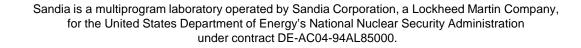


Compressively sensed complex networks

J. Ray, A. Pinar and D. Dunlavy Sandia National Laboratories

Acknowledgements: ASCR, Office of Science, Dept. of Energy.



Introduction

- Aim: To develop low dimension parametric (deterministic) models of complex networks
 - Use compressive sensing (CS) and multiscale analysis to do so
 - Exploit the structure of complex networks (some are self-similar under coarsening)
- Motivation:
 - Graphs often form the understructure over which dynamics occur
 - e.g., chemical reactions, epidemiological processes, cascading failures, etc
 - Dynamics are easy to observe, but the graphical structure unknown
 - A low-dimension model of a graph allows its "discovery" by fitting to data
 - Inverse problem, network discovery, estimation of graphs etc

Today's talk

- Can compressive sensing actually work?
 - Under what circumstances?
- Some assumptions/characteristics of the networks
 - Networks will be small O(100) nodes
 - In inverse problems, not enough info to fit detailed models
 - Networks will be assumed to have densely connected "cliques" of different sizes
 - Leads to "blocky" adjacency matrices
- Outline
 - Compressive sensing what is it?
 - Sampling technique
 - Reconstruction technique
 - Test cases
 - 2 synthetic networks
 - Results different levels of sampling/order reduction and reconstruction fidelity

What is compressive sensing?

- A technique to efficiently encode/decode a random vector x of length N
 - x can be a signal, a time-series
 - The process is lossy the decoding is approximate
- Efficiency of representation rests on the presumption that the information content of the signal is small
 - i.e., a sparse representation exists for x
 - In conjunction with efficient sampling, only a few samples are needed
- "Sampling" a signal means projection on a sampling basis set ψ_i

$$y = \Psi x$$

- y is the "signature"; y_i are the projections of x
- Under certain conditions size(y) ~ log(N)

When and why is Y compressive?

 If x can be described sparsely in an orthogonal basis set (e.g., wavelets), Φ, then the basis weights can be sampled directly

$$x = \Phi s, \quad y = \Psi s$$

- Where only K elements of s are non-zero. K << size(s) = N

- An efficient sampling of *x* collects information on all elements of *s* per projection
 - Can be done if ψ_i are random vectors
 - e.g., chosen from a high dimensional sphere (uniform spherical ensemble)
 - $-\Psi$ is then an orthogonal matrix
- Under these conditions

$$M = size(y) \ge cK \log(N / K) << N$$

Decoding - reconstructing x from Y

• Canonically, decoding is performed via I_1 minimization

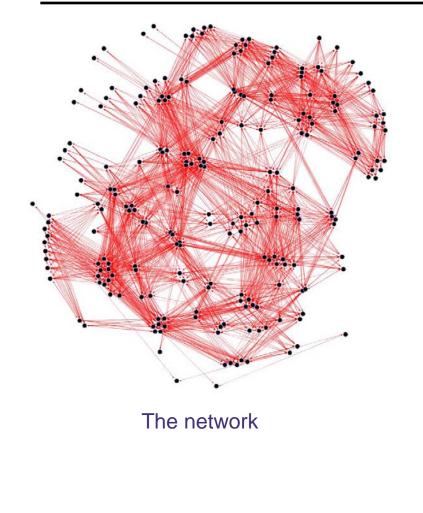
 $\min \|s\|_1 \quad \text{subject to} \|y - \Psi s\|_2 < \varepsilon$

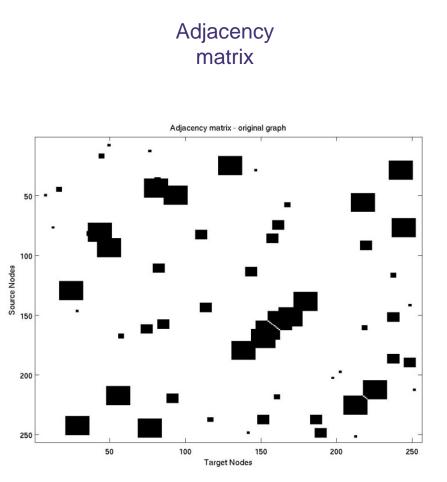
- Exact solutions (e.g., basis pursuit) too computationally expensive, so usually an approximate form is solved in practice
- Our algorithm, called StOMP (Stagewise Orthogonal Matching Pursuit)
 - Donoho et al, 2006 (preprint)
 - Iteratively finds the non-zero elements of s
 - Number of iterations are bounded
 - But assumes that s is sparse
 - Computational cost comes from the pseudoinverse of Ψ
 - Suitable for large problems

