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Previous efforts determined a set of calibrated, optimal model parameter values for

Reynolds-Averaged Navier Stokes (RANS) simulations of a compressible jet in crossflow (JIC)

using a :-n turbulence model. These parameters were derived by comparing simulation results

to Particle Image Velocimetry (PIV) data of a complementary JIC experiment under a limited

set of flow conditions. Here, a :-n model using both nominal and calibrated parameters is vali-

dated against PIV data acquired from a much wider variety of JIC cases, including a realistic

flight vehicle. The results from the simulations using the calibrated model parameters showed

considerable improvements over those using the nominal values, even for cases that were not

used in the calibration procedure that defined the optimal parameters. This improvement

is demonstrated using a number of quality metrics that test the spatial alignment of the jet

core, the magnitudes of multiple flow variables, and the location and strengths of vortices in

the counter-rotating vortex cores on the PIV planes. These results suggest that the calibrated

parameters have applicability well outside the specific flow case used in defining them and that

with the right model parameters, RANS solutions for the JIC can be improved significantly

over those obtained from the nominal model.

Nomenclature
�=>< Nominal RANS model parameters

�>?C Optimal RANS model parameters

2>AA Two-dimensional correlation coefficient

�∗ Normalized Euclidian distance between vortex core centers
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� Jet-to-freestream dynamic pressure ratio

�"� Normalized geometric mean of the error

: Turbulence kinetic energy

"(� Normalized mean squared error

% Perimeter of a vortex core

%∗ Normalized vortex perimeter

+G , +H , +I Reynolds-averaged velocity components

-% A dependent variable from the PIV

-' A dependent variable from RANS

U Nozzle’s lateral cant angle with respect to the wall normal

Γ Integrated circulation within a vortex core

Γ∗ Normalized vortex core circulation

n Turbulent energy dissipation rate

l Mean streamwise vorticity

Sub/superscript

% Data from the PIV

' Data from RANS

−, + Related to the negatively and positively oriented vortex cores, respectively

I. Introduction
The jet-in-crossflow (JIC) problem has been investigated via a large number of both experimental and numerical

studies (e.g., [1, 2]), with interest related to a variety of applications including film cooling, flight vehicle attitude

and roll control, and fuel injection (e.g., [3, 4]). These studies have provided considerable understanding of the flow

topology and statistics [5, 6]. The flowfield is typified by a counter-rotating vortex pair (CVP) oriented in the streamwise

direction in the jet core and a horseshoe vortex (HSV) near the wall which wraps around the jet column [7, 8]. For

applications related to flight vehicles, the interaction of the CVP and HSV with downstream control surfaces, like fins,

has been shown to modulate the forces generated by those surfaces by altering their effective angle of attack [9–11].

For the purposes of vehicle design, accurate modeling of the complex flow features at downstream control surfaces

is a primary goal [12]. Unfortunately, most high-fidelity numerical approaches are so computationally expensive that

Reynolds-Averaged Navier Stokes (RANS) continues to be the most efficient investigative technique. Arunajatesan
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[13] tested multiple two-equation RANS models for simulating a supersonic jet in a transonic, compressible crossflow

and concluded that most of their predictive capabilities were “marginal at best." Although the RANS results were

qualitatively similar to the experimental data used for comparison, inaccuracies in the turbulent stress predictions

resulted in the incorrect location and strength of the CVP and an overpredicted velocity deficit in the jet core. These

shortcomings will, in turn, lead to poor estimations of the effective forces on downstream control surfaces [14, 15].

RANS models contain many approximations which make them inaccurate. One conceptually simple way of

improving their accuracy is to calibrate them (estimate the parameters in RANS models) to experimental data collected

from flow configurations similar to the final use-case of the model. Duraisamy et al. [16], Xiao and Cinnella [17], and

Zhang et al. [18] have all offered reviews of data-driven modeling to improve the predictive skill of RANS. Of late,

these calibration activities have employed Bayesian inference, as the method allows one to capture the uncertainty/errors

in the estimated parameters by treating them as random variables and computing their joint probability density function

(PDF). The first attempts targeted “1D” flows e.g., turbulent channel and flat-plate boundary layers [19, 20]. Later,

authors estimated the parameters of a :-n model for incompressible flows, with one example being flow in urban canyons

from wind-tunnel data [21]. The parameters of a :-l-W turbulence model for hypersonic transitional flows have also

been investigated, via Bayesian calibration and Stanton number measurements from a flow over a flat plate [22]. While

most of these studies used Markov chain Monte Carlo to construct the joint PDF, some studies have explored the use of

ensemble Kalman filters for calibration purposes using data from simple flow configurations e.g., backward-facing step

[23] as well as more complex ones such as flows over an airfoil and a wing [24].

The RANS data used by Arunajatesan [13] were produced using nominal model parameters (�=><), those typically

used for a variety of flow applications, without any additional calibrating to the JIC problem specifically. This led Ray

et al. [25] to investigate the usefulness of rigorously tuning the parameters of the :-n model in hopes of producing

the best possible results. Without making structural changes to the turbulent stress model within a RANS approach,

the best results that can be accomplished come by calibrating the model’s existing parameters to the exact flow case

of interest. The methodology for estimating the :-n parameters used in this study are described in Ray et al. [25–27],

which also explored (and then rejected) the possibility of using quadratic and cubic eddy-viscosity models in the

context of JIC configurations. Ray et al. [25] proposed a Bayesian inverse problem and a Markov chain Monte Carlo

method utilizing particle image velocimetry (PIV) data of the mean streamwise vorticity (l) to determine an optimum,

calibrated combination of the three model parameters (�>?C ) for a single case of the jet-in-crossflow problem. Ray

et al. [27] continued this work by calibrating the parameters for a wider set of flow cases and showed improvement

for modeled vorticity in each case. The calibration process that led to the determination of �>?C was performed by

matching to a single streamwise vorticity core on a flow-normal crossplane. Although the model fit to that variable

was much improved under those conditions, no additional validation of the use of �>?C under different flow conditions

or on other variables or in other regions of the flow has been done. Further investigation of this same flow problem
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was performed analytically in DeChant et al. [28] and using similar PIV data in Miller and Beresh [29]. Both of those

works found optimal values for �` (the primary component of �>?C ) for this problem that were similar to the value

recommended by Ray et al. [25].

