranks clustered at the top end,
indicating an under-dispersive posterior prediction. The under-dispersed nature could be a reflection
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of model shortcomings or because we have varied only 3 parameters in this study. While these param-
eters are the most sensitive individually, their interaction with other parameters (which are currently
held constant) need not have an insignificant effect on LH prediction.

The estimates could perhaps be improved i.e., the PDFs made narrower, by using a second ob-
servation stream. However, the previous calibration effort [53] identified that runoff, when used in
conjunction with latent heat fluxes, was not very informative on the parameters of interest and our
experiments with sensible heat fluxes (not presented here) removed it asa contender.

We found that climatological averaging had a modest impact on the PDFs of theestimated param-
eters. Note that the climatologically averaged dataset is quarter the size of theoriginal one. The muted
impact of such a drastic decrease in the observational dataset size seemsto imply that the original ob-
servations were dominated by seasonal variability i.e., they could be approximated as minor variations
about a repeated annual profile (the climatological mean). The smooth observational time-series ob-
tained after climatological averaging also led to smaller structural error estimates and tighter posterior
predictions (see CRPS and MAE in Table1).

One of the main aims in this study was to model and estimate the structural error andexplore the
impact of the model on parameter estimation and prediction accuracy. We examined an uncorrelated-
in-time and a temporally-correlated structural error model. Their impact on theparameter PDFs was
modest and the effect on posterior predictions, smaller still. The latter was due to seasonal variation in
LH, which dwarfed the structural error magnitude. From a purely predictive point of view, the simpler
uncorrelated-in-time structural error model is preferable. However, the temporally-correlated error
model identified the correlation timescale of the error, which in turn can be used to identify (models
of) physical processes which may be responsible for it.

Different priors were used for the two structural error models. The uncorrelated-in-time structural
error model used a non-informative conjugate prior; the other used informative exponential priors. Yet
the estimates for the structural error magnitude from the two competing models arenot too dissimilar
and both are unequivocally better than the estimate obtained using L-BFGS-B. This implies that (1)
L-BFGS-B failed to find the global optimal for the parameters and (2) the impact of the exponential
priors was rather muted.

The use of surrogates proved to be a mixed blessing. It allowed us to develop converged PDFs
of the parameters without recourse to approximations (except the surrogates themselves) and examine
the impact of surrogate error models and climatological averaging. These would have been very time-
consuming had we used CLM4 natively as in [53]. Yet the structural error that we estimate is that of
the surrogate and not of CLM4. While that does not impact the correlation timescale of the structural
error, its magnitude,σ2, should be considered an approximation to CLM4’s structural error.

Our calibration can, in principle, be compared with [53] in two ways: by comparing the posterior
distributions of the parameters and by comparing the predictive skills of the two models. The parame-
ters’ posterior distributions do not agree. While our PDFs for US-ARM are unimodal, those in [53] are
multimodal. In case of US-MOz, our PDFs are multimodal, as are the ones in [53], but the modes are
quite different. Further, the study in [53] developed 4 separate posterior distributions, for four differ-
ent values of “reference acceptance probability”, which has no counterpart in our conventional MCMC
method. It is unclear which distribution one should compare to. Comparing the predictive skill of the
calibrated model is far more difficult due to the difference in the dimensionality of the inverse problem
(10 parameters in [53] to our 3). A 10-dimensional calibration will result in a larger predictive variabil-
ity compared to our three-dimensional one; this larger variability can be captured by metrics such as
CRPS. However [53] compared their calibration to observations using an ensemble mean prediction
and its Root Mean Square Error (RMSE). Without variability information, ensemble predictions from
two posterior distributions of differing dimensionalities cannot be directly compared.