Extending Compressive Sensing to networks

- Based on the CS of adjacency matrices
- We expect that the rows/columns of an adjacency matrix can be re-ordered to create a "blocky" adjacency matrix
 - Alternatively, node in a clique should have similar node-ids
- Networks showing self-similarity will show structure within the blocks
- Exploiting multi-resolution:
 - Decompose the adjacency matrix on a wavelet basis
 - In our case, Haar wavelets
 - Haar wavelet coefficients stored and treated hierarchically
 - Resolution by resolution, with no inter-resolution dependence modeled or exploited
 - Non-zero wavelet coefficients at each resolution will be sparse
 - Sampling and reconstruction too are performed hierarchically

A graph and its multiscale decomposition - I

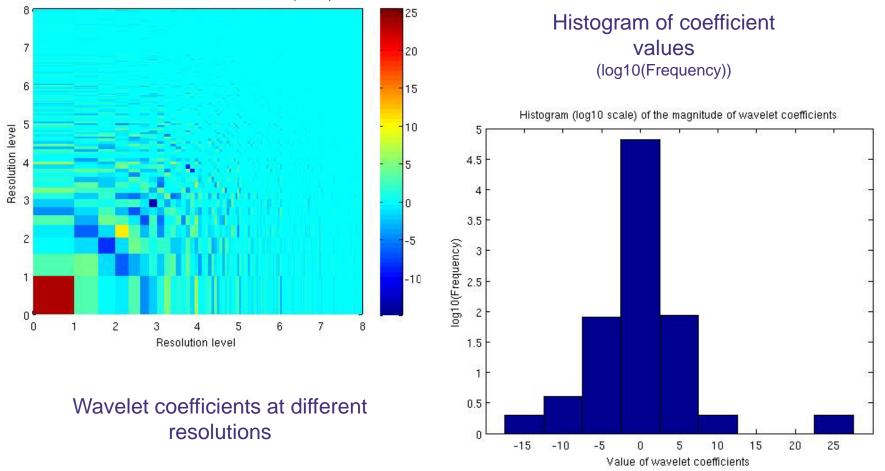




256 nodes, 256² wavelet coefficients

A graph and its multiscale decomposition - II

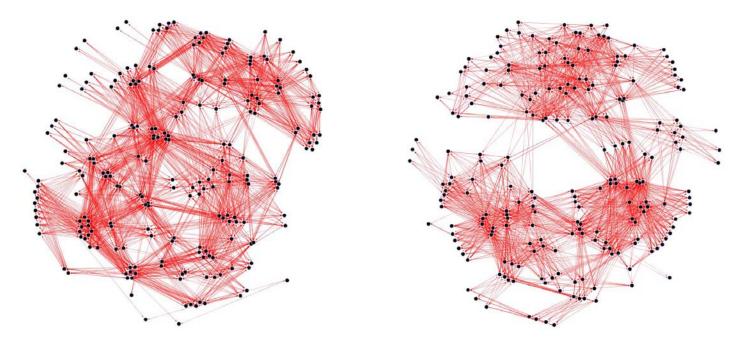
Wavelet coefficients from the Haar transform of the adjacency matrix



Sampling issues

- The number of wavelet coefficients at level / is 4[/]
- How many samples per level?
 - Generally expressed as a fraction of 4¹
 - Should this fraction vary with levels
- Some observations
 - Sampling has to be minimal at high resolutions
 - i.e. fine detail cannot be captured
 - Emphasis on "blockiness", structure should be evident at a certain resolution
 - All wavelet coefficients at coarser resolutions can be retained
- So CS can be expected to work for graphs that are somewhat dense
 - Will not work for very sparse graphs

Tests



Network I

Network II

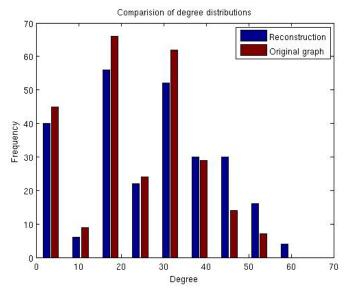
- 2 synthetic directed graphs, of 256 nodes. Average degree of 23 & 17
- Sample (to various degrees) and reconstruct
- Performance wrt number of samples and sparsity of graph

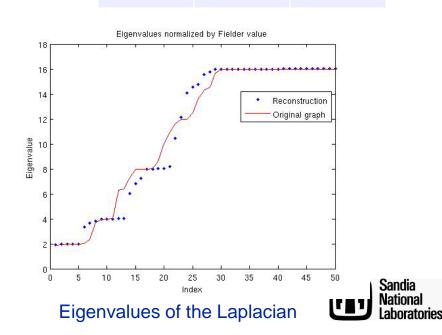
Test I(a) – fine sampling (60%)