This work is an effort to take �>?C , as determined by matching to l at a single location, and validate its usefulness

in improving RANS predictions of multiple flow variables throughout the domain under a variety of flow characteristics.

Thus, the validation domain has been expanded to fill a much larger portion of the operational envelope of transonic JIC

by utilizing data from additional validation experiments [30]. The list of validated system response quantities (SRQs) of

interest is also expanded from only vorticity in a single vortex core to include both +H and l fields over entire PIV

planes. In addition, the jet configuration is also modified to include canted jets. A series of validation metrics are

presented and used to quantify the improvements (or lack thereof) to SRQ predictions when switching from the nominal

parameters to those determined as optimal.

To that end, RANS simulations were run for a large number of JIC flows using both the nominal and optimal model

parameters. The SRQs of interest were extracted from the converged results and comparisons were made to PIV data.

A large set of PIV data collected over many years at Sandia National Laboratories (SNL) was tapped to provide the

experimental data needed for the validation (Sect. II). The set of utilized metrics, each specifically chosen to give a

different measure of the quality of the simulation results, compared both the nominal and optimal RANS solutions to

the experimental data (Sect. III). The list of metrics includes some that measure the “global" fit as well as others that

specifically track and measure the vortex cores in the CVP. Side-by-side comparisons of the RANS results and PIV data,

along with the values of the quality metrics for each variable on each plane for each case being investigated, are shown

(Sect. IV). This includes cases that differ considerably from the single case used for the parameter calibration. The

present work builds on the initial efforts of Miller et al. [31] but adds additional comparisons over what was reported

there and uses additional quality metrics for comparisons of the CVPs.

II. Experiments and Data

A. PIV

PIV data from multiple experimental campaigns, performed in different wind tunnels with different equipment

and geometries, are used here for validation. The first sets of data, against which the nominal and calibrated RANS

simulations were tested, were collected in the Trisonic Wind Tunnel (TWT) at SNL and have been reported and used in

a number of previous studies (e.g., [12, 32–36]). The data are all from jet-in-crossflow experiments, each consisting of a

wall-mounted nozzle venting a supersonic jet into a subsonic (Mach 0.8) crossflow (Fig. 1). The TWT cross section is

305×305 mm and the tunnel was operated with a freestream velocity of 285±2 m/s. Four different jet nozzles were used

for separate tests, each with a design Mach number of 3.7 at the centerline of the nozzle exit. The first was oriented
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Fig. 1 Schematic of the TWT and mean JIC flow topology depicted using PIV data from Beresh et al. [32, 33]
and collected on the G-H centerplane and a H-I crossplane at G = 321.8 mm. Reprinted with permission from
Ray et al. [25].

normal to the tunnel floor and thus vented the jet perpendicularly into the subsonic crossflow. The additional nozzles

were inclined laterally to the freestream direction at angles of U = 15°, 30°, and 45° and thus vented the jet into the

crossflow perpendicularly to the freestream but canted in the crossplane. The nozzle with U = 0° had a circular exit with

a diameter of 9.53 mm. The inclined nozzles had elliptical exits that resulted from the design which was based on a

conical nozzle being scarfed by the plane of the tunnel wall passing through the centerpoint of the exit plane of the

normal conical nozzle. The jet-to-freestream total temperature ratio for each of the nozzles was 0.93, with some small

variations based on ambient conditions. The freestream Reynolds number based on the circular nozzle exit diameter

was approximately 2 × 105. Additional dimensions and nozzle exit properties can be found in Beresh et al. [35].

PIV datasets were collected during multiple experiments in the TWT with nozzles of each of the inclination angles

and at five different jet-to-freestream dynamic pressure ratios (�). Across the different experiments, PIV images were

collected using a mixture of two-component PIV and stereoscopic PIV procedures and were collected on three different

two-dimensional (2D) planes within the tunnel. The first plane was the G-H centerplane, which was aligned with the

nozzle center (I = 0) and extended from ≈ 226 to 350 mm downstream of the nozzle. Data were collected on the

centerplane only with the U = 0° nozzle and only for � = 8.1 and � = 10.2 [36]. The second plane was a H-I crossplane

positioned at G = 215 mm (22.6 jet diameters) and roughly centered around I = 0. Data were collected on this crossplane

during experiments with both the U = 0° and U = 30° jet nozzles, both with � = 10.2 [34]. The final plane was also a

H-I crossplane, but was positioned at G = 321.8 mm (33.8 jet diameters). It was at this downstream location that the data

used in Ray et al. [25] were taken. The data they used were taken with the 0°-inclined nozzle operating at a dynamic
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Table 1 The planes of PIV data taken from each experimental combination of nozzle inclinations (U) and
dynamic pressure ratios (�). Cases highlighted blue are used to represent uncertainties in Figs. 6-7.

� = 2.8 � = 5.6 � = 8.1 � = 10.2 � = 16.7

U = 0°: G = 321.8 mm G = 321.8 mm G = 321.8 mm G = 215 mm G = 321.8 mm
I = 0.0 mm G = 321.8 mm

I = 0.0 mm

U = 15°: G = 321.8 mm G = 321.8 mm G = 321.8 mm G = 321.8 mm G = 321.8 mm

U = 30°: G = 321.8 mm G = 321.8 mm G = 321.8 mm G = 215 mm G = 321.8 mm
G = 321.8 mm

U = 45°: G = 321.8 mm G = 321.8 mm G = 321.8 mm G = 321.8 mm G = 321.8 mm

pressure ratio of � = 10.2 and had been previously reported in Beresh et al. [33]. Herein, data that were collected on

this crossplane for experiments using all four nozzles at � values of 2.8, 5.6, 8.1, 10.2, and 16.7 are used (Table 1). This

is a combination of the datasets reported in Beresh et al. [33] and Beresh et al. [35]. For further details on the PIV

systems, equipment, and procedures readers are referred to the cited works. Results presented herein are ensemble

averages from at least 3000 snapshots of data on each plane.