There could be a number of causesof differences in the two calibrations. In [53], the authors
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calibrated 10 parameters to our 3; we have kept the remaining 7 fixed at theirdefaults. In addition, the
calibration in [53] used CLM4 directly and does not incur errors due to surrogate modeling; given that
such errors are around 4%, this is probably a minor contributor to the difference. Also, the convergence
criterion used in [53] is based on the mean statistics of the posterior samples during the burn-in period,
not convergence statistics on their PDFs. Reconciling the differences between these two calibrations
is left for future work.
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Figure 6. Top: Results from the PPT performed using posterior distributions generated using both the correlated and
uncorrelated models for the structural error, for US-ARM. The PPT testswere performed with 200 samples. The solid
line is the median prediction, from the correlated-errors calibration; the dashed line is the corresponding prediction from
the uncorrelated-error calibration. The error bars denote the inter-quartile range (IQR). The observations of log(LH) are
plotted with symbols. The prediction withpde f is plotted with a dotted line. Lower left: VRH for both the calibrations, using
blue for correlated-errors calibration and red for the other. Lower right:Comparison of two realizations of predictions
vis-à-vis the observations (solid circles). We plot the average predictionfrom the PPT, generated using correlated structural
errors, with a solid line. One realization of these predictions is plotted with crosses; it shows the smooth variation in time
that the observations show. The plot with unfilled circles shows a predictiongenerated using the uncorrelated structural
error model. Compared to the seasonal variation in log(LH), the variationin predictions due to the two different structural
error models is not very noticeable.
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Figure 8. Top and middle rows: Posterior distributions for{Fdrai, log(Qdm) ,Sy,σ2} for US-MOz, using climatologi-
cally averaged observations. The priors are plotted with symbols and the default values are vertical lines. The vertical line
for σ2 is the value obtained using deterministic calibration. Bottom left: PPT results from the Bayesian calibration using
US-MOz data. Bottom right: The VRH for the calibration.
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Figure 9. Left: Plot of the PPT (200 runs) conducted with surrogates for US-ARM. The median prediction is plotted
with a ◦, and the error bars denote the IQR. The+ symbol is the median prediction from a 32-run PPT performed with
CLM4; the dashed lines denote the IQR. Observations are plotted with•. We see that the two PPTs are very similar and the
improvement in predictive skill of the surrogates holds true for the originalmodel too. Right: The same comparison, with
the same outcome, for US-MOz.

5. Conclusions. We have investigated the Bayesian calibration of three hydrological parameters
of CLM4 using observations of monthly-averaged latent heat fluxes, collected over a 4-year period.
The choice of these parameters was deliberate. They are the most important hydrological parameters
that control the seasonality of heat fluxes at the two sites studied here (as revealed by the sensitivity
studies in [22]). Accurate prediction of the seasonality of heat fluxes is a fundamental requirement
of any climate model. The seasonal nature of the processes involved allowed us to filter out fast
time-scale (e.g., daily) variations (“noise” from the viewpoint of seasonal variations) and focus on the
accuracy of the calibration under two competing error models. Such a Bayesian calibration and error
estimation study has not been done before for CLM4. Finally, it allowed us to present an example of how
complex models, such as CLM4, could be subjected to rigorous statistical calibration and uncertainty
quantification.

In this study, we computed the posterior distribution of the parameters using surrogate models of
CLM4 and MCMC. The surrogate models were constructed using polynomialtrend functions and GP
modeling. The Bayesian inverse problem posed to estimate the parameters incorporated two alternative
representations of the structural error (or the model—data discrepancy). We investigated their impact
on the parameter estimates and the predictive skill, after calibration. We also explored the impact of
using the climatological mean of the observations for the calibration. We demonstrated our method on
data from two sites, US-ARM and US-MOz, each with three unknown parameters.

We developed an approach to construct surrogate models for CLM4. Inparticular, we investigated
a shrinkage regression method, Bayesian Compressive Sensing (BCS), to fit a polynomial model to a
training set of CLM4 runs. BCS was augmented with cross-validation to construct a robust procedure
for devising polynomial surrogates for computationally expensive models.The method is general, and
can be used elsewhere.

We found that Bayesian calibration led to posterior distributions of parameters that improved
the predictive skill of CLM4. The marginal PDFs of the parameters were quite wide i.e., there is
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a considerable amount of uncertainty in the parameter estimates. The choice of the structural error
model impacts the parameters’ PDFs modestly and its effect on the posterior predictions is marginal.
However, the more sophisticated model allowed us to estimate the time-scale of the structural error,
which can help identify and improve models of the physical processes that contribute to the error.