- Network I, with 256 nodes and 5914 edges
 - Needs 2^*N_{edges} to store
- Reconstruction with ~60% sampling

	Original	Recons- truction
No. of samples	11,824	7463 (~60%)
Average degree	23.1	27.2
Fiedler Value	1.85	1.91
No. edges	5914	6924

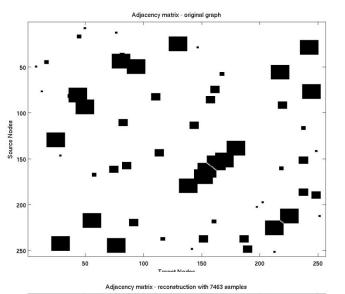
Degree distribution

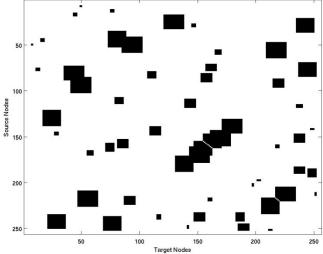




Test I(a) – comparison of nets

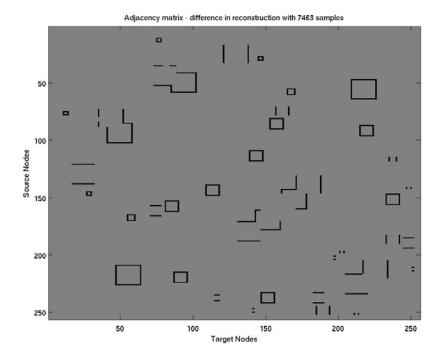
Original

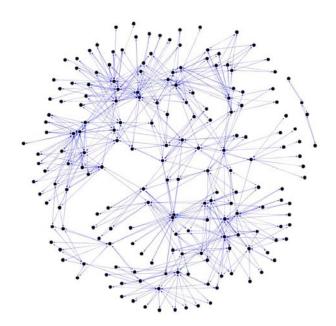




Reconstruction

Test I(a) – analysis of differences



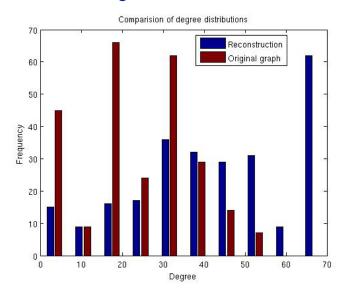


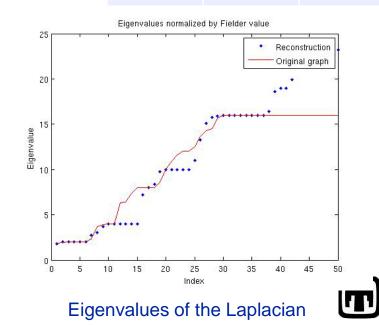
- Difference of adjacency matrices
 - Small differences around the blocks
 - Normalized error (Frobenius norm) ~ 42%
 - Red edge: false negative; Blue edge: false positive

Test I(b) – coarse sampling (25%)

- Network I, with 256 nodes and 5914 edges
 - Needs 2^*N_{edges} to store
- Reconstruction with ~ 25% sampling

Degre	h a	istri	hut	ion
Dugit		1301	Dui	





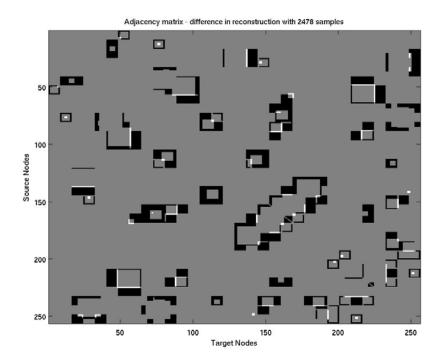
	Original	Recons- truction
No. of samples	11,824	2478 (~25%)
Average degree	23.1	44.6
Fiedler Value	1.85	1.81
No. edges	5914	11424

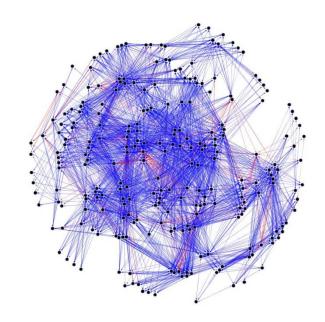
Sandia

National

Laboratories

Test I(b) – analysis of differences



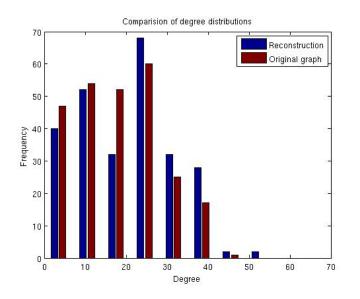


- Difference of adjacency matrices
 - Significant structural differences
 - Normalized error (Frobenius norm) ~ 100%
 - Red edge: false negative; Blue edge: false positive