The second set of data used here was collected during a different experimental campaign and was previously reported

in Beresh et al. [12]. Those data were collected during experiments performed on a full-scale flight vehicle model in a

production-scale wind tunnel under a variety of conditions and represent the most complex and flight-realistic data

against which the calibrated RANS could be tested. The experiments were performed in the NASA Ames Unitary Plan

Wind Tunnel which, with its 3.4×3.4 m cross section, was able to hold a 3.6 m long, full-scale reproduction of an

axisymmetric flight vehicle with four aft fins. Two nozzles were mounted into the model surface at approximately the

model’s midsection and had a lateral inclination angle of 39.5° to the surface normal. The nozzles were considerably

larger than those used in the TWT, with an effective nozzle diameter at the model surface plane of 38.2 mm. The nozzles

were designed to produce a nominal Mach number at the centerline of the nozzle exit of 3.66 by utilizing high-pressure

room-temperature air which was supplied at up to 20 MPa at 18 kg/s through the mounting sting. Schematics, pictures,

and further details on the model and nozzles can be found in Beresh et al. [12].

A variety of tests were performed during the experimental campaign, with different freestream Mach numbers,

dynamic pressure ratios, and angles of attack. Only the baseline case from that campaign is used here because many

more PIV samples were taken for that case, thus substantially lowering the measurement uncertainty. That case used a

jet stagnation pressure of 2.83 MPa while the wind tunnel was operated at a freestream Mach number of 0.8 with a

stagnation pressure of 33.5 kPa, resulting in a jet-to-freestream dynamic pressure ratio of � = 16 [12].

By using a traverse system mounted alongside the tunnel, PIV data were collected on a set of H-I planes at a range

6



of G locations from 414 to 820 mm downstream of the nozzle center. Herein, data from only the G = 414 and 820 mm

planes were used for comparisons to the RANS simulation data. Further details on the PIV system are left to the cited

work [12].

These multiple experiments were planned and conducted with validation in mind and efforts were made to satisfy the

highest quality expectations for such experiments [37, 38]. The data were processed using the DaVis software package

using state-of-the-art techniques like those described in Beresh et al. [39] and much of the data here was reprocessed

from the original images to make use of more recent interrogation algorithms. As reported in Beresh et al. [33] the

collective uncertainties inherent in the PIV data collected at G = 321 mm equate to ±9, ±4, and ±6 m/s in +G , +H , and

+I , respectively. Given the spatial resolution of the PIV data and data processing techniques used for determining l,

the uncertainties in the velocity components can be translated into an uncertainty in l following Sciacchitano and

Wieneke [40]. For the majority of the data presented here, collected at G = 321 mm, this resulted in an uncertainty in l

of approximately ±900 s−1 everywhere on the planes. The data collected at G = 215 mm has a lower uncertainty in

the velocity components but was processed with a 75% overlap and had a tighter spatial resolution. These competing

properties result in an uncertainty in l of approximately ±1000 s−1. For the sake of simplicity a single uncertainty

value of 950 s−1 was used for the vorticity and a single value of ±5 ms−1 was used for +H in each dataset presented

here. Although more precise uncertainty quantification with spatial variability has become available for PIV in recent

years [41], these simplified estimates are sufficient for the present application. Monte Carlo techniques were used to

propagate the uncertainties in +H and l into the set of quality metrics used to compare these SRQs of interest. Further

details on the metrics and the propagation of the uncertainties are discussed in Sect. III.

B. RANS

The RANS data, produced with both�=>< and�>?C , were generated using SNL’s parallel compressible gas dynamics

code, SIERRA/Aero. The specifics of the :-n model that is utilized in SIERRA/Aero are described in So et al. [42],

Brinkman et al. [43], and in the released user’s theory manual [44]. The model uses three parameters, {�`, �n 1, �n 2}.

�=>< was defined as {0.09,1.43,1.92} for the model parameters, respectively, (see Brinkman et al. [43]) while �>?C

was defined as {0.1025,1.416,2.099} as specified in Ray et al. [25]. The diffusion coefficients, f: and fn , were

not independently optimized in Ray et al. [25] and were held constant at default SIERRA/Aero values, 1.0 and 1.3,

respectively, in both sets of RANS simulations.

To simulate the experiments performed in the TWT, a multiblock structured mesh of ≈ 7.9 million grid cells was

defined from ≈ 32.0 jet diameters upstream to ≈ 100 jet diameters downstream of the jet nozzle. The spanwise and

wall-normal dimensions were defined to match those of the TWT, the nozzle geometry was resolved down to the

stagnation chamber, and wall-normal grid stretching was applied at all wall surfaces. The entire mesh is point-matched.

An O-H topology was used from the stagnation chamber through the nozzle and then turned to follow an expected
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jet trajectory down the tunnel to the exit of the domain. The tunnel mesh uses an H topology upstream of the nozzle

and a hybrid topology downstream that matches the tunnel H topology to the O-H topology along the jet trajectory.

A previous grid refinement study on a subset of the cases studied here demonstrated that this resolution was at the

threshold of the minimum required to provide reasonably converged results. The grid refinement study used six meshes

ranging from higher (500, 62.5, and 18.6 million cells) to lower (2.34 and < 1 million cells) resolutions and it was

determined that numerical variations in the SRQs of interest became insignificant at the chosen mesh level.

Simulations were run using each of the parameter sets (�=>< and �>?C ) for each of the combinations of the nozzle

inclination angles and dynamic pressure ratios. The inlet boundary condition was kept constant across all simulations

and consisted of a plane of state variables taken from a precursor simulation of the full length of the TWT with no

JIC or nozzle present. The precursor simulation was run with �=><. Its use as an inlet condition did not produce any

observable issues within the simulations run with �>?C and though a minor difference in mean BL growth along the

tunnel wall occurred between the domain inlet and the jet, the difference in the resulting BL thicknesses was below the

grid resolution at G = −10 jet diameters. The outlet boundary conditions were based on pressure measurements taken

in the TWT. The desired dynamic pressure ratios for the jet were generated by setting the stagnation chamber boundary

condition. The simulations were run with a Roe flux scheme, were spatially second order with a weighted least square

gradient method, and a stenciled van Albada limiter was applied. Local time stepping was used in an implicit first-order

backward-difference time-advancement method. All walls were treated as adiabatic. After reaching convergence, fields

of +H , 3+I/3H, and 3+H/3I were extracted from each simulation and were interpolated onto the same grid-planes at

which the PIV data were collected. The interpolated gradients were then combined to form l.