In the single case of US-ARM where we could check the effect of climatological averaging, its
impact was rather muted on the estimated parameters. We conjecture that this may be because sea-
sonal variability is the dominant signal in LH observations. Since this is largelypreserved during
climatological averaging, the PDFs of the estimated parameters did not changemuch.

The parameter estimates that we developed for the two sites do not agree between themselves,
nor do they agree with the default values used in CLM4. This is not entirely surprising since the param-
eters depend on the hydrologic regimes associated with local soil properties, topological and geologic
conditions. These vary significantly in North America. The default CLM4 parameter values were devel-
oped to better constrain simulated hydrologic budgets at continental and global scales. Consequently,
they are “globally averaged” constants in some sense, and are not expected to be equally predictive
locally. Consequently if CLM4 is to be used at individual sites such as flux towers or watersheds, re-
calibration is recommended. As observational data from a single site is likely to contain measurement
errors (which will then propagate into parameters estimated from them), we would advocate an esti-
mation procedure that quantifies uncertainty, e.g., the Bayesian one that we have developed. Finally, it
is unknown whether the parameter estimates developed for a site can be re-used for predictive CLM4
runs at similar sites. The transferability of parameter estimates across sites under similar hydrologic
regimes is now being investigated under a follow-up study [42].

Our calibration yielded PDFs which are at variance with those developed in aprevious calibration
study. The two investigations are similar, but not identical, with respect to observations, the calibration
parameters and the numerical method. We have speculated about the causes of this discrepancy, but
identifying the causes is beyond the scope of this study. We will investigate it inthe future.

REFERENCES

[1] NACP Site: Tower Meteorology, Flux Observations with Uncertainty, and Ancillary Data.
http://daac.ornl.gov/NACP/guides/NACP_Site_Tower_Met_and_Flux_v2.html.

[2] J. D. ANNAN , J. C. HARGREAVES, N. R. EDWARDS, AND R. MARSH, Parameter estimation in an intermediate
complexity Earth system model using an ensemble Kalman filter, Ocean modeling, 8 (2005), pp. 135–154.

[3] M. A UBINET, T. VESALA, AND D. PAPALE (EDS.), Eddy Covariance: A Practical Guide to Measurement and Data
Analysis, Springer Atmospheric Sciences, Springer Verlag, 2012.

[4] S. D. BABACAN , R. MOLINA , AND A. K. K ATSAGGELOS, Bayesian compressive sensing using Laplace priors,
IEEE Transactions on Signal Processing, 19 (2010).

[5] S. BROOKS AND A. GELMAN , General methods for monitoring convergence of iterative simulations, Journal of
Computational and Graphical Statistics, 7 (1998), pp. 434–445.

[6] R. H. BYRD, P. LU, J. NOCEDAL, AND C. ZHU, A limited memory algorithm for bound-constrained optimization,
SIAM Journal on Scientific Computing, 16 (1995), pp. 1190–1208.

[7] R. CRAIU , J. ROSENTAL, AND C. YANG, Learn from thy neighbor: Parallel-chain regional adaptive MCMC, Journal
of the Americal Statistical Association, (2009), pp. 1454–1466.

[8] W. N. EDELING, P. CINNELLA , R. P. DWIGHT, AND H. BIJL, Bayesian estimates of parameter variability in the k-ε
turbulence model, Journal of Computational Physics, 258 (2013), pp. 73–94.

[9] M. EMORY, R. PECNIK, AND G. IACCARINO, Modeling structural uncertainties in Reynolds-Averaged computations
of shock/boundary layer interactions, in 49th AIAA Aerospace Sciences Meeting, 2011.

[10] J. W. HURRELL ET. AL , The Community Earth System model: A framework for collaborative research, Bulletin of
the American Meteorological Society, 94 (2013), pp. 1339–1360.

