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BAYESIAN CALIBRATION OF THE COMMUNITY LAND MODEL USING SURR OGATES*

J. RayT,11 Z. Hou,i M. Huang,iK. SargsyanJr and L. Swiler®

Abstract. We present results from the Bayesian calibration of hydrological petens of the Community Land Model
(CLM), which is often used in climate simulations and Earth system modeldatistical inverse problem is
formulated for three hydrological parameters, conditioned on obsiens of latent heat surface fluxes over 48
months. Our calibration method uses polynomial and Gaussian pragesgates of the CLM, and solves the
parameter estimation problem using a Markov chain Monte Carlo sampbsterfior probability densities for
the parameters are developed for two sites with different soil and wegetzovers. Our method also allows
us to examine the structural error in CLM under two error models. We tfiadl accurate surrogate models
could be created for CLM in three out of the four cases we investigated. The posterior distributions lead to
better prediction than the default parameter values in CLM. Climatologicaélyaaing the observations does
not modify the parameters’ distributions significantly. The structuraremodel reveals a correlation time-scale
which can potentially be used to identify physical processes that coulartetmting to it. While the calibrated
CLM has a higher predictive skill, the calibration is under-dispersive.

Key words. Bayesian calibration, Community Land Model, surrogate models, stal@tror models, Markov chain Monte
Carlo
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1. Introduction. The Community Land Model (CLM,38]), the land component of the Com-
munity Earth System Model (CESML()), is used to simulate terrestrial water, energy, and biogeo-
chemical processes in offline and coupled climate simulations. The CLM cergdiige number of
parameters that govern its behavior, many of which are not directly nedalsurThey are estimated
from indirect measurements, and are therefore subject to greattaimtgr Further, many parameters
are site-dependent i.e., they vary within certain rand€s32, 23]. In addition, due to difficulties in
estimating such parameters at a global scale, CLM is released with defauds Jar these parame-
ters obtained by benchmarking its simulations against global datasets usirg siatjstics L1]. The
predictive accuracy of CLM is, to a large degree, dependent on afgaionorrect” values of these
parameters, and calibrating to site-specific observational data is the bass wiedoing so. Model
calibration, to date, has meant optimizing parameter values to reduce thedisties between histor-
ical observations and their corresponding model predictions (e.g.,®okt). This leads to a number
of practical challenges. For example, gradient-descent optimization mettmpd&-BFGS-B §] are
sensitive to their starting guesses and can yield multiple “optimal” parameter catiois. More
seriously, due to the limited amount of observational data, the measuremenst ierobservations,
and the modeling shortcomings/simplifications in CLM, parameters cannot be &stimizh a high
degree of accuracy. As a result, the parameter estimates are uncartanch parametric uncertainty
has not been well quantified. Consequently, CLM is not distributed wittofdrounds” that reflect
parametric uncertainty after calibration.
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The problem of parametric uncertainty can be addressed using Bayediamtion. It develops
parameter estimates as probability density functions (PDFs). The PDFsogenbral i.e. we do
not have to stipulate a canonical family of distributions like Gaussian, lograloetc. or make any
approximations in the numerical scheme if the Bayesian calibration problenvéiamsing a Markov
chain Monte Carlo (MCMC) method. The PDF captures parametric uncer@nutythe correlation
between parameter estimates concisely. Further, such a calibration alseesne predictive skill
of CLM; instead of attempting to predict observations with one “optimal” parancet@bination, one
samples the PDF and constructs an ensemble of CLM predictions. Simple statisticaires]6, 15]
can be used to summarize the “goodness of fit”; further, the statistical nesealgo reveal other as-
pects of the fit (e.g., over-/under-dispersive calibrations) that peospecific directions to pursue to
improve CLM. However, Bayesian calibration poses two technical chakengirstly, like contem-
porary optimization methods, Bayesian calibration minimizes the model-obserdigicnepancy. In
addition, it also requires one to specify a statistical model for the discogpg@enceforth called the
structural error model). The sensitivity of calibration to this choice thentvde gauged. Secondly,
MCMC can require many (O(#)-O(1C)) CLM evaluations to reach converged posterior estimates,
which is prohibitive. Thus, while Bayesian calibration holds much promis€fdvl calibration, its
use has been raré3, 59.

In this paper, we will describe a method that can allow MCMC calibration of CLke method
is based on surrogates of CLM - inexpensive polynomial or Gauss@regs representations of the
mapping between CLM parameters being calibrated and the CLM outputs icin wie have measure-
ments. We therefore build on, and extend, recent developments on tlodé sisgogates to calibrate
computationally expensive model3( 28 and MCMC calibration of complex (e.g., those based on
partial differential equations) models including structural errors (i.e.fuhdamental inability of the
model to reproduce observations due to modeling simplificatidh<€)]] Our method is general, but
we will demonstrate it in the estimation of three hydrological parameters usisgradtions from
two sites, US-ARM, located in Oklahoma, and US-MOz, located in Missouré fbthod will also
yield an approximation of CLM'’s structural error. Our method is depehdaran accurate surrogate
model; in its absence, our calibration method does not work. We will alsepres example of this
shortcoming.

The novel contributions of this paper are:

1. Procedure for building CLM surrogatesiVhile the idea of building surrogates for compu-
tationally expensive models is not ne@d], the particular form chosen for the surrogate is problem
dependent. We describe the practical details of sampling the space o&tiatiparameters, perform-
ing the runs (which, in our case, produce a time-series of outputs), anprtitess of constructing
surrogates while simultaneously simplifying them using sparsity. In particuéwill exploit a sparse
reconstruction method, Bayesian compressive sendingp[perform model simplification.

2. Choice of error model and their ramification®ayesian calibration requires one to specify
an error model. If competing models exist (as they do in our case), thete I a systematic way of
selecting one. We present an illustration of how to select an error model.

3. Gauging the post-calibration predictive skill of CLMVhen one has a “point” estimate of
parameters (the defaults or optimal values obtained from deterministic optimigatienpredictive
skill of a model is estimated by calculating bias and root-mean-square{B&8E) with respect to
observations. When parameters are estimated as PDFs, a differefhesetranetrics can be used.
Further, some of them can reveal how the model needs to be improved.ilVégempute these error
metrics as a demonstration of the usefulness of Bayesian calibration bjengppdrameter-estimation-
with-uncertainty-quantification.

The paper is organized as follows. Ii28we review background literature on surrogate models,
sparse reconstruction, kriging and MCMC methods. We also review eurqus work, based on sen-
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sitivity analysis of CLM at the two chosen sites, which underlie the selectioaldfration parameters
given the observational dataset at hamdaddition, we provide a brief description of the hydrologic
modules and their parameters in version 4 of CLM. We also describe the observational dataset used to
drive, parameterize and calibrate the model used in this study. In § 3 we construct surrogate models.
In 84, we use them to perform the calibration and discuss the implications of tHesréale conclude
in 85.

2. Background.

2.1. Probabilistic calibration of climate models. The implications of parametric uncertainty in
climate models (or their submodels) have long been appreciated and thetedeavefforts to estimate
them as PDF<H]. Due to the computational cost of such models, these methods have soreghice
the number of model invocations necessary, largely via approximations mutherical formulation
of the estimation problem. Variants of the Very Fast Simulated Annealing MeWie8A, [24, 25])
have been used to tune parameters of the CAM5 Zhang-McFarlanectionvechemef7]. VFSA
leverages simulated annealing to reduce CAM5 (Community Atmosphere Maatsipn 5) runs,
whereas multiple starting points allowed an efficient search in a high-dimetglanameter space.
The same method was used to tune 6 parameters in the Weather Researcteaadtihg (WRFA48])
model in B8]. In order to address the high-dimensionality of the problem, the authors used three
separate starting points and a total of 150 WRF runs. PDFs of parameters that had higher predictive
skill than the default parameter settings were plotted but the quality of the at#dibrwas checked
only using an optimal parameter estimate from the calibration i.e., the accuracgaht summary,
rather than the full probabilistic calibration was checked. The ensemble IKdiitex (EnKF, [12])
provides a scalable Bayesian calibration technique, under the assumjatidhetitalibrated PDFs of
the parameters are Gaussian. 2 the authors calibrated a coupled AOGCM (atmospheric ocean
coupled general circulation model) of intermediate complexity using EnKH87], the authors used
EnKFs to optimize a hydrology-crop model using data from central Belgium.

Of late, due to advances in computational resources, there have berptatte perform the cal-
ibration without any approximations i.e., to solve the Bayesian calibration prohkng MCMC.