For simulating the experiment of the flight vehicle model, a multiblock structured mesh of ≈ 25.7 million hex

elements was defined that included the entire flight vehicle but with far field boundaries instead of including the wind

tunnel test section walls. The CFD model geometry included the vehicle body, tail fins, and the two nozzles mounted

into the model surface as defined in Beresh et al. [12]. Mesh convergence studies demonstrated that this mesh results in

converged integrated forces and moments, though the farfield flow solution, away from the jet and CVP region, may not

be fully grid-converged. Again the appropriate planes of data were extracted from the results of simulations run with

each set of model parameters so that direct comparisons could be made to the PIV data.

III. Validation Methods
In order to quantitatively assess the quality of the improvement to the RANS solutions by switching from �=>< to

�>?C a set of six metrics were used to measure the spatial and magnitude differences between the SRQs from the PIV

and RANS datasets.

The first three metrics were used to measure the prediction accuracy of the primary vortex cores as the behavior of

those cores and their development with downstream distance is of significant interest to the engineering community.
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The size, strength, and location of the primary vortices visible in both the PIV and RANS datasets for each case were

determined for comparison. In most cases two primary vortices were clearly distinguishable, though in some of the

cases with relatively low � and high U values, only a single core could be reasonably identified. Additionally, a few

cases exhibited third or even fourth regions of high vorticity, but in all but one of such cases those cores were either not

identifiable in all three datasets and/or crossed over an edge of the crossplane’s domain and therefore their sizes could

not be identified. The one exception to this was that three cores were identified in all three datasets on the G = 414 mm

plane of the tests performed around the flight vehicle model. In all the remaining cases, the historically well-established

two-vortex CVP was clearly identified.

In Beresh et al. [12], a threshold of 1/4 (≈ 37%) of the peak streamwise vorticity (l = (3+I/3H − 3+H/3I)) within

each core was used to define the core’s shape, prior to then extending that shape out to a zero vorticity threshold which

defined the core’s outer boundary. Similarly here, a threshold of 1/3 of each core’s peak value was chosen to identify

the cores’ shapes. This simple threshold definition, though not quite at the edge of the identifiable vorticity, proved

most robust for both PIV and RANS results and across all flow conditions, and thereby it allowed a suitable common

definition. Using this boundary, the core perimeter (%) was determined so that the outer size of the cores could be

compared reliably without regard to circularity or aspect ratio. The strength of each core was then quantified as the total

circulation (Γ) within each core by integrating l over the area within the boundary. Finally, the H and I location of the

“center of circulation" of each core were then determined using a center-of-mass-type approach as,

[H, I] = 1
Γ

∫
[H, I] l 3�. (1)

Examples of what the use of this thresholding criteria looked like in practice, and the resulting values of H and I, are

discussed in Sect. IV and shown in Figs. 3, 4, and 5. In those figures, the black isolines and the ‘×’s denote the vortex

core boundaries as defined by the 1/3 threshold and the individual core centers of circulation, respectively.

To facilitate meaningful comparisons across a range of cases, normalized versions of % and Γ were employed as,

%∗ =
%'

%%
, (2)

and

Γ∗ =
Γ'

Γ%
, (3)

where the subscripts ' and % represent values taken from the RANS and PIV data, respectively. The error in the location

of each vortex core was normalized by defining the Euclidian distance between each PIV vortex core center location and
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the RANS derived core center locations divided by the core perimeter from the PIV as,

�∗ =

√
(H% − H')2 + (I% − I')2

%%
. (4)

If the RANS data is a perfect predictor of the PIV data then Γ∗ and %∗ will both be one and �∗ will be zero. These three

metrics are only defined based on the mean streamwise vorticity and therefore were not applied to the centerplane data

or to any other variables.

Because these three metrics were only applied to l, only the uncertainty in l needed to be propagated to these

metrics via a Monte Carlo approach. For each plane of data, random uncertainties were sampled from a Gaussian

distribution with a standard deviation of 475 s−1 (thus a two-sigma of 950 s−1 as defined above) and applied to every

point in the plane. This was repeated 5000 times per vortex core and the resulting distributions of Γ% and the centers of

circulation were then used in the metric formulations to get resulting distributions of Γ∗ and �∗. This approach was

illogical for determining distributions of %% and then %∗, as the randomness of the applied uncertainties resulted in

chaotic perimeters that were always substantially longer than the nominal perimeter. Therefore a different technique

was used by applying a randomly sampled uncertainty to each core’s peak vorticity value, determining the new 1/3

threshold, and then finding the perimeter based on that threshold. This still resulted in many unsatisfactory perimeter

values because the 1/3 threshold had already been chosen as the minimum value that worked well across all cases.

Essentially the 1/3 threshold of the original peak value placed the core perimeter so near the diffuse, ‘flat’ portion

of the vorticity field that even small changes to the threshold value result in large changes in the identified perimeter.

Regardless of this, the results are reported as calculated. From the three nondimensional distributions, a 95% confidence

interval was taken and is represented by uncertainty bands in the figures in Sect. IV.E.

The other three quality metrics proposed and used here are somewhat similar to metrics used in environmental

fluid dynamics studies for evaluating the accuracy of plume models [45] and have been used by others for comparing

models to large experimental datasets (e.g., [46–48]). These three metrics each measure the accuracy of the modeled

data in different ways and by including all of the data from the planes simultaneously, they provide a more rigorous bulk

comparison than tracking only peak values or peak locations.

The first of the bulk metrics was the mean squared error normalized by the mean squared magnitude of the PIV data.