[11] Y. Q. LUO ET AL, A framework for benchmarking land models, Biogeosciences, 9 (2012), pp. 3857–3874.
[12] G. EVENSEN, Data assimilation : The ensemble Kalman filter, Springer, 2007.
[13] A. GELMAN , J. B. CARLIN , H. S. STERN, AND D. B. RUBIN, Bayesian data analysis, Chapman & Hall/ CRC,

2004, ch. Model checking and improvement.

http://daac.ornl.gov/NACP/guides/NACP_Site_Tower_Met_and_Flux_v2.html


30 J. Ray et al.

[14] W. R. GILKS, S. RICHARDSON, AND D. J. SPIEGELHALTER, Markov Chain Monte Carlo in Practice, Chapman
and Hall, 1996.

[15] TILMANN GNEITING, FADOUA BALABDAOUI , AND ADRIAN E. RAFTERY, Probabilistic forecasts, calibration and
sharpness, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69 (2007), pp. 243–268.

[16] TILMANN GNEITING AND ADRIAN E RAFTERY, Strictly proper scoring rules, prediction, and estimation, Journal
of the American Statistical Association, 102 (2007), pp. 359–378.

[17] M. GOHLER, J. MAI , AND M. CUNTZ, Use of eigendecomposition in a parameter sensitivity analysis of the Com-
munity Land Model, Journal of Geophysical Research: Biogeosciences, 118 (2013), pp. 904–921.

[18] L. GU, W. J. MASSMAN, R. LEUNING, S. G. PALLARDY , T. MEYERS, P. J. HANSON, J. S. RIGGS, K. P. HOS-
MAN , AND B. YANG, The fundamental equation of eddy covariance and its application in flux measurements,
Agricultural and Forest Meteorology, 152 (2012), pp. 135–148.

[19] L. GU, T. MEYERS, S. G. PALLARDY , P. J. HANSON, B. YANG, M. HEUER, K. P. HOSMAN, J. S. RIGGS,
D. SLUSS, AND S. D. WULLSCHLEGER, Direct and indirect effects of atmospheric conditions and soil moisture
on surface energy partitioning revealed by a prolonged drought at a temperate forest site, Journal of Geophysical
Research, 111 (2006). D16102.

[20] HEIKKI HAARIO , MARKO LAINE , ANTOINIETTA M IRA , AND EERO SAKSMAN , DRAM-Efficient adaptive MCMC,
Statistics and Computing, 16 (2006), pp. 339–354.

[21] T. HASTIE, R. TIBSHIRANI, AND J. FRIEDMAN, The elements of statistical learning, Springer, 2009.
[22] Z. HOU, M. HUANG, L. R. LEUNG, G. LIN , AND D. M. RICCIUTO, Sensitivity of surface flux simulations to

hydrologic parameters based on an uncertainty quantification frameworkapplied to the Community Land Model,
Journal of Geophysical Research, 117 (2012). D15108.

[23] M. HUANG, Z. HOU, L. R. LEUNG, Y. KE, Y. L IU , Z. FANG, AND Y. SUN, Uncertainty analysis of runoff simu-
lations and parameter identifiability in the Community Land Model - Evidence from MOPEX basins, Journal of
Hydrometeorology, (2013).

[24] L. I NGBER, Very fast simulated annealing, Mathematical and Computer Modeling, 12 (1989), pp. 967–973.
[25] C. JACKSON, M. K. SEN, AND P. L. STOFFA, An efficient stochastic Bayesian approach to optimal parameter and

uncertainty estimation for climate model predictions, Journal of Climate, 17 (2004), pp. 2828–2841.
[26] H. JÄRVINEN , P. RÄISÄNEN, M. LAINE , J. TAMMINEN , A. L IN , E. OJA, A. SOLONEN, AND H. HAARIO, Estima-

tion of ECHAM5 climate model closure parameters with adaptive MCMC, Atmospheric Chemistry and Physics,
10 (2010), pp. 9993–10002.

[27] B. J.COSBY, G. M. HORNBERGER, R. B. CLAPP, AND T. R. GINN, A statistical exploration of the relationships of
soil moisture characteristics to the physical properties of soils, Water Resources Research, 20 (1984), pp. 682–
690.

[28] J.-C. JOUHAUD, P. SAGAUT, B. ENAUX , AND J. LAURENCEAU, Sensitivity analysis and multiobjective optimization
for LES numerical parameters, Journal of Fluid Engineering, 130 (2008), p. 021401.