In [53], 10 hydrological parameters of the CLM version 4 (CLM4) were catilausing latent heat
flux measurements from the flux tower sites at US-ARM and US-MOz. Pdears@mples from the
posterior PDF (the post-calibration PDFs of the parameters) provided pettdictions compared to
the default CLM4 settings when their predictions were model averagd89)nthe authors present a
MCMC calibration of 6 parameters of a CLM crop model. The convergehtteedMCMC chain was
checked via the Brooks-Gelman-Rubin statis&f [The paper does not contain any plots of the pa-
rameter PDFs or any discussion on estimates of structural error of the niteeimproved ability of
the calibrated PDFs to predict observations is shown55h fhe authors applied Bayesian uncertainty
analysis to 12 parameters of the Bern2.5D climate model. They first definedparaonetric set of
prior distributions for climate sensitivity and then updated the entire set usfDiyl®l Motivated by
practical needs in estimating parameters of climate and Earth system modelghibres &n 0] eval-
uate the computational gains attainable through parallel adaptive MCMCahdRejection using a
realistic climate modelin [26] the authors use an adaptive MCMC method (DRAM, [20]) to estimate
four parameters of a general circulation model, ECHAMS5, using measurements of radiative fluxes at

the top of the atmosphere (TOA). The study develops joint posterior PDFs of the four parameters and
investigates multiple likelihood formulations which differ in the type and number of summary statistics

(of the TOA radiative fluxes) which are included in the likelihood function. The runs were performed with
ECHAMS (and not its surrogates) and the longest run involved 5600 ECHAMS evaluations. Rather than
using a conventional method such as the Gelman-Rubin-Brooks statistic or the Raftery-Lewis test as

the stopping criteria for the MCMC run, the sampling was stopped when the tenth, fiftieth and ninetieth
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percentiles of all four parameters were deemed to have reached a stationary value. The posterior dis-
tributions were used to predict global annual mean radiative fluxes and compared with measurements
to identify the best likelihood formulation (alternatively, the best set of summary statistics of the TOA
radiative fluxes to be used for parameter calibrations).

2.2. The Community Land Model. ~ Community Land Model, Version 4 (CLM4), was released
by the National Center for Atmospheric Research to serve as the land cemtpaf the Community
Earth System Modeld6, 31]. It simulates biogeophysical processes such as energy and wats flu
from canopy and soil, heat transfer in soil and snow, hydrology ibf canopy and snow and stomatal
physiology and photosynthesis. Even though most of its applications aducted at continental
or global scales33, 32], CLM4 can be run at any resolution such as flux tower si% gr small
watershedsZ3].

In CLM4, soil water up to a depth of 3.8 meters from the surface is simulatied) tise one-
dimensional Richards equation
08  dq

(2.1) ot 0z
where8 [mm?3/mm?] is the volumetric soil water contertjs the height above some datum in the soil
column,t is time andSis a soil moisture sink (e.g., extraction by roots, or subsurface drainage)
is the moisture flux through the sdikg m—2? s71]. The moisture fluxg is driven by the soil matric
potential’|mm| by the equation
oW —We)

0z

whereK is the hydraulic conductivitymm s71] and Wg the equilibrium potential. BotiK and Wg
depend on the local moisture content. This dependence is modeled withareexgl e.g.,

()

l'IJE,sat esat ’

whereb is the Clapp-Hornberger exponent abgh and We sor constants that depend on local soil
composition. The dependencekofs more complex (as it includes the effect of ice), but in its absence,
a similar exponential model holds (and, correspondingly, introducesyether parametédsy). b also
appears in that expression (see the CLM4 technical r3@d¢r details).

The upper boundary condition is the infiltration flgg, [kg m—2 s71] into the top soil layer
given by

q=—K

Ginfl = Qiiq,grnd — Yover — Qevp

wheredeyp is the evaporation from the top soil layeyiq grnd is the liquid precipitation reaching the
ground plus any snow melt amgdyer is the surface runoff, parameterized 84,[35]

Qover = fsatQliiq,grnd + (1— fsat) max{O, (qnq,grnd - qul,max>}

whereginfi max iS the maximum soil infiltration capacitfsat = fmaxe€Xp(—Csfoverzn) is the saturated
fraction of the locationzs is the water table depth arfghax, Cs, fover are model parameters.

The lower boundary condition, parameterized as the recharge to therfadesaquifer §recharge
[kg m~2 s71)) is given by

B ABjig N + Az
Orecharge= A
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whereABjiq N andAzy are changes in liquid water content at the bottom of the soil column, obtained
by solving equationZ.1) numerically. The aquifer recharge, alternatively, the subsurfageffinto
the aquifer §qrai) Is modeled as distributed sinksn (2.1) and is expressed as

Orecharge= Jdrai = Qdmexp(—Fdraiz) ,

whereFgqi[m™1], the runoff decay factor ar@dm[kgnTzs*l, the maximum subsurface drainage, are
model parameters. The aquifer, which lies beneath the soil column, ahdreges water with it, has
an average specific yield &.

Thus the hydrological dynamics in CLM4 are governed by 10 parametés«Cs, fover, Fdrai,
Qdm: S, b, WE sat, 0sat andKsa. The sensitivity of latent heat fluxes to these 10 parameters were in-
vestigated in 22]. For the US-ARM site,{ Fyrai, Qam, b} were found to be most important; their
counterparts for US-MOz werfFgrai, Qam, Sy}

2.3. Surrogate models. The task of calibrating computationally expensive models can be con-
siderably eased if one can devise a computationally inexpensive sterdgsurrogate model approxi-
mately captures the input-output mapping of the true (computationally exggmsadel. It can prove
to be an efficient solution to problems in sensitivity analysis and optimization élg@aire multiple
model invocations; se&€, 30] for some examples of their use in aerodynamics. Frequently surro-
gates are lower-fidelity or statistical models (e.g., regression models) afbtayriting to a limited
number of sample runs of the true model (also called the training data)1J52], the authors com-
pare various smoothing predictors and non-parametric approachesathatt as surrogate models.
In [47] the authors provide an overview of statistical surrogates and lowelitfidnodels that can be
used as proxies for computationally expensive models.

Polynomials and kriging (also called Gaussian process or GP models) avetyvoommon sur-
rogates, and they can also used together (called regression krigingsindtidynomial surrogates are
called trend functions when used together with GP models. Polynomials greffierent in captur-
ing large-scale variations/trends in the parameters space. A multivariateopoigi form is postulated
(with unknown coefficients multiplying the terms) and their values are estimaigttfre training data
via regression. The orders of the polynomial and the terms to be retaiaaticéated by the training
data. One can incrementally simplify (remove terms from) the polynomial expres®fit to data
and gauge the improvement in fit using the Akaike Information Criteridh [Alternatively, one may
use shrinkage regression methods like Bayesian compressive sdB&igi]) to simplify an overly
complex model; seelp] for an example of its use to make a polynomial surrogate for CLM4. Note that
the terms retained in the polynomial are dependent on the training data. Krédd-validationZ1]
of the model is recommended.

Stationary smooth Gaussian procesgEs 44, 45] are the approach we adopted for some of our
surrogate models. They embody the input-output mapping via a set of miaitevawvormal random
variables. A parametric covariance function (alternatively, a semi-vaaioyis then constructed as a
function of the inputs. The covariance function is based on the idea tteat thile inputs are close, the
correlation between the outputs will be high. As a result, the uncertaintgiasso with the model’'s
predictions is small for input values that are close to the training points, agelflar input values that
are further away. Gaussian processes are popular surrogate rhedalsse they (1) typically interpo-
late the data from which they are built, (2) provide a spatially varying estimatteeofariance of the
error in their predictions, and (3) do not require a specific type of ispatple design. As mentioned
above, they are often used in conjunction with simple polynomial models (limepragiratic), which
model the large-scale trends whereas the GP represents short-enggods from the polynomial
predictions. A Bayesian perspective on such models i&% [
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2.4. Bayesian inverse problems and their MCMC solution. Estimation of parameters from ob-
servations can be cast as a Bayesian inverse problemy +eat(p) be a model with parameteps
The model outputs are related to observatigti&d as

(2.2) y®9 =y+e=m(p)+e, e~A(0,I)

wheree is a combination of measurement and structural error af(@,") denotes a multivariate
Gaussian distribution with zero mean ands the covariance matrix. Leip,I") be the prior belief
regarding the distribution of the parameters and the structural error.a§g® theorem, the posterior
PDFP(p, F]y(Obs)) of the parameters, conditioned on observations, can be given by

@3 PRI O Rep| =3 (v —m(p) T (1 —m(p)) | m(p.T)

-~

Likelihood £ (y(©b9|p,)

This is the post-calibration or posterior distribution of the parameieits can be constructed by
sampling from the right hand side d2.Q) and generating a histogram of the samples. Markov chain
Monte Carlo (MCMC) methodsl{] allow the sampling to be performed efficiently. In MCMC, one
starts with a guess of the paramepgr Using this as the base, a propogais chosen from a proposal
PDF (often, but not necessarily, a multivariate Gauss@imy|po). p’ is retained according to certain
acceptance criteria, which ensure that the chain is ergodic (so thatraathafinite length visits all
parts of the parameter space) and satisfies detailed balance (i.e., higitilitp parameters are visited
more often than the low probability ones). The mixing of the MCMC chain in thampater space
is largely dependent oQ(:). Adaptive MCMC methodsZ0] seek to tune an optimd) i.e., estimate
its covariance periodically using samplgsthat have already been collected by the MCMC chain.
Multichain MCMC methodsj0, 7] that use multiple concurrent chains to explore the parameter space
have been used in the estimation of climate model parame2éfs The MCMC chain is stopped
when the samples it collects results in a stationary posterior distribﬁ’lﬂpri'\y("b%. An efficient
MCMC method can requir®(10*) samples to represent a posterior distribution for 3-4 parameters; for
complex-shaped distributions, far more samples may be required. Thergence of a MCMC chain
can be judged using the Raftery-LewB9[ or Brooks-Gelman-Rubing] statistics. An unconverged
MCMC chain usually leads to parameter PDFs that are too narrow i.e., itestdeates parametric
uncertainty, and provides erroneous estimates of high-order momens disthibution such as inter-
parameter correlations. The quality of a Bayesian calibration is gaugeddigror predictive tests
(PPTs; chapter on “Model Checking and Improvement”ifi]]. Samples of(p,I") are drawn from
the posterior distribution and used to replicate observations via an ensefniledel simulations
using €.2). The predictive skill of the ensemble is gauged by metrics such as the divauknk
predictive score (CRPS), verification rank histogram (VRH), meanlabserror (MAE) etc. 16, 15].
The significance of these metrics will be discussed #wvghere we use them to test our calibration.