This is defined as,

"(� =

〈
(-%,8, 9 − -',8, 9 )2

〉〈
-2
%,8, 9

〉 , (5)

where - represents any given dependent variable, the subscripts ' and % are as previously defined, 8 and 9 indicate

individual points on a 2D plane, the 〈〉 represent an average taken over the 2D plane being tested, and "(� goes to zero

for a perfect model fit. The normalization of the mean squared error was done to allow for direct comparisons of "(�
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across different flow variables which had differing orders of magnitude. Also note that anytime the "(� has a value

> 1.0 it means that the error between the fields is greater (in a mean squared sense) than the magnitude of the PIV data.

Because of the squares, the "(� is heavily biased towards errors in the peak values. The mean squared error has

been used extensively as a quality metric but has the flaw that it is susceptible to biases created by extreme events

or outliers in experimental data, especially when those data cross multiple orders of magnitude [45]. Specifically, a

few outlying points of large magnitude that produce large absolute errors but small relative errors can bias the "(�

regardless of the quality of the fit over the remaining data in the domain.

To reduce this bias and quantify improvements while minimizing the effects of outliers, the second bulk metric used

was the geometric mean of the errors normalized by the geometric mean of the magnitudes defined as,

�"� =
exp

[〈
ln( |-%,8, 9 − -',8, 9 |)

〉]
exp

[〈
ln( |-%,8, 9 |)

〉] . (6)

By not using squares and by taking the mean of the model-to-experiment difference in logarithmic space, this metric

reduces the bias toward errors at high magnitude points. In that way, the �"� does a better job than the "(� when

data cover multiple orders of magnitude; it minimizes the bias of smaller relative errors in large numbers swamping any

larger relative errors in smaller numbers∗. �"� can therefore be seen as a measure of how well the RANS performs at

predicting values away from the most extreme-valued regions of the flow while "(� is a measure of how well the

RANS predicts those peak values.

The final of the bulk metrics was the 2D correlation coefficient defined as,

2>AA =

∑
9

∑
8

[(-%,8, 9 − 〈-%〉)(-',8, 9 − 〈-'〉)]√∑
9

∑
8

[(-%,8, 9 − 〈-%〉)2]
∑
9

∑
8

[(-',8, 9 − 〈-'〉)2]
. (7)

The 2D correlation can take values between -1.0 and 1.0 and represents a measure of the spatial alignment between the

two datasets. The magnitudes of the RANS-predicted values are of no consequence to 2>AA and an ideal value of 1.0 is

still possible if the RANS values are wrong everywhere but are proportionately high when the PIV values are high and

are proportionately low when the PIV values are low. If 2>AA = 0 it suggests that the RANS results are no better than a

random number distribution.

As these three metrics were applied to both +H and l on each of the planes, a Monte Carlo approach was used with

both uncertainties. Again Gaussian distributions with two-sigma defined by the collective uncertainties defined in

Sect. II.A were used to produce random fields that modulated the mean PIV data which were then used to produce
∗This definition of �"� should not be confused with the “geometric mean bias" defined in Chang and Hanna [45], which is undefined for a

dependent variable with negative values.
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distributions of "(� , �"� , and 2>AA . Due to the nature of the normalizations used for "(� and �"� , the addition

of any amount of noise to the mean fields results in those formulations returning values nearer to unity than when only

the mean fields are used, i.e., adding the same noise to the PIV data in both the numerator and denominator results in

the metrics trending towards one. In many cases, this effect was so dramatic that the values of "(� and �"� found

using the mean fields (i.e., zero added uncertainty) did not land within the 95% confidence interval that resulted from

the Monte Carlo method. In those cases, when uncertainty bands are used to represent the confidence intervals in Sect.

IV.E, the metric values determined based on the mean PIV data replaced the appropriate bound, thus meaning that the

uncertainty bands represent a range with closer to 97.5% confidence. Those cases therefore appear with single-sided

confidence intervals instead of two-sided bands (Fig. 7 in Sect. IV.E).

For 2>AA , the addition of the random noise almost always makes the values worse (closer to 0). Given that the added

uncertainties have zero correlation in space, this makes intuitive sense. When this effect led to the mean-field 2>AA

being outside the 95% confidence interval from the Monte Carlo approach, we again replace the appropriate bound with

the 2>AA value determined from the mean data and thus the bands depict an interval ≥ 95% confidence in each case.

IV. Results
Given that a total of 40 different RANS simulations were run for this work, and a total of 48 independent planes of

data were taken to use for comparison to the PIV (Table 1), it is infeasible to show plots of even one variable from every

plane. We therefore chose only four sets of contour plots to demonstrate the general impact that the use of �>?C had

compared to �=><, before then showing the changes in the validation metrics for all of the simulations/planes. Similarly,

we also restricted ourselves to only making comparisons of +H and l across all planes. These two variables were chosen

for a variety of reasons, not the least of which was that they were available in all of the PIV and RANS datasets, unlike

higher order statistics like the Reynolds stress, which was not fully resolved in some of the PIV. These were also the

variables of interest to the researchers in the primary motivating works [13, 25] and therefore demonstrating modeling

improvements here helps advance the story those researchers started.

A. Centerplane for U = 0° and � = 10.2

First, the wall-normal velocity (+H) has been used as an indicator of the location, strength, and spacing of the

counter-rotating vortex pair (CVP) that typifies the JIC interaction [32]. This, combined with the fact that the streamwise

vorticity could not be resolved on the streamwise-oriented centerplanes, meant that +H was the only SRQ used for

quantifying the accuracy of the RANS simulations on the centerplane. For the case where U = 0° and � = 10.2, the

RANS simulation performed with �=>< significantly overestimated +H on the centerplane. This result is also tied to

the centerline of the jet core being farther from the wall and increasing its distance from the wall at a faster rate with

downwind distance than was observed in the PIV (Fig. 2). Conversely, when �>?C was used, the magnitude of +H was
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Fig. 2 +H on the centerplane with U = 0° and � = 10.2. (a) the PIV data and the RANS data using (b) �=><
and (c) �>?C .

considerably reduced, but was overcorrected somewhat resulting in the jet core being closer to the tunnel wall than was

observed in the PIV.

Because the RANS result predicted by using �=>< was better aligned with the PIV data at the upstream edge of the

domain and because the extents of the modeled jet were so much larger, thus overlapping the PIV data, that simulation

achieved a slightly higher 2>AA than did the results predicted with �>?C (Table 2). The modeled jet based on �>?C

had the jet centerline too close to the wall. However, because the magnitudes of +H were consistently overpredicted

throughout the core in the �=>< simulation, the "(� and �"� values for that data were worse than those determined

for the �>?C -derived results.