[29] M. C. KENNEDY AND A. O’ HAGAN, Bayesian calibration of computer models (with discussion), Journal of the
Royal Statistical Society B, 63 (2001), pp. 425–464.

[30] J. LAURENCEAU AND P. SAGAUT, Building efficient response surfaces of aerodynamic functions with kriging and
cokriging, AIAA Journal, 46 (2008), pp. 498–507.

[31] DAVID M. L AWRENCE, KEITH W. OLESON, MARK G. FLANNER, PETERE. THORNTON, SEAN C. SWENSONPE-
TER J. LAWRENCE, XUBIN ZENG, ZONG-L IANG YANG, SAMUEL LEWIS, KOICHI SAKAGUCHI , GORDONB.
BONAN, AND ANDREW G SLATER, Parameterization improvements and functional and structural advancesin
version 4 of the community land model, Journal of Advances in Modeling Earth Systems, 3 (2011).

[32] H. LEI, M. HUANG, L. R. LEUNG, D. YANG, X. SHI , J. MAO, D. J. HAYES, C. R. SCHWALM , Y. WEI, AND

S. LIU, Sensitivity of global terrestrial gross primary production to hydrologic states simulated by the community
land model using two runoff parameterizations, Journal of Advances in Modeling Earth Systems, 6 (2014).

[33] G. LENG, M. HUANG, Q. TANG, H. GAO, AND L. R. LEUNG, Modeling the effects of groundwater-fed irrigation on
terrestrial hydrology over the conterminous united states, Journal of Hydrometeorology, 15 (2014), pp. 957–972.

[34] G.-Y. NIU , Z.-L. YANG, R. E. DICKINSON, AND L.E. GULDEN, A simple TOPMODEL-based runoff parameteri-
zation (SIMTOP) for use in global climate models, Journal of Geophysical Research, 111 (2005), p. D211106.

[35] G.-Y. NIU , Z.-L. YANG, R. E. DICKINSON, L.E. GULDEN, AND H. SU, Development of a simple groundwater
model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data, Journal of
Geophysical Research, 112 (2007), p. D07103.

[36] K. W. OLESON, D. M. LAWRENCE, G B. BONAN, M. G. FLANNER, E. KLUZEK , P. J. LAWRENCE, S. LEVIS,
S. C. SWENSON, AND P. E. THORNTON, Technical description of version 4.0 of the Community Land Model
(CLM), 2010.

[37] V. R. N. PAUWELS, N. E. C. VERHOEST, G. J. M. DE LANNOY, V. GUISSARD, C. LACAU , AND P. DEFOUMY,
Optimization of a coupled hydrology-crop growth model through the assimilation of observed soil moisture and
leaf area index values using an ensemble Kalman filter, Water Resources Research, 43 (2007). W04421.



BAYESIAN CALIBRATION OF CLM 31

[38] R CORE TEAM, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria, 2012. ISBN 3-900051-07-0.

[39] A. RAFTERY AND STEVEN M. L EWIS, Implementing MCMC, in Markov Chain Monte Carlo in Practice, W. R.
Gilks, S. Richardson, and D. J. Spiegelhalter, eds., Chapman and Hall,1996, pp. 115–130.

[40] C. E. RASMUSSEN ANDC. K. I WILLIAMS , Gaussian process for machine learning, MIT Press, 2006.
[41] J. RAY, Z. HOU, M. HUANG, AND L. SWILER, Bayesian calibration of the community land model using surrogates,

SAND Report SAND2014-0867, Sandia National Laboratories, Livermore, CA 94551-0969, February 2013.
Unclassified and unlimited release.

[42] H. REN, Z. HOU, M. HUANG, Y. SUN, T. TESFA, AND L. R. LEUNG, Hydrological parameter sensitivity and
transferability across 431 MOPEX basins and a new basin classification system, Journal of Hydrology, (2014).
Under review.

[43] W. J. RILEY, S. C. BIRAUD , M. S. TORN, M. L. FISCHER, D. P. BILLESBACH, AND J. A. BERRY, Regional CO2
and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling and scaling, Journal of
Geophysical Research – Biogeosciences, 114 (2009). G04009.