Note that the formulation used for Bayesian calibration in (2.2) and (2.3) is a standard one. However,
the model m(p) used in the calculation of the likelihood is not. m(p) provides monthly averaged
predictions of latent heat fluxes and consists of a set of surrogates of CLM4, one for each month. In
the studies presented here, the set consisted of 12 or 48 surrogates, depending on the length of the
observational datastream. The surrogate models are novel. Each model consists of a polynomial trend
function paired, in some cases, with a Gaussian Process model. When constructing each model, we
investigate polynomials of orders 1 to 5, using a rigorous process of shrinkage regression and cross-
validation to simplify them (i.e., remove superfluous polynomial terms). This is done to ensure that the
surrogate models do not overfit the training data, and thus display a spurious degree of accuracy. If the
resultant polynomial surrogate fails to achieve a minimum acceptable level of fidelity (with respect to
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CLM4 predictions), it is augmented with a Gaussian Process model. In addition, we consider two forms
for € in (2.2), to account for uncorrelated and correlated errors. Details are in § 3 and § 4. This degree
of rigor is necessary because (1) the simplifying assumptions underlying surrogate models hold only
approximately for complex, nonlinear models such as CLM4 and (2) the data-model discrepancy has the
potential to vary drastically as the Markov chain explores the entire parameter space i.e., the behavior
of the data-model discrepancy in the vicinity of an optimal point may not be very representative of the
entire parameter space. In return, the rigor confers accuracy and robustness to the MCMC results.

2.5. Observational data. The dataset used in the calibration was provided by the North American
Carbon Program (NACP) Site-Level Synthesis. The synthesis provigidgous measurements for 47
sites (called flux towers), including US-ARM and US-MOz. The spatialrexd&each site is modest;
the largest, US-ARM, contains instruments arrayed over 143,000 sgilameeters. The following
data are available:

1. Meteorology data including air temperature, specific humidity, wind sgeedipitation, sur-
face pressure, surface incident shortwave radiation, surfaceeimdiong-wave radiation, and
CO2 concentration. The data were gap-filled by the NACP teams using thepsatoeol.
This data was used to drive CLM4 in our study.

2. Measured fluxes of latent and sensible heat at the native time resabfitibe observations
(30 or 60-minute) as well as the diurnal, seasonal, and annual time sddiesdata were
gap-filled following a standard protocol as well. Measurements werepeed using the
eddy-covariance method][i.e., the fluxes were not directly measured, unlike, for example,
temperature or wind speed. The observed data are not provided witlhurasesnt uncertain-
ties.

3. Remotely sensed NDVI (Normalized Difference Vegetation Index), (L&laf Area Index),
and fPAR (fraction of Photosynthetically Active Radiation) phenology digdved from
MODIS (MODerate-resolution Imaging Spectroradiometer; an instrumeéittrag on NASA'Y
Earth Observing System program of satellites). MODIS-based LAl wseel to parameterize
CLM4 in this study.

4. Ancillary data and information describe tower location and physicaladhearistics, distur-
bance history, and biological and ecological attributes of the vegetation, ditteé soil. These
data were also used to parameterize CLM4.

Measurement details and the data themselves can be obtainedlfrom [

2.6. Calibration parameters and sites. ~ This paper is one in a series of studies focused on CLM
calibration using data from Ameriflux towers: US-ARM (US Atmospheric RégieMeasurement
Climate Research Facility, Southern Great Plains &itép: / / www. ar m gov/ si t es/ sgp) and US-
MOz (the Missouri Ozark toweht t p: // anmeri fl ux. | bl . gov/ Si t ePages/ si t el nfo. aspx?US- Mz).1
US-ARM, located in Oklahoma, has clay soils and a vegetation cover of shallated grassesij3,

54]. US-MOz has loamy soil and deciduous broadleaf vegetatil® 18]. The energy closure in
these Eddy Covariance measurements ranges between 75%—90% (i.0%the25% error is split
between latent, sensible and ground heat measurements) with an uncetairtynd 5% for Latent
Heat. Significant differences from the measurements have been edsergnergy fluxes and runoff
at these sites when simulated using default CLM4 parameters, making theotivatcalibration test
cases. Due to the high-dimensionality of input parameter space, and théegiynin model behav-
ior, sensitivity analyses have to be performed first, to identify a subspai@meters that could be
optimized with the available observational data. 22,[23] the authors examined the sensitivity of
Latent Heat (LH) fluxes and runoff computed using CLM4 to 10 hydrigiaigoarameters with a view
of ranking the important parameters. B, the authors leveraged the sensitivity analysis to calibrate
all 10 parameters, using LH and runoff observations. It was fourtd_tHavas more informative than
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runoff for calibration purposes. The study also identified parametese&viposterior distributions
were appreciably different from the prior. The study used daily andthipobservations, collected
over 2003-2006, for US-ARM,; for US-MOz, the duration was 20@02. Meteorological forcing,
site information (vegetation, soil type etc.), satellite-derived phenologlyalidation data (water and
energy fluxes) were obtained from the North American Carbon Progsamp?2, 53] for details on
site information and calibration datha [53], a slightly modified version of MCMC, with a user-defined
“reference acceptance probability” input, was integrated with CLM4 and used to calibrate its param-
eters.  The study does not present any of the statistical details such as ceneergnalysis and
posterior predictive tests. However, the authors did present resutteedmprovement in predictive
skill, post-calibration. Issues related to structural error were not tigeged.

Our study is an extension of the calibration performedbig].[ We limit ourselves to the top three
parameters that could be calibrated from observations; these paranvetergentified via the sen-
sitivity analysis in R2] and the preliminary tuning that was performed &8]. These parameters are
{Fdrai,109(Qdm) , b} for US-ARM and{Fyrai,109(Qdm) , S} for US-MOz. Fy4; represents the recip-
rocal of the effective storage capacity of the subsurface aquitsd irssubsurface runoff generation
and is positively correlated to LH. Small valueskf,; lead to quick drainage of water away from
the shallow root zone, reducing evapotranspiration and LH fluxesomklyri ~ 2, the sensitivity
of LH to Fy4 decreasesQqm is the maximum subsurface drainage rate and its high values lead to
water depletion in the shallow root zone i.e., it is negatively correlated with§ts the drainable
porosity (i.e., average specific yield) under gravity and it is positivelyetated with LH.b is the
Clapp-Hornberger exponeri2 ] describing the characteristic curves that relates the soil potential to
the volumetric water contenthese parameters control the seasonality of heat fluxes (i.e., processes
far slower than diurnal variations) but whose accurate prediction is a fundamental requirement of any
climate model. In this study, we perform our calibration using quick running surrogafe€sLM4 so
that the MCMC scheme can be run to convergence. The surrogates tatstuge an approximation
error (the inability of the surrogate to reproduce CLM4 outputs) motivatsigpumodel and estimate
structural error. We will perform our calibration using both monthly and ctotagically averaged
observations, such that daily / stochastic variability in observations cavdraged out, and struc-
tural error models other than i.i.d. Gaussians can be examined. PPTs aiut meth as CRPS etc.,
discussed in 8.4 are used to gauge the quality of the calibration and also identify shortcomings in
the model (surrogate or CLM4). Thus the aim of this study is to investigatestailgthe preliminary
calibration performed for US-ARM and US-MOz %3], with emphasis on statistical rigor of the
calibration e.g., structural errors, predictive skill, and the effect of dialagical averaging.

3. Surrogate models. In this section we will develop polynomial and GP surrogates/§tp) =
log(LH) where LH are the monthly-averaged latent heat fluxes predicted by Clokgarameter
settingp = {p1, P2, P3} = {Fdrai,|09(Qdm) , b} for US-ARM and{Fqrai,|09(Qdm) , S/} for US-MOz.
The fluxes are averaged over a month. The surface fluxes are lgfetraned to reduce the dynamic
range of LH, which spans an order of magnitude. The prior distributidgisdre:

Farai = U(0.1, 5.0)
log (Qam) = U(log(10°°), log(10~2))
S, = 1(0.09, 0.27)
(3.1) b= (1, 15)

where(a, b) denotes a uniform distribution witfa, b) as the lower and upper limits. The parameter
space(p1, p2, p3) is thus a cuboid, which is also the domain of applicability of our surrogate models
The default values of the parameters &g, = 2.5, log(Qgm) = 10g(5.5 x 1073), S = 0.18 and
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b =9.76. The bounds in the uniform priors were obtained from literature as well as via discussions with
CLM4 developers and generally reflect physically realistic values; the precise sources and rationale are
in [22].