The magnitude of the +H values is often an indicator of the strength of the circulation in the CVP that is drawing

fluid up through the middle of the jet core. The higher +H magnitudes observed when �=>< was used suggested that the

CVP had a stronger vorticity magnitude and/or that the lateral separation between the counter-rotating cores was smaller

than what was expected based on the PIV or what was seen when �>?C was used. This is explored in the following
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Table 2 Quality metrics for +H on the centerplane as depicted in Fig. 2.

"(� �"� 2>AA

�=>< 0.506 0.575 0.802
�>?C 0.119 0.306 0.789

section by examining plots of the streamwise vorticity field.

B. Crossplanes for U = 0° and � = 10.2

For the case where U = 0°, � = 10.2, and on the G = 215 mm plane, the RANS solution using �=>< does indeed

show CVP core vorticities that are stronger than were observed in the PIV and that the cores are farther from the wall

and closer together (Fig. 3). This is consistent with the nominal results shown in both Arunajatesan [13] and Ray et al.

[25]. The cores’ boundaries and centers are denoted in the figure by the black isolines and ‘×’s, respectively, following

the definitions given in Sect. III.

The use of �>?C resulted in a lowering of the location of the CVP cores and a reduction in the strength of the

vorticity. But, as with +H , the correction may have been too large as the cores moved closer to the wall than was seen in

the PIV. This again led to the �=><-derived data having a better 2>AA value than did the �>?C -derived data (Table 3).

Similarly, the movement of the core centers towards the wall improved �∗− but made �∗+ worse, where the subscripts

indicate the negatively- and positively-oriented cores, respectively. The correction in the strength of the vorticity in the

CVP cores by using �>?C did result in better Γ∗s and a reduction in "(� , but the value of �"� was actually slightly

worsened. This suggests that although the most extreme vorticity values in the CVP cores were more accurate while

using �>?C , moderate vorticity values elsewhere in the crossplane may have been made slightly worse, a result that may

also be tied to the issue with the spatial alignment.

These results are particularly interesting because Ray et al. [25] used this exact variable (l) from this exact case for

determining �>?C , but the data used there were only of the negatively-oriented vortex core and were from the plane at

G = 321.8 mm. When the quality metrics for that plane were investigated, 2>AA, "(� , and �"� indeed improved

with �>?C and the location and strength of the negatively-oriented core were also more accurate (Table 3). This may

suggest that in correcting the location and magnitude of the vorticity at G = 321.8 mm, the calibration overcorrected the

location and intensity at G = 215 mm. This would in turn suggest that there is some other issue causing the trajectory of

the jet core to be incorrect, such that it overshoots the right location at G = 321.8 mm when it is correct at 215 mm or

undershoots the correct location at G = 215 mm when correct at 321.8 mm. Surprisingly, these metrics from the G = 215

mm crossplane constitute arguably the worst result that was seen among all of the sets of quality metrics calculated (can

be seen as the black stars on the wrong side of the lines in Figs. 7(b) and (c) later). For every other set of comparisons,

the metrics were collectively better.
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Fig. 3 l on the crossplane at G = 215 mm with U = 0° and � = 10.2. (a) the PIV data and the RANS data using
(b) �=>< and (c) �>?C .

Table 3 Quality metrics for l as depicted in Fig. 3 and as taken from the G = 321.8 mm plane of the same case.

"(� �"� 2>AA %∗−, %
∗
+ Γ∗−, Γ

∗
+ �∗−, �

∗
+

G = 215 mm:
�=>< 0.761 1.06 0.838 1.17,1.31 1.89,1.82 0.109,0.074
�>?C 0.556 1.12 0.716 1.24,1.37 1.34,1.25 0.080,0.157

G = 321.8 mm:
�=>< 1.789 1.12 0.684 1.12,1.15 2.12,2.04 0.159,0.105
�>?C 0.672 1.06 0.715 1.22,1.21 1.48,1.42 0.060,0.132

15



An additional factor that may be contributing to the poorer metric behavior for this case is the visible asymmetry

in what is a nominally symmetric flow configuration. Slight asymmetries in both the shapes and magnitudes of the

cores are observable in the experimental data. Beresh et al. [33] suggested that the experimental asymmetry may be

credited to imperceptible asymmetries in the nozzle, below machining tolerance, or in the tunnel freestream. Other

experiments have shown similar results, leading to speculation in the literature that the jet-in-crossflow may be an

inherently asymmetric flow [7], perhaps due to convective instabilities [49] and possibly as a function of flow parameters

like Mach number, Reynolds number, and � [50]. Similarly asymmetries also appear in the simulated data, both here

and in the simulations of Arunajatesan [13], which were performed with different turbulence closure models and with a

different CFD solver than was used here. Given that unsteadiness is not believed to be a factor in the included simulations,

the cause for the asymmetry may be attributable to the same inherent instabilities observed in the experimental data.

Additionally, the simplistic model form of present closure models may make them susceptible to unstable conditions

leading to a locking in of more extreme asymmetries than are physical or would be observed in experiments. While the

asymmetric phenomena do add complexity to the comparisons of the experimental and simulated data, the only cases

for which the quality metrics may be affected are those where U = 0°. Regardless of this, the metrics show general

improvements even when U = 0° and often show even greater improvements when the nozzle is inclined.

C. Crossplanes for U = 30° and � = 10.2

A much more noticeable improvement in the RANS solution based on �>?C was seen for the case when U = 30° and

the data were taken at G = 215mm with � = 10.2 (Fig. 4). These data were not used in determining �>?C , were taken

from a somewhat more complicated flow, and were taken at a different downstream location than were the data used for

determining �>?C . These data are also more closely representative of a flight application of interest [12]. Both the

general shape of the vorticity field and the magnitudes of the vorticity within the individual cores were improved with

the use of �>?C . When the improvements seen by using �>?C were quantified using the quality metrics, all three bulk

metrics reflected these qualitative observations by showing the �>?C -derived results to be a significant improvement

over the �=>< results (Table 4).