[44] J. SACKS, W. J. WELCH, T. J. MITCHELL , AND H. P. WYNN, Design and analysis of computer experiments,
Statistical Science, 4 (1989), pp. 409–435.

[45] T. SANTER, B. WILLIAMS , AND W. NOTZ, The design and analysis of computer experiments, Springer, New York,
NY, 2003.

[46] K. SARGSYAN, C. SAFTA , H. N. NAJM, B. J. DEBUSSCHERE, D. RICCIUTO, AND P. THORNTON, Dimensionality
reduction for complex models via Bayesian compressive sensing, International Journal for Uncertainty Quantifi-
cation, (2014). In press.

[47] T. W. SIMPSON, V. TOROPOV, V. BALABANOV , AND F. A. C. VIANA , Design and analysis of computer experi-
ments in multidisciplinary optimization: A review of how far we have come or not, in Proceedings of the 12th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, no. AIAA Paper 2008-5802, Victoria,
British Columbia, Canada, 2008.

[48] W. C. SKAMAROCK AND J. B. KLEMP, A time-split nonhydrostatic atmospheric model for weather research and
forecasting applications, Journal of Computational Physics, 227 (2008), pp. :3465–3485.

[49] K. SOETAERT AND T. PETZOLDT, Inverse modeling, sensitivity and Monte Carlo in R using package FME, Journal
of Statistical Software, 33 (2010), pp. 1–28.

[50] A. SOLONEN, P. OLLINAHO , M. LAINE , H. HAARIO , J. TAMMINEN , AND H. JÄRVINEN, Efficient MCMC for
climate model parameter estimation: Parallel adaptive chains and early rejection, Bayesian Analysis, 7 (2012),
pp. 715–736.

[51] C. B. STORLIE AND J. C. HELTON, Multiple predictor smoothing methods for sensitivity analysis: Description of
techniques, Reliability Engineering and System Safety, 94 (2008), pp. 28–54.

[52] C. B. STORLIE, L. P. SWILER, J. C. HELTON, AND C. J. SALLABERRY , Implementation and evaluation of non-
parametric regression procedures for sensitivity analysis of computationally demanding models, Reliability En-
gineering and System Safety, 94 (2009), pp. 1735–1763.

[53] Y. SUN, Z. HOU, M. HUANG, F. TIAN , AND L. RUBY LEUNG, Inverse modeling of hydrologic parameters using
surface flux and runoff observations in the Community Land Model, Hydrology and Earth System Sciences, 17
(2013), pp. 4995–5011.

[54] A. E. SUYKER AND S. B. VERMA, Evapotranspiration of irrigated and rainfed maize-soybean cropping systems,
Agricultural and Forest Meteorology, 149 (2009), pp. 43–452.

[55] L. TOMASSINI, P. REICHERT, R. KNUTTI , T. F. STOCKER, AND M. E. BORSUK, Robust Bayesian uncertainty
analysis of climate system properties using Markov chain Monte Carlo methods, Journal of Climate, 20 (2007),
pp. 1239–1254.

[56] W. N. VENABLES AND B. D. RIPLEY, Modern Applied Statistics in S, Springer-Verlag, new York, NY, 2002.
[57] B. YANG, Y. QIAN , G. LIN , L. R. LEUNG, P. J. RASCH, G. J. ZHANG, S. A. MCFARLANE , C. ZHAO, Y. ZHANG,

H. WANG, M. WANG, AND X. L IU, Uncertainty quantification and parameter tuning in the CAM5 Zhang-
Mcfarlane convection scheme and impact of improved convection on the global circulation and climate, Journal
of Geophysical Research: Atmospheres, 118 (2013), pp. 395–415.

[58] B. YANG, Y. QIAN , G. LIN , R. LEUNG, AND Y. ZHANG, Some issues in uncertainty quantification and parameter
tuning: A case study of convective parameterization in the WRF regional climate model, Atmospheric Chemistry
and Physics, 12 (2012), pp. 2409–2427.

[59] X. ZENG, B. A. DREWNIAK , AND E. M. CONSTANTINESCU, Calibration of the crop model in the Community Land
Model, Geosciences Model Development Discussions, 6 (2013), pp. 379–398.