In order to construct surrogate models, we generate a training set#C@uns. We draw 256
samples from théps, p2, p3) cuboid via quasi Monte Carlo sampling; s@g][for details. This training
set is augmented with the 8 corners, 6 face-centers and 12 edgescehtbe parameter cuboid,
leading toN = 282 parameter samples where CLM4 is evaluated. For each parameter esmtha
site, the model is spun up by cycling the forcing at least five times (i.e.xZBfor the entire set of
parameter samples) until all state variables reach equilibrium. Using the initiditcns generated by
the spin-up, CLM4 simulates hourly latent heat (LH) fluxes over 20035Z0r US-ARM and 2004-
2007 for US-MOz. These are archived and averaged over eacthrntmigenerate a monthly time-
series of LH predictions. The training set consist$f, yé"m)},l =1...N,m=1...Ny, Ny being the

number of months in the time—serie;él’m) is the CLM4 output for thé'" parameter combinatiopy,
for monthm.

Our interest in developing a new set of surrogate models arises from the challenges we faced when
trying to leverage “conventional” surrogate models based on polynomial chaos expansions (PCE) and
kriging (Gaussian Process or GP surrogates). PCE models consist of a series of weighted orthogonal
polynomial terms of increasing order; the weights are estimated from a training set of CLM4 runs
(CLM4 predictions at a set of points in the (p1, P2, p3) cuboid). Conventionally, the calculation of the
weights is performed using Galerkin projection (which leverages the orthogonal nature of the terms in
the series). These points may be chosen randomly in a space-filling manner (as we have done in this
study) or at a very precise set of quadrature points which (1) simplifies the computation of the Galerkin
projection and (2) minimizes the size of the training set. The latter approach (i.e., quadrature) is the
conventional one, and requires that CLM4 predictions be available at all quadrature points. Frequently,
the quadrature points involve non-physical parameter combinations where a complex, physics-based
simulator such as the CLM4 could potentially show (numerically) unstable behavior or outright crash.
This brittleness of the quadrature approach led us to generate the training set of runs via random
sampling. In such a situation, the weights, computed via Galerkin projection, are approximate and
have to be checked for statistical significance (since not all terms in the PCE model need be retained).
Such issues of the significance of model coefficients are routinely faced when fitting models to data via
regression, and the theory (and techniques) of model simplification and tests of model robustness are
well developed in that context. Consequently, we decided to dispense with projection-based estimation
of PCE model coefficients, and developed a method, based on shrinkage regression, of fitting the model
to data (described in 8 3.1). As an added benefit (over conventional, projection-based construction of
PCE models), our new method does not require us to guess the order of the PCE model, but rather
“discovers” it in a data-driven manner.

GP modeling is another conventional way of developing surrogate models. The training data is
de-trended by fitting a linear model and the residuals are modeled as a multivariate Gaussian with a
stationary covariance. Challenges arise when the residuals are large and non-stationary, as was the
case in this study. The approximation introduced by the stationary assumption led to a model that
did not meet the minimum accuracy that we required of the models (described below). The simplest
solution to this problem is to reduce the magnitude of the residuals, for example, by using a more
sophisticated model for de-trending, so that the impact of the stationary assumption is muted. In our
new approach, we use a GP model paired with high-order PCE, which serves as the sophisticated
de-trending function. This is quite apparent in the structure of (3.2).
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3.1. Formulation. For a given month, we will represent the monthly-averaged, log-tramsfo
surface fluxes as

(3.2) Ye(P) = y1(p; ©1) +Y2(p;©2) + 0

wherey; (p;©1) is a polynomial surrogatef(p; ©2) is a GP surrogate andlis a surrogate model
error. yc(p) is the CLM4 output for a month, for parameter settmgin our model, we will aim for
18|12/ |lye(p)|l2 < 0.1. ©1 and®, are parameters of the surrogate models that are estimated from the
training set. We postulate a polynomial surrogate model, of dvitleas

M M M o
(33) y1(p;©1) = zgzcijkpipipé, Gjk €@1, i+j+k<M.
i=0]=0k=0

Not all ¢k (or terms in the polynomial) are required to moge(p). Also, since they have to be
estimated from a limited training set, some of the estimates may have significartaimgyeespecially
if yc(p) is not very sensitive to them. Consequently, we estimate them using shrirdgmgssion,
specifically BCS. Separate surrogate models are made for each month.

The form of (3.2) is deliberate. The polynomial component y;(p; @1) will be constructed first since

it is conceptually simple and the computational complexity of evaluating it (e.g., inside a MCMC loop) is
proportional to the number of terms in the polynomial. This is far smaller than the size of the training set.
If we fail to achieve an acceptable degree of accuracy with y1(p; 1), we will progress to constructing
Y2(p; ©2) which requires more sophisticated modeling (e.g., form of the correlation function / variogram
etc.). Further, evaluating y2(p; ©@2) involves operations with the covariance matrix of the GP and the
computational complexity scales as the square of the size of training set. Thus, GP models y»(p; ©2)
are far more expensive than y1(p; ©1). _

Modeling with polynomial chaos expansions. The p‘lpépg terms in @.3) can be collated into
orthonormal polynomial chaos expansions. We normatize C + D;§;, where§; ~ U(0,1,), &; are
independently and identically distributeéds 1...3. (3.3) can then be written as

(3-4) Y1 p’ el z qu’m

whereWy,(§) is an orthonormal polynomial basis a&d= {§;},i = 1...3 i.e., we normalize each
parameter between the upper and lower bounds of its prior. Each indexm corresponds to a multi-index
vectorr (m) = {r r3 }such that

3

(3.5) Wi(§) =W (§) =W, (§1)Wr,(§2)Wr,(&3), rie{l...M}, _eri =M.

In our caseW, (&) are obtained from univariate Legendre polynomia{&)

36) Q) =1 L@Q)=1 L@)=3 (1) and Lya(@) = 2 1e1a(@) -

n+1 I—n 1(()

n+ 1
We will work with normalized Legendre polynomials i.&,({) = v/2n+ 1L, ({). Note that the RHS
of (3.5 and @.3) are formally identical.The choice of Legendre polynomials as an orthogonal basis
set is a matter of convenience, since they have been used before to model CLM4 outputs [46]. We
formulate the shrinkage regression problempgrext.

Shrinkage regression: For a given month, we divide olN-member training set into a learning

set (LS) with 85% of the runs and a testing set (TS) with the remaining 15%séatp, yc } l LS
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andm=1...Nyare used to set up a shrinkage regression problem. We write the Iikelivh(gé'us) IB),
B={Bm}, as

. Ls (LS)
(3.7) L (VELS)!B> O (2th2)_% exD(— e ngrcngwm(i )’%>

whereyéLS) is the vector of CLM4 predictions from thieS runs,E(LS> are the corresponding (nor-

malized) CLM4 parameters and the discrepancy between the CLM4 andopairsurrogate model
predictions is modeled using i.i.d. norma§(0,¢?). In order to estimate the sparsest model condi-
tional on the data, we impose a Laplace prior

M+1 M
rign) = (3) exp(—A ng)

and solve the deterministic optimization problem to obtain the maxiraypusteriori(MAP) values
of Bm

argBmax[Iog (L (y((;"s) |B)) - )\||B||1] .

We cast this into a hierarchical Bayesian setting that removes the discaminature of &; norm.
We model3,, with a Gaussian prior with standard deviatggnand, in turn, model ak,, with a Gamma
prior

(Bm|s%) = (Zﬁ)_%exp(—i‘%}) andm(s2|\?) = )\zzexp(—sﬁ‘z)\z) .

Note that if we integrate ouf,, we recover the Laplace prior. This hierarchical formulation can be
solved using a greedy algorithm commonly used in BCS and described. it[returns non-zero
values off3, that can be estimated from th&, revealing, in theory, the exact form of the polynomial
i.e., the terms ind.3) that are required to modgt. Further information on the use of BCS to develop
surrogate models of CLM4 is irtf)].

Cross-validation studies revealed that BCS could be somewhat impertedt we start with a
largeM (e.g.,M = 10) the non-zer@, returned by BCS depend on th& used. While some low-
order terms are always chosen, a significant number of high-ordesteere chosen quite often (we
will provide an example of this uncertainty below). This uncertainty in the ideafibygh-order terms
led us to use cross-validation to choose an appropiatidote that choosing a'™ order polynomial
for surrogate modeling does not imply that we retain all the terms in the polynomial.

Using cross-validation to choose the polynomial order M: We divided the training set intl
distinctLS'T Spairs,K =500, to perfornK-fold cross-validation. Polynomial models, with=1...5
were fitted using the CLM4 runs in theSto estimaten,. ThePm were then used to predict I¢gH )
usingp;j in the TS. Relative errors were calculated for both tl$andT S for all K LST Spairs and
then averaged to obtain the mean errors for a given dvtjexs described below.

Let the vectoryé"s) be the CLM4 output for an arbitrary month generated by the vector ofipara

eter combinationi("s) contained in a learning sdtS. Let 3, be the model coefficients generated
from LS. We define a relative error for the learning set, for a polynomial modetaérM, as

IyeS =M B (89 |12
I e (1

LS
Iye|12
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Since we construdf LS/T Spairs duringk-fold cross-validation, it is more convenient to define the
relative error for an individual test i.e.