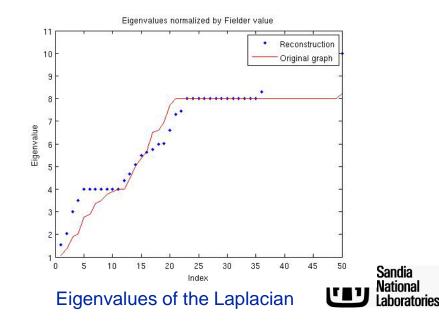
Test II - a sparser net

- Network II, with 256 nodes and 4426 edges
- Reconstruction with ~ 85% sampling

Degree distribution

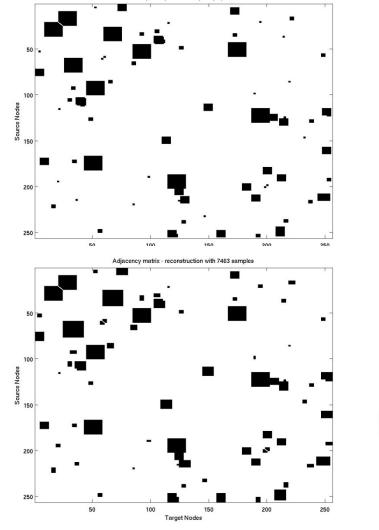


	Original	Recons- truction
No. of samples	8852	7589 (~85%)
Average degree	17.29	20.1
Fiedler Value	1.08	1.54
No. edges	4426	5144

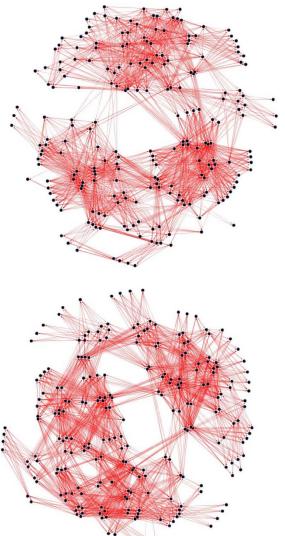


Test II – comparison of nets

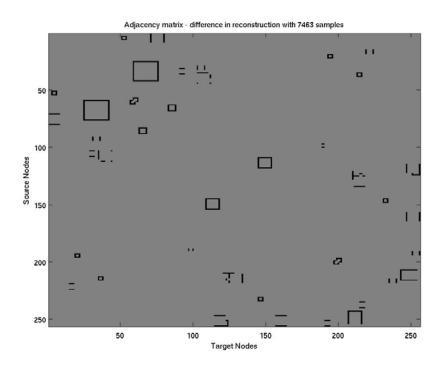
Original

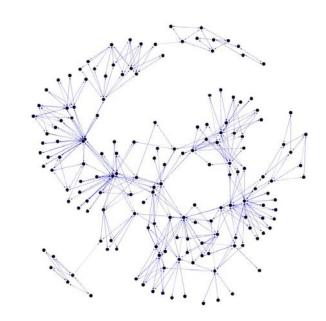


Adjacency matrix - original graph



Test II – analysis of differences





- Difference of adjacency matrices
 - Small differences around the blocks
 - Normalized error (Frobenius norm) ~ 40%
 - Red edge: false negative; Blue edge: false positive

Summary of the tests

- Define: Average link probability = average degree / # of nodes
- For an average link probability of around 10%:
 - 60% sampling gives excellent reconstruction
 - 25% sampling leads to over estimation of average degree
 - i.e., the reconstructed graph is very coarse & lacks detail
- For an average link probability of around 7%:
 - The technique requires too many samples (~85%) and is not competitive
- In general, matching the eigenvalue spectrum is easy
 - Fiedler value less so, but getting to +/- 10% is possible
- Matching the degree distribution is harder
 - 25% sampling does not do it
 - 60% or higher does it, depending upon the average link probability

Summary and Conclusions

- CS provides a new way of sampling and reconstructing networks
- Approach based on multiresolution decomposition of the adjacency matrix and its efficient sampling
- Requires preprocessing of the adjacency matrix to make it "blocky"
 - Biggest (combinatorial) algorithm challenge.
- Current CS reconstruction algorithm makes no use of the structure of a graph – very general (and so not very efficient/customized)
 - Other model-based CS techniques exist, but not yet adapted to networks
 - Obvious starting point for future work to increase the efficiency of reconstruction