In contrast, when looking at the individual vortex cores, %∗ and �∗ did not show the same improvement with the use

of �>?C . For both vorticity cores �∗ became slightly worse, while %∗ became worse for only the negatively-oriented

vortex. This can be seen in the figure, as the use of �>?C made the negative core slightly too large and moved the core

centers to be slightly misaligned. The larger boundary is a result of the simulated cores having lower peak magnitudes

than seen in the PIV or when�=>< was used, thus resulting in lower magnitude thresholds for defining the core boundary

shapes, thereby making the cores larger. Those lower magnitudes were closer to the PIV values than were seen when

�=>< was used (thus the improved "(�), but for the negatively-oriented core specifically, result in the identified

core boundary being more diffuse than in the PIV. If, by contrast, the peak values from the PIV cores were used to
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Fig. 4 The same as Fig. 3 but with U = 30°.

Table 4 Quality metrics for l as depicted in Fig. 4 and as taken at the G = 321.8 mm plane of the same case.

"(� �"� 2>AA %∗−, %
∗
+ Γ∗−, Γ

∗
+ �∗−, �

∗
+

G = 215 mm:
�=>< 0.987 1.00 0.853 1.02,1.27 2.00,2.06 0.047,0.034
�>?C 0.210 0.78 0.894 1.30,1.19 1.50,1.25 0.076,0.038

G = 321.8 mm:
�=>< 1.393 1.07 0.830 1.05,1.23 2.17,2.09 0.043,0.039
�>?C 0.198 0.82 0.911 1.36,1.02 1.53,1.24 0.063,0.014
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(a) (b)

(c)

Fig. 5 l at G = 820 mm as viewed aft from the flight vehicle nose. (a) the PIV data and the RANS data using
(b) �=>< and (c) �>?C . The dashed and solid arcs depict the vehicle’s surface at the G locations of the nozzles
(also shown as dashed lines) and of the PIV plane, respectively.

define the threshold for the shapes in all three datasets—instead of using the peak core magnitudes from the individual

simulated cores—it would reduce the size of the cores in the �>?C results and increase the size of the cores in the �=><

results. This would improve the %∗ value for �>?C while making %∗ worse for �=><. At the same time, this would likely

worsen Γ∗ for both RANS datasets. Using such a definition would therefore produce more impressive quality metric

improvements for this case, but in many other cases it does not produce usable results because core boundaries were

often no longer coherent or smooth, or were so vanishingly small as to make them unusable.

At the G = 321.8 mm plane for this same case (U = 30° with � = 10.2), similar results were seen in the quality

metrics (Table 4). Specifically, Γ∗, 2>AA , "(� , and�"� all showed marked improvements when�>?C was used, while

%∗ and �∗ showed more mixed results. Based on both %∗ and �∗, the negatively-oriented vortex location and shape

were predicted slightly less accurately, while the positively-oriented vortex shape and location were better predicted.
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D. Crossplanes for the flight vehicle model

One of the most rigorous tests of the calibrated :-n parameters was comparisons made to the data taken in the

vicinity of the full-scale flight vehicle model. Given the cylindrical coordinate system of the vehicle and the clocking

position of the jet nozzles on the vehicle body, velocities and gradients were defined based on the orientation of the

vehicle in the wind tunnel and are therefore not specifically aligned with the nozzle exit normal as they were in the

TWT. Direct comparisons were then made for both l and +H (where H is normal to the tunnel floor [12]) between the

RANS and PIV data. Contours for l at G = 820 mm showed that the :-n model with both sets of parameters was

able to generate the correct general flow topology (Fig. 5). Use of �=>< resulted in vortex cores with higher vorticity

magnitudes and produced a second negatively-oriented vortex core near the top of the domain window defined by the

PIV. The use of �>?C resulted in lower vorticity magnitudes than both the PIV and the �=><-derived results, but they

were more accurate than the �=><-derived magnitudes (leading to better Γ∗ and "(�). �>?C also clearly produced a

better spatial alignment to the PIV data than did the use of �=><, which also resulted in an improved 2>AA. In fact,

"(� , �"� , and 2>AA were all improved for l when �>?C was used (Table 5). This was also the case on the other

investigated plane (at G = 414 mm) and for +H on both of the planes.

When looking at the vortex core metrics, again the use of �>?C showed general improvements. On the G = 820 mm

plane, the locations of the core centers were both improved and the total circulation was more accurate within each

core. For the negatively-oriented core specifically, the use of �=>< produced a perimeter that was smaller than was

seen in the PIV while the use of �>?C produced a perimeter larger than the PIV. This is again attributed to the slight

overcorrection of the use of �>?C leading to more diffuse core boundaries. Technically the smaller core (from �=><)

has a perimeter more similar to the PIV size but the difference is minimal. A similar result was observed on the G = 414

mm plane, in that the negatively-oriented vortex core nearest to the vehicle became larger when �>?C was used than was

seen in the PIV, leading to a slightly worse %∗ even though the total circulation and core location were improved. Recall

that for the G = 414 mm plane, three vortex cores, including two that were negatively oriented, were identified and

compared. In Table 5, the metric results for the negatively-oriented cores are listed first, followed by the metrics for the

positively-oriented cores. In this case, nearly all the metrics of comparison were substantially improved by use of �>?C

vs �=>< despite the numerous differences between the flight vehicle case and the small-scale unit problem used for

calibration.

E. Collective Quality Metric Behavior

For the sake of brevity, no additional sets of contour plots are shown, but the quality metrics are assessed across

all of the comparable datasets. Looking at the three metrics based on the strength, size, and location of the vortex

cores, plots of the metric values show that while vortex circulation strengths were universally improved by using �>?C ,

the story of the vortex sizes and locations was somewhat more complex (Fig. 6). There were 24 planes of data taken
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Table 5 Quality metrics for +H and l on the planes collected in the vicinity of the full-scale flight vehicle.