LS LS
e VG =SB Wi (&) 11
Ewi = (L9 ’
yei”ll2

the relative error for thé'" learning set] = 1...K and the mean relative error (for the learning set)
over allK cross-validation tests

E'S/ILS)

=

I\Mx

-5 gL
K l\/|| :
In an identical manner, we can develop the relative erEqSﬁS) andE ETS for the testing sets. Note
that when computing the testing set errors, the model coefflcmntsare always computed from the
corresponding (i.elt") learning set.

If the fitting is proper and no spurious terms are retained, EE&?? ~ E,EATS), i.e., the fitted model
is equally predictive for th&.SandTS In case of overfitting, the polynomial model will be more
predictive for theLS. We will choose a value d¥l for developing surrogate models if

e
(3.8) n=—4_ <1065
£(LS
M

GP models: Fitting a polynomial model does not ensure thg(p) — y1(p; ©1)|2/[|ye(P)||2 <
0.1. If Ay(p) = yc(p) — y1(p; ©1), wherep are samples from the training set, is smoothly distributed
in the (p1, p2, p3) Space, and the mean over the training set samples is zero, then the disgrepa
be modeled as multivariate Gaussian i/(p) ~ A (0,%). The key is to modek appropriatelyAny
covariance/correlation model can be used for Z; in this study, we will use a variogram model involving
distance (and a single range / lengthscale) in the (§1,&2,&3) normalized parameter space. We will
compute the empirical semi-variogram and fit various two-parameter variogram models — exponential,
linear, Gaussian, spherical etc. — via maximum likelihood estimation. In general, the estimation will
yield a magnitude (sill) and a lengthscale (range) of the variogram model, along with a goodness-of-fit
metric. The form of the variogram model and its parameters (the sill and the yaiogestitute the
paramete®-.

3.2. Models for US-ARM. As a first step we examine polynomial fits to th& data by BCS, for

April, climatologically averaged over 2003-2006. In Figwe plot the distribution oE,E,| I) andE( 3

for M = {1,2,4} generated via a 500-fold cross-validation test. The top, middle and bOthdb
plots are obtained foM = 1,2 and 4. The distribution of errors from thes (240 CLM4 runs), in
the first column, is somewhat different from that of th&errors (42 runs); however, favl = 1 and
2, the average diSandT Serrors are very similar. This is not the case kr= 4. We also plot the
distribution of the number of terms retained in the polynomial by the BCS algoritiomVIF= 1 and 2,
there is little uncertainty; all the terms in the polynomial are retained. The sanaibeh.e., linear
and quadratic models proving to be “well-behaved” was seen for othethmano. This is not the
case for the quartic model, where there is considerable uncertainty in thigemwf terms retained (it
varies from 25 to 35), let alone the identity of the terms retained in polynomig.this uncertainty
that led us to use cross-validation (CV) aiddgj to choose the model ordit.

In Fig. 2 we examine the order of polynomial model to use. These models are obtairdIy

fitting of the model td_Sdata. The data is obtained from a 500-fold CV. On the left, we If),ib?) for
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Figure 1. Distribution of EfALls) and ES? for M = {1,2,4} as calculated from a 500-fold cross-validation test. In the
top row, we use M= 1. The corresponding values for M are 2 and 4 for the middle and bottom fqlots. In the first

column, we plot the distribution of,&i_'s) from a LS of 240 CLM4 runs. In the second column, we plot the distribufion o

E,SLS from a TS of 42 runs. In the last column, we plot the distribution of the nuofiterms retained in the polynomial
model by the shrinkage regression algorithm.

all months using climatologically averaged CLM4 predictions over 2003-2006 useM = 1...5.

On the right, we plof) for the same months. We see, on the left, ﬂﬁ%ﬁts) decreases ad increases
i.e., model complexity improves predictive skill, even though shrinkage ssgre removes many
of the polynomial terms. However, this improvement is largely due to overfitésgis shown in

the plot ofn on the right. For cubic and higher-order moddﬁ;s) is larger thanE,E,lLS> and the

improvement of predictive skill with model complexity is not seen. Since we wadshave models
that are equally predictive everywhere, we see that quadratic mddeitsZ) offer the best solution.
Also, note that the relative errors are small, less than 2%. This allows ys(pe®,) =0 in (3.2

i.e., skip any GP modeling for US-ARM, and yet meet the accuracy requirefmesurrogate models

(Iye(p) — ya(p; ©1)l2/[|ye(p)[l2 < 0.1).

We repeated the same process with the models created for each of the 48 m@ob3—2006 for
US-ARM,; the results are in the Supplementary Materials (Fig. S1) as well[d4]inThe same issues
were observed — BCS proved to be inadequate and 500-fold crbdatian was requiredn < 1.05
was obtained for linear and quadratic models, and quadratic surrogatéssnetich provided< 4%
relative errors, were retained for further use.

As a check of the sufficiency of the training data, we halved it and refitted the surrogate models.
The smaller training set led to models that were less accurate, but nevertheless met the 10% surrogate
model error threshold, indicating that there was no need for expanding the dataset.



14 J. Ray et al.

Surrogate model errors (LS) Surrogate model errors ratios (TS/LS)
0.02 - - o 3
Order=1 = Order=1
= = =Order=2 o - = = Order= 2%
— L +
=+ Order =3 o 25 g =" Order=3 + t .
—~ 0.015 p
(il) Order =4 > O Order=4 + !
~ Order =5 E + + Order=5
o o 2f
= o
© 0.01{ =~
> B ‘,Q 155 o o 9
= o0
4 ’ ~ (o]
% \‘ , \\ ,’ = Oop0gpg©900O0
-~ VAl pust P R
o005 “\t~__ S T d 5 |TmmTIimmTITS
o R AT . 1p==== - =
O\ .. K4 S o (0] °>->
+ + S + + =
Qe ¢ et o s
0— — X o5—r——————
2 4 6 8 10 12 2 4 6 8 10 12
Months Months

Figure 2. Left: We pIo’[E,E,l"S> for US-ARM, for all months using climatologically-averaged CLM4 predictioner
2003-2006. We use M 1...5. Right: We plotn for the same months. We see that, as expected, high-order polynomial
models provide lower errors when fitted to LS. This is largely due to ovegfitimcen =~ 1 holds only for linear and
quadratic models; in the rest of the models, higher predictive skill in thedeS dot carry over to the TS.

3.3. Models for US-MOz. We performed the same analysis, as described above, for US-MOz, but
only using climatologically averaged LH predictions. The results were muckaime. The shrinkage

regression algorithm is imperfect alﬁ;ﬁ,l"s) reduces with model complexity (when using th§) but
the same predictive skill of the surrogate models is not evident when tesitegltheT S The plots

of E,E,,LS) and E,EATS for each month, for various! can be found in Fig3 (top). Again, quadratic
models provide the best balance between minimiﬂﬁﬁ) while keepingn < 1.05. Note thaE,E,l"S),

M = 2, is between 15% and 20% (which does not meet our 10% surrogate srogiethreshold for
acceptability) and hence we will augment the polynomial modeBig) (with a GP approximation
y2(p; ©2).

We construct GP modelg(p; ©;), for each month, usindy(p) = yc(p) — y1(p; ©1) computed
from theLS data. In Fig. 3 (bottom left) we show the empirical semi-variogram for Ay(p) in the nor-
malized (p1, P2, P3) space and its approximation using an exponential semi-variogram for the month of
April. A better fit could not be obtained using other semi-variogram models such as spherical, linear etc.
The resulting model, y2(p; ©2) in (3.2), is added to y1(p; @1), and used to compute the relative error
for the T Sdataset. The relative errors are averaged over a 500-fold cross-validation test and plotted in
Fig. 3 (bottom right) with a solid line. The errors without the GP augmentation are also plotted (dashed
line). We see that including the GP surrogate halves the surrogate modeling error to bring it below the
10% relative error target that we have adopted for surrogate models.

We next attempted to construct surrogate models without climatological awgrdge data i.e.,
using the 48-month time-series spanning 2004-2007. We found that vie @mstruct only 40 (out
of 48) such models that met the 10% relative error requirement. We corgabgt this may be due to
meteorological anomalies or extremes. This difficulty was not seasonallirenaafter climatological
averaging, surrogate models could be constructed for all the months.alBbismplies that for US-
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MOz, we will only be able to calibrate CLM4 using climatologically averaged nlagmns.

We checked whether the same level of accuracy could be obtained by halving the training data. We
could not achieve the requisite 10% surrogate modeling error indicating that (1) the training data was
barely sufficient for constructing acceptable (10% error) models and (2) a larger training dataset would
lead to better surrogates.

4. Calibration. In this section we use the surrogate models create®ito&alibrate 3 hydrologi-
cal parameters of CLM4. Having established that quadratic polynomial&Bsdvith their covariance
modeled using an exponential variogram suffice, we remake the stesogsing all the training data.
We will use the surrogate models in an MCMC calibration effort to obtain PDEseoparameters of
interest. We address the following issues:

1. Accuracy: Does calibration improve predictive skill vis-a-vis the default CLM4 pareme
setting?

2. Impact of climatological averaging:Does using the climatological mean of the observations
have a significant impact on the parameter estimates?

3. Impact of the structural error modelThe 48-month time-series model allows us to explore 2
structural error models of differing complexities. What are the ramificatidnssing a simple
versus a complex structural error model?

4.1. Formulation. LetY(©S = {y®®} m=1...Ny, be the observed values of log-transformed

latent heat surface fluxes, averaged over a month. We rew8r@efér monthm as

Yem(P) = Ysm(P) + 0m = Y1(P; O1,m) + Y2(P; ©2,m) + Om,

whereysm(p) is the surrogate model prediction for montty for parameter setting. Note that
Y2(P; @2m) is zero for US-ARM. LetYs(p) = {ysm(p)},m= 1...Nm. Since the surrogate model
parameters were estimated from the training set, we will consider them knomgtamts. We relate
the observations to the model predictions as

(4.1) Y9 — Yy (p)+€& €={em},m=1...Nm, €~ A(0,).

Here, € is a combination of structural and measurement errors. The errors in mai®surements
of LH (notlog(LH) as used in this paper) have been discussed4r68however, we average these
measurements over a month and considerably reduce the stochastic congidhererror. There is
currently no systematic study of the error in these measurements. The paraeetor isp = {p«} =
{Fdrai;109(Qdm) , S/} (for US-ARM) and{Fyrai,109(Qam) ,b} for US-MOz. Per 2.3), the posterior
distribution is given by

(42) P(p.rIYCS) Or|~2 exp(—; ¥ ()] [veens —\@(p)D iy kﬁ (P
=1

where we have explicitly imposed independent priors on the elemeptsasfgiven by 8.1). We will
consider two models fcg:

1. Uncorrelated errors: We will assume that the monthly model-observation discrepargies
are uncorrelated and can be modeled;as A’(0,0°). We will estimates? along withp. We model
I = diag(c?). We will estimate the precisiox = 0~ for convenience. The prior fo{ is

No oS
~G = =
X amm{ 2% >
whereng andS, are user-supplied values. The two parameters of the Gamma distributiore stesibe
and the rate (the reciprocal of the scale) respectively. Since the likelitmo@.2) is Gaussian (with
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Figure 3. Top left: We plot Ey,™ for US-MOz, for all months using climatologically-averaged CLM4 predictions over
2004-2007. We use M = 1...5. Top right: We plot ] for the same months. We see that, as expected, high-order polynomial
models provide lower errors when fitted to LS. This is largely due to overfitting since n = 1 holds only for linear and quadratic
models; in the rest of the models, higher predictive skill in the LS does not carry over to the TS Note that none of the
polynomial models provide surrogate modeling errors less than 10% for all months. Bottom left: Empirical semi-variogram
for the discrepancy §(p) — y1(p; ©1) in the &1 — &2 — &3 space (in symbols) and its approximation using an exponential
variogram. Results are fdog(LH) in April, for US-MOz, climatologically-averaged over 2004-2007. Bottaghtr The
relative error obtained using a quadratic polynomial model and a GP rhizdplotted (solid line) for all 12 month, for
US-MOz, using climatologically averaged CLM4 predictions for 2004-200% error obtained without the GP surrogate
is plotted with a dashed line. The horizontal line is the 10% accuracy thresboklrrogate models. These errors were
computed using only the TS data from a 500-fold CV test.



BAYESIAN CALIBRATION OF CLM 17

a known mean, conditional op), the inverse-Gamma distribution fa is a conjugate prior, and
allows us to samplg using a Gibbs samplef, 41]. This circumvents issues regarding mixing and
efficiency of sampling. We usa) = 0.1 andS% = 0.01. The prior is essentially flat fog > 3.

2. Temporally correlated errors: We will modele ~ A(0,I"). We assume a stationary distri-
bution and modell using a two-parameter variogram. The variogram model will be chosen byfittin
to the defecly = {Y(°*9 — Yy(popt) }, Wherepopt is obtained via a deterministic optimization method.
The variogram model’s parameters, siff and rangeT), are calibrated along witp.

The inverse problem in4(2) was solved using a combination of a Gibbs sampler ¥joand the
adaptive MH sampler DRAMZ(] (for the parameters without conjugate priors). Convergence of the
chain was monitored using the Raftery-Lewis (RL) statisBf]] The RL statistic ensures that the
sampler has collected sufficient samples to estimate (in our case) the mediewofvahch parameter
within a tight tolerance. It does so by recursively downsampling the cleain, (fetain every alternate
sample in the stream of samples collected by the MCMC method) till the chain reseafirigt-order
Markov process. It then checks whether there are sufficient sanmplles downsampled (or thinned)
chain to approximate the stationary solution of the Markov process within tafigal tolerance. The
code was written in R38] and we used the DRAM implementation in FMEY, which contains the
MH-Gibbs combination discussed above.

Posterior predictivetest (PPT) and error metrics. MCMC solution yields the posterior distri-
bution P(p, a?|Y(©"9) (or P(p,0?,1|Y("9), if using temporally correlated errors) which is checked
using posterior predictive tests (PPT). We chobdigesamples from the posterior distribution and
generate a set of predictioVs”™ = {yPP} = {yem(p1) +&},1 = 1...Ns,m=1... Ny, Whereg| ~
A((0,),T = diag(o?) or Iy = (0?,11). Thus for each observatiqrﬁ?bs), we obtainNs predictions
ylprﬁf,l =1...Ns. The quality of these predictions is gauged using the mean absolute ed&)(on-
tinuous rank probability score (CRPS) and the verification rank histodxériH). CRPS and MAE
are integrated measures of the error in the ensemble predictions vis-hseis/ations. The VRH is a
metric that is used to probe the calibration further. The details of these metkios[a6, 15, but they
are summarized below.

MAE: TheMAE is calculated as

MAE =

L Nflvﬁ?”—v"’”
NmNs IZimzl hm

CRPS; The CRPS is calculated as a mean dMgrCRP$,, the CRPS for montim. For a given
monthm, we useNs predictions{yﬁﬁf},l ...Ns to compute the cumulative distribution function (CDF)
Fm(y). We use it in the computation GRP$, as:

CRPS: = [ (Fuly) ~H(y—yi™)) dy

H(z) is the Heaviside function.

VRH: For each monthm, we sort the predictions and the observations to find the rank of the
observation. Thé\,, ranks are binned and used to create a histogram. In a perfect calibridgon
ranks of the observed values should resemble draws from a unifotribdigon. If the observations’
ranks are clustered at the lower or upper end, the calibration in unsieerdive i.e., model predictions
are not sufficiently sensitive to the model parameters. If the observatamss are clustered in the
middle of the distribution, the calibration is over-dispersive. In either cashange in CLM4 or the
structural error model is indicated.

4.2. Calibration using US-ARM data.  The observational dataset for US-ARM consistiNgf=
48 months of log(LH) readings (2003-2006). As a first step towartiisreion, we use the surrogate
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models to perform a deterministic calibration using a box-constrained optimizagtimod (L-BFGS-
B, [6]) to obtainpopt = {Farai, 109 (Qam) ,b} = {0.97,log(10~2),0.1}. Note that the “optimal” values
for two of the parameters are at the edge of the prior distribution. In&-{gop left) we plot 48 months
of observations of log(LH), and the predictions using surrogate moeelsrgted usingop: andpgef,
the default values ofFgrai, 109 (Qam) , b} = {2.5,109(5.5 x 10-3),9.76}. We see thapopt provides far
better predictions thapyef, which are largely over-predictions. Further, we clearly see that theetnod
data discrepancy is correlated in time. We assume that the temporally corréistegipancies are
stationary and modédl using a variogram. In Fig} (top right), we plot the empirical semi-variogram
and a fit with a spherical variogram model,

p(t) = 02 Ki - ;) H(t—t)+H(t—1)

obtainingo%pt = 0.1515 andropt = 7.32 months. Her¢is time measured in months. Note that when
T is small i.e., uncorrelated errors, the variogram model reduces to an i.i.dsstaa model for the
errors. Fits with exponential, linear, etc. variogram models were infefi@te that the empirical
semi-variogram shows a decline (an improvement in correlation) beyond 8 months. This is because
CLM4 is seen to consistently underpredict LH during the winter months, leading to correlated winter
errors with an approximately 12-month period. This, in turn, leads to a downturn in the semi-variance.
The spherical variogram excludes the periodicity in errors. Since the variation in latent heat fluxes
is seasonal, errors with a 12-month periodicity can be expected and the correlation timescale of the
structural error should be less than a year. The structural error would repeat every season. In Fig. 4
(bottom row) we plot the auto-correlation function (ACF) and the partial auto-correlation function (PACF)
of the error (difference between observations and predictions generated using Popt). Clearly, the errors
are correlated; a Durbin-Watson test rejects the hypothesis of i.i.d Gaussian errors comprehensively
(p-value of 6 x 10~11h).

Next we use the dataset to estimatavith a temporally-correlated structural error model. We
use the spherical variogram above to moBeland estimatd Fyrai,109(Qam) , b, 02,1}. The priors
areg? ~ Exp(ogpt) andt ~ Exp(Topt). Note that the exponential priors are informative, and we will
need to check their impact on the parameter estimates. In5Fige plot the priors (symbols), the
marginalized posterior distributions f§Fyrai,10g(Qgm) , b, 02,1}, along with their default values (or
ogm or Topt). There is considerable uncertainty in the parameter estimates; the margirfalies
are not narrow. For lofQqm), the default value and the peak of the posterior PDF agreeFfar
there is considerable disagreement between the peak of the PDF antt dafameter value. The
calibrated value of the Clapp-Hornberger exponiefitears little resemblance to the default CLM4
value. The exponential priors adopted &r andt accomplish two functions - they use the “optimal
values” from the L-BFGS-B fit, while expressing a prior belief that MCMalilaration could calibrate
them to smaller values. Small valuesasf definep that are more predictive. A smallindicates that
the structural error is uncorrelated in time. The PDFs in Bighow that the PDF af? peaks to the
left of ogpt. The MCMC calibration provides realizations pfthat have smaller disagreements with
observations. The PDF farpeaks to the left of, but is far from zero. The calibration indicates
that errors are correlated, though the correlation timescale is less tharn7then@nths obtained by
L-BFGS-B fit. Thus the spherical variogram does not reduce to i.i.d.s§an errors. T0MCMC
steps (and model invocations) were required to obtain converged jpostistributions.

The ACF and PACF plotted in Fig. 4 (bottom row) show that in the vicinity of popt, the correlated
error model is strongly preferred. However, the PDFs in Fig. 5 are quite wide, indicating that the 5
parameters may be too many to be resolved from a 48-month time-series. Consequently, we repeat
the calibration after modeling the structural error as uncorrelated i.i.d. Semss This calibration has
one less parameter to estimate foThe prior ono? was the conjugate inverse Gamma distribution,
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Figure 4. Top left: Plots of log(LH) as observed at US-ARM over 2003-2006 (jplottth symbols). We plot the CLM4
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line. Top right: We plot the empirical semi-variogram calculated from thealsfeand a spherical variogram fit to the
data. Bottom row: We plot the auto-correlation function (ACF, left) and partial ACF (PACF, right) of the discrepancy between
observations and pPopt predictions (black line top-left subfigure). The dashed lines indicate the bounds outside of which the
null hypothesis of no auto-correlation is rejected with a significance level of 5%. The existence of auto-correlated errors is
quite clear.

as discussed earlier. The marginalized posterior distributions are plotteg. is &sing dashed lines.
We see that the peaks of the PDFsgfy and logQqm) are approximately at the same location as
the PDFs obtained using the temporally correlated structural error modetMeo, the PDFs obtained
using the uncorrelated structural error model are sharper. The BO¥; the Clapp-Hornberger ex-
ponent, shows that the default value is far too large. The PDB4ds narrower for the uncorrelated
structural error model and peaks to the left i.e., calibration may be slightly predictive than the
one performed with temporally correlated errors. Comparing with, we find that the deterministic
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is uncorrelated and can be modeled as i.i.d. Gaussian.

calibration converges to the peak of the PDFFgk; (at Fqrai = 0.97). It reached the boundaries for
the other two parameters.

We next perform PPTs for both the calibrations and plot their results in6-igve useNs = 200
runs in our posterior predictive tests. Above, we plot the median predifiem PPTs generated
using both the calibrations. The error-bars denote the inter-quartileerl@iR). Observations and
predictions usingopt are also plotted. There is little doubt that calibration draws predictions closer
to observationspget causes over-predictions. Further, the IQR captures all the obsersaiaept
in the latter half of 2005 (months 30-36), when all observations are systathalower than the
predictions. The observations tend to be near the upper end of the IiggRe Ts little to choose
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between the PPTs generated using the competing structural error mod®i®r left, we plot the
VRH for the two calibrations. An ideal calibration would have yielded a unifdistribution; clearly,
we are far from being so. The low observations during months 30-3&ckwkad to low ranks for
the observations) are clearly seen in the peak at the lower end. Othgetindsabservation ranks are
clustered in the range 100-150, for both the calibrations. In Tablee tabulate the CRPS and MAE
for the two calibrations; they are the same. Lower right, we plot an indiVicdiadization of predictions
generated by the two calibrations. The observations and the mean predigiplotted for reference.
The prediction generated using correlated errors, which varies smaathiyd the mean is plotted
with crosses. The prediction with unfilled circles varies in an uncorrelaskién around the mean.
We see that these variations, due to differing structural error modelgsignificant compared to the
seasonal variations and are hardly distinguishable. This can be seerFig.5 - 02 is around 0.1,
whereas log(LH) varies between 2.5—4.5 during a year. This also mewad estimate of the relative
magnitudes of the structural error vis-a-vis predictions.

Given the small differences in both the posterior distributions of the parasrete the predictive
skill of the models when the two structural error models are used, the sintpletwgal error model
based on uncorrelated errors is preferable. However, the use tdrtiporally correlated model does
reveal the timescales of the structural error (around 5.5 months). Thigtripncan help identify and
improve parameterizations of physical processes that may be contributingrtoahd potentially
result in reduced model structural uncertainty.

Finally, we explore the impact of climatological averaging. This reduces thederies from
48 months to 12; we model the structural error as uncorrelated to rededdirttensionality of the
calibration problem. The deterministic calibration revegbggt = {0.1,109(5.9 x 10~4),1.0}, which
shows that the optimization has reached the edge of the prior distributiondor @ 3 parameters.
The deterministic optimization was seen to be sensitive to the starting guess aaplontehe best of
10 runs, starting from different guesses. In Figtop and middle rows, we plot the marginalized pos-
terior PDFs with solid lines; with dashed lines, we plot the calibration obtainedutittlimatological
averaging and with uncorrelated structural errors. We see modasgjes@n the calibrations fd#y;,;
and logQqm). Further, we see that, like the calibration studies above, the peaks of fhel® Dot
agree with the default values of the parameters. The calibratiortsdog similar and very different
from the default value. We also see tlugtis far smaller when the observations are climatologically
averaged, as it reduces the impact of outliers e.qg., the low log(LH) cdos@mg during months 30-36.
Further, the peak of the PDF corresponds to the value obtained via dasticrgalibration.

In Fig. 7 (lower left) we plot the results from the PPT, along with the prediction upinig and
Ns = 200. Clearly, the default CLM parameters over-predict log(LH) andctibration largely rec-
tifies this shortcoming. The IQR of the predictions (the error bars) capthreobservations. Lower
right, we plot the VRH from the calibration. Clearly, the calibration is not ideat since the histogram
reflects just 12 ranks, it is difficult to draw conclusions regarding ther faspects of the calibration.
In Tablel, we mention the MAE and CRPS for the calibration. These error metrics are tahabsf
those achieved with the non-averaged data. The MCMC method requij@d0sodel invocations
to reach a convergedtdimensional posterior distribution125,000 for the 5-dimensional one), when
tested using the Raftery-Lewis method.

4.3. Calibration with US-MOz data. ~ We next estimat§Fqrai,109(Qdm) , S/} using data from US-
MOz to check the variation of these parameters with sites. We could not gohatcurate surrogates
for US-MOz without climatological averaging, and consequently, we witfgeen calibration only
with climatologically averaged data. The data (latent heat surface flugaay 2004-2007, climato-
logically averaged monthly and log-transformed. Note that the surrogatelsfoat US-MOz consist
of a quadratic and a GP component. The model-observation mismatch is moslelecbarelated-in-
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Table 1
CRPS and MAE for the four calibrations performed for US-ARM and US-M@®@e. units of CRPS and MAE are the
same as those of observations.

Calibration test case MAE | CRPS
US-ARM, 48-months of data, correlated errors 0.37 | 0.18
US-ARM, 48-months of data, uncorrelated errors 0.37 | 0.18
US-ARM, climatologically-averaged data, uncorrelated errpr8.203 | 0.096
US-MOz, climatologically-averaged data, uncorrelated errpr8.205 | 0.098

time. The MCMC chain was run 50,000 steps to convergepgg = {2.639,log(4.43x 10-3),0.2},

but the optimization method was seen to converge to multiple (local) minima depemdinghe start-
ing guess; the figures provided here correspond to the best of $0Mate that the second parameter
is not far from its default value (see3.

In Fig. 8 we plot the marginalized PDFs for the CLM4 parameters being calibratedy alih
the prior. Fyrai and log(Qum) how strong disagreement with the default CLM values, thoggbeaks
close to it. The PDF foFy.s and log(Qdm) are bimodal, which also explains the inaccuracyag:.
The deterministic method correctly captured the peak irf§feDF, but converged to the smaller peaks
(in fact, locations in the PDF with zero slope) in the PDFs for(lQgn) andFyrai. MCMC, being a
global optimization method, has the practical benefit of being resilient to miahg @omplexities of
the optimization surface and locates the peak of the PDF which our 10 attempis deterministic
optimization method failed to capture.

The three parameters show complex interdependence. There is a eagatelation between
Farai and S, with high values offyaj compensating for lowe§, and a weak positive correlation
between logQqm) andS,. The plots of the samples that reveal these correlations are provided in the
Supplementary Materials (Fig. S2) as well as4d][ In Fig. 8, bottom left, we plot the PPT runs
usingNs = 200. We see minor improvement over the default paramet@rss the net contribution
of the calibration are not new values of {Fgrai,109(Qam),S;} but rather the variability/uncertainty in
their values that can be supported by the LH observations. Bottom right, we plot the VRH, which is
inconclusive due to the small number of ranks being histogrammed. The MAERPS values are
in Tablel, and the PPT for US-MOz is seen to have errors similar to US-ARM.

Finally, we check if the calibration performed with surrogates improves tedigtive skill of
CLM4 (not the surrogates). We repeat the PPTs performed with saatesdor US-ARM and US-MOz
using CLM4. Due to the cost of the simulation, only 32 CLM4 runs (instead0ff@r the surrogates)
were used. In Fig9, we compare the PPTs performed using surrogates and CLM4. Theban®
plot the median and IQR for surrogates; thesymbol and dashed lines are the corresponding CLM4
plots. We see that the predictions using CLM4 are very close to those abtsimey surrogates. Thus
the improvement in the predictive skill of the CLM4 surrogates carry ovénéariginal model itself.

4.4, Discussions. The four calibrations discussed above have led to parameter estimategthat a
clearly more predictive than CLM4’s default settings. Further, they ld@monstrated the importance
of using MCMC for the calibration. Deterministic methods, in our case L-BB3Showed a signifi-
cant sensitivity to the starting guess and frequently fell into local minima thdateeisolated in the
PDFs of the parametefor US-MOz) in Fig. 8. Further, the posterior distribution of the parameters
bears no resemblance to a Gaussian and methods such as Ensemble Kalmrsa(wihitd assume
Gaussian distributions) should not be used to estimate them. Finally, the PORe fiarameters are
guite wide and parameter estimates are uncertain. The width of the PDFs eadie lho the fact that
the surrogates (and by implication, CLM4) are not sufficiently respersiour three calibration pa-
rameters. This suspicion is bolstered by the VRH in Bigthich shows ranks clustered at the top end,
indicating an under-dispersive posterior prediction. The under-dispenature could be a reflection
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of model shortcomings or because we have varied only 3 parameters ituihys ¥/hile these param-
eters are the most sensitive individually, their interaction with other paras@térich are currently
held constant) need not have an insignificant effect on LH prediction.

The estimates could perhaps be improved i.e., the PDFs made narroweigyausecond ob-
servation stream. However, the previous calibration eff6d [dentified that runoff, when used in
conjunction with latent heat fluxes, was not very informative on the paemhef interest and our
experiments with sensible heat fluxes (not presented here) removeal ¢coasender.

We found that climatological averaging had a modest impact on the PDFsedtiheated param-
eters. Note that the climatologically averaged dataset is quarter the sizeovigimal one. The muted
impact of such a drastic decrease in the observational dataset sizetegsply that the original ob-
servations were dominated by seasonal variability i.e., they could be ap@texi as minor variations
about a repeated annual profile (the climatological mean). The smoottvatiseal time-series ob-
tained after climatological averaging also led to smaller structural error essraatktighter posterior
predictions (see CRPS and MAE in Talile

One of the main aims in this study was to model and estimate the structural errexglode the
impact of the model on parameter estimation and prediction accuracy. We edarruncorrelated-
in-time and a temporally-correlated structural error model. Their impact opahemeter PDFs was
modest and the effect on posterior predictions, smaller still. The latter veawdieasonal variation in
LH, which dwarfed the structural error magnitude. From a purely ptadipoint of view, the simpler
uncorrelated-in-time structural error model is preferable. Howevertémporally-correlated error
model identified the correlation timescale of the error, which in turn can be tosiglentify (models
of) physical processes which may be responsible for it.

Different priors were used for the two structural error models. Theouelated-in-time structural
error model used a non-informative conjugate prior; the other usethiaftive exponential priors. Yet
the estimates for the structural error magnitude from the two competing modeistate dissimilar
and both are unequivocally better than the estimate obtained using L-BEFGBiBimplies that (1)
L-BFGS-B failed to find the global optimal for the parameters and (2) the itnpfathe exponential
priors was rather muted.

The use of surrogates proved to be a mixed blessing. It allowed us ttodes@nverged PDFs
of the parameters without recourse to approximations (except the atestpemselves) and examine
the impact of surrogate error models and climatological averaging. Thegke Wwave been very time-
consuming had we used CLM4 natively as &8][ Yet the structural error that we estimate is that of
the surrogate and not of CLM4. While that does not impact the correlatiorst¢iate of the structural
error, its magnitudeg?, should be considered an approximation to CLM4’s structural error.

Our calibration can, in principle, be compared with [53] in two ways: by comparing the posterior
distributions of the parameters and by comparing the predictive skills of the two models. The parame-
ters’ posterior distributions do not agree. While our PDFs for US-ARM are unimodal, those in [53] are
multimodal. In case of US-MOz, our PDFs are multimodal, as are the ones in [53], but the modes are
quite different. Further, the study in [53] developed 4 separate posterior distributions, for four differ-
ent values of “reference acceptance probability”, which has no counterpart in our conventional MCMC
method. It is unclear which distribution one should compare to. Comparing the predictive skill of the
calibrated model is far more difficult due to the difference in the dimensionality of the inverse problem
(10 parameters in [53] to our 3). A 10-dimensional calibration will result in a larger predictive variabil-
ity compared to our three-dimensional one; this larger variability can be captured by metrics such as
CRPS. However [53] compared their calibration to observations using an ensemble mean prediction
and its Root Mean Square Error (RMSE). Without variability information, ensemble predictions from
two posterior distributions of differing dimensionalities cannot be directly compared.

There could be a number of caus&sdifferences in the two calibrations. In [53], the authors
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calibrated 10 parameters to our 3; we have kept the remaining 7 fixed atléfieuits. In addition, the
calibration in p3] used CLM4 directly and does not incur errors due to surrogate modejimen that
such errors are around 4%, this is probably a minor contributor to theeliite. Also, the convergence
criterion used in$ 3 is based on the mean statistics of the posterior samples during the burneid, per
not convergence statistics on their PDFs. Reconciling the differentes®e these two calibrations
is left for future work.
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5. Conclusions. We have investigated the Bayesian calibration of three hydrological péeesne
of CLM4 using observations of monthly-averaged latent heat fluxdgoted over a 4-year period.
The choice of these parameters was deliberate. They are the most important hydrological parameters
that control the seasonality of heat fluxes at the two sites studied here (as revealed by the sensitivity
studies in [22]). Accurate prediction of the seasonality of heat fluxes is a fundamental requirement
of any climate model. The seasonal nature of the processes involved allowed us to filter out fast
time-scale (e.g., daily) variations (“noise” from the viewpoint of seasonal variations) and focus on the
accuracy of the calibration under two competing error models. Such a Bayesian calibration and error
estimation study has not been done before for CLM4. Finally, it allowed us to present an example of how
complex models, such as CLM4, could be subjected to rigorous statistical calibration and uncertainty
quantification.

In this study, we computed the posterior distribution of the parameters using surrogate mddels o
CLM4 and MCMC. The surrogate models were constructed using polyndrera functions and GP
modeling. The Bayesian inverse problem posed to estimate the parametepsiated two alternative
representations of the structural error (or the model—data discrepangyinvestigated their impact
on the parameter estimates and the predictive skill, after calibration. We adkwrexk the impact of
using the climatological mean of the observations for the calibration. We dératetsour method on
data from two sites, US-ARM and US-MOz, each with three unknown paessie

We developed an approach to construct surrogate models for CLMparticular, we investigated
a shrinkage regression method, Bayesian Compressive Sensing, (Bd@iSa polynomial model to a
training set of CLM4 runs. BCS was augmented with cross-validation taicans robust procedure
for devising polynomial surrogates for computationally expensive modiéks method is general, and
can be used elsewhere.

We found that Bayesian calibration led to posterior distributions of paramétet improved
the predictive skill of CLM4. The marginal PDFs of the parameters werte qude i.e., there is
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a considerable amount of uncertainty in the parameter estimates. The chéieestructural error
model impacts the parameters’ PDFs modestly and its effect on the postedctfons is marginal.
However, the more sophisticated model allowed us to estimate the time-scale tittaral error,
which can help identify and improve models of the physical processesdhtthute to the error.

In the single case of US-ARM where we could check the effect of climattdbgveraging, its
impact was rather muted on the estimated parameters. We conjecture that thie ipegabise sea-
sonal variability is the dominant signal in LH observations. Since this is langedgerved during
climatological averaging, the PDFs of the estimated parameters did not cimarcte

The parameter estimates that we developed for the two sites do not agree between themselves,
nor do they agree with the default values used in CLM4. This is not entirely surprising since the param-
eters depend on the hydrologic regimes associated with local soil properties, topological and geologic
conditions. These vary significantly in North America. The default CLM4 parameter values were devel-
oped to better constrain simulated hydrologic budgets at continental and global scales. Consequently,
they are “globally averaged” constants in some sense, and are not expected to be equally predictive
locally. Consequently if CLM4 is to be used at individual sites such as flux towers or watersheds, re-
calibration is recommended. As observational data from a single site is likely to contain measurement
errors (which will then propagate into parameters estimated from them), we would advocate an esti-
mation procedure that quantifies uncertainty, e.g., the Bayesian one that we have developed. Finally, it
is unknown whether the parameter estimates developed for a site can be re-used for predictive CLM4
runs at similar sites. The transferability of parameter estimates across sites under similar hydrologic
regimes is now being investigated under a follow-up study [42].

Our calibration yielded PDFs which are at variance with those developegdrigvaous calibration
study. The two investigations are similar, but not identical, with respect ere@sons, the calibration
parameters and the numerical method. We have speculated about the efilse discrepancy, but
identifying the causes is beyond the scope of this study. We will investigatéhi¢ ifuture.
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