"(� �"� 2>AA %∗−, %
∗
+ Γ∗−, Γ

∗
+ �∗−, �

∗
+

+H:
G = 414 mm:

�=>< 1.64 1.23 0.291 – – –
�>?C 1.25 1.20 0.389 – – –

G = 820 mm:
�=>< 1.18 0.905 0.633 – – –
�>?C 0.564 0.647 0.764 – – –

l:
G = 414 mm:

�=>< 3.636 1.28 0.487 1.07,0.95,2.09 3.15,1.96,3.17 0.275,0.109,0.178
�>?C 1.688 1.20 0.494 1.05,1.12,1.51 1.63,1.82,2.03 0.226,0.108,0.188

G = 820 mm:
�=>< 0.787 1.01 0.660 0.82,1.72 2.22,2.78 0.056,0.096
�>?C 0.273 0.78 0.866 1.10,1.20 1.86,1.75 0.024,0.052

from the TWT and the RANS solutions using each �=>< and �>?C but as the streamwise vorticity was not studied for

the two centerplanes, only 22 planes of data were used for these metrics. There were two additional planes on which

comparisons were made to the PIV data taken in the vicinity of the full-scale flight vehicle model tested in the tunnel at

NASA, Ames. These planes resulted in a total of 44 identified cores for which metric comparisons could be made, i.e.,

five planes exhibited a single identifiable core for comparison while 18 had two and the G = 414 mm plane of the flight

vehicle had three.

By plotting |1 − Γ∗ |, values closer to zero indicate improved performance when using �>?C , and thus points that

land below the 1-to-1 line (Fig. 6(a)) show an improvement in the simulated vortex strengths when �>?C was used. For

all 44 of the comparisons done here, the integrated strengths of the circulation within each of the vortex cores improved

when �>?C was used instead of �=><. The impact of this result cannot be understated. The calibrated coefficients

were determined based on a single vortex core on a single plane of data from a single flow configuration and yet

those coefficients improve the accuracy of the amount of circulation in all 44 cores taken from the variety of flow

configurations and planes studied here.

Uncertainty bands, used to denote the confidence interval of the Monte Carlo uncertainty propagation, are included

for a subset of the 44 available cores. The cores chosen are those from the cases highlighted in blue in Table 1. These

are representative of the breadth of uncertainty propagation results seen across all the cases. As can be seen in Fig. 6(a),

none of the depicted intervals cross the 1-to-1 line. Including uncertainty bounds for all 44 vortex cores would have

made the figure unreadable, but would have shown that only one core had intervals cross the 1-to-1 while the remaining

43 do not cross that line within the 95% confidence.

As promising as this result is, it is tempered somewhat by the behavior of the metric %∗. The figure depicts |1 − %∗ |

for each core from the simulated datasets so that points below the 1-to-1 line again show improvements when �>?C was

used instead of �=><. An improvement in the vortex perimeters was observed in 17 of the identified vortices. The use

of �>?C seemed to consistently produce vortex cores with lower peak vorticity values than did using �=><. This was
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Fig. 6 The quality metrics of the vortex cores comparing the RANS to the PIV data. (a) Γ∗, (b) %∗, and (c) �∗
for �=>< and �>?C .

generally an improvement in the simulated results as the PIV values were typically lower than those estimated using

�=><, but often the correction was too large and then under-predicted the PIV peaks. The differences in the peak values

lead to different thresholds for defining the core boundaries, which consistently made the cores larger and more diffuse

in the �>?C -derived results than in the PIV. This seems to have particularly been a problem for the negatively-oriented

vortex cores which were close to the wall in each of the cases with inclined nozzles. As shown above, for the case with

U = 30° and � = 10.2 (Fig. 4), the negatively-oriented core is nearer to the wall, and in the �>?C -derived results is larger

and more diffuse than in the PIV. So even when the positively-oriented cores’ %∗’s are improved, and although Γ∗’s

are improved for the negatively-oriented cores, the perimeters of those cores become larger than expected (Table 4).

Negatively-oriented cores account for 19 of the cores for which %∗ was not improved, with 14 of those coming from

cases with inclined nozzles.

As explained in Sect. III, the individual core perimeters were very sensitive to the added uncertainty on the vorticity.
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In large part this was because the 1/3 threshold used for defining the perimeter was chosen as low as it could be while

still producing logical core bounds in all of the cases. As a result, large changes in the perimeter for even moderate

amounts of uncertainty cause confidence intervals in |1 − %∗ | to be on the order of |1 − %∗ | itself. Thus, for most of the

vortex cores, the intervals reach across the 1-to-1 line and therefore cloud whether %∗ truly is improved or not. Of all of

the core perimeters, only eight possess uncertainties that did not reach across the 1-to-1 line, and each of these were

negatively oriented and came from cases with inclined nozzles. This is depicted for both the U = 30°, � = 10.2 and

U = 45°, � = 16.7 cases (Fig. 6(b)) for which the uncertainty bands do not cross.

The final of the three core-based quality metrics was �∗, which should approach zero for a perfect simulation result.

Thus, again, points below the 1-to-1 line (in Fig. 6(c)) indicate a more accurate result when �>?C was used than when

�=>< was used. The locations of the vortex core centers were improved for 30 of the 44 identified cores. Additionally,

the average improvement in �∗, for the cores that showed improvement, was more significant than the average worsening

in �∗ for the 14 cores where �=>< was better. Specifically, using �>?C improved the 30 superior core locations by

an average of 5.5% of their respective perimeters, i.e., their values are 0.055 below the 1-to-1 line on average. The

remaining 14 cores were worsened by only 1.9%, on average, when �>?C was used. Of the cores that showed the largest

worsening of �∗, two of them were again from the U = 0°, � = 10.2 case, the alignment of which was discussed above

(Sect. IV.B). Overall, �∗ indicates a substantial, though not universal, improvement in vortex simulation when �>?C is

used.

Considering all of the confidence intervals on �∗, in the best case, eight of the bands reached across the 1-to-1 line

to the improved side, resulting in a maximum of 38 cores for which �∗ was improved with �>?C . In the worst possible

case, only six of the identified cores have confidence intervals that reached from the region of improvement to the worse

side when �>?C was used, resulting in a maximum of only 20 of the 44 core �∗s that may have been worsened by

switching parameters.

One final point, that is not captured well within these metrics, is that the general shapes of the cores appears to have

improved with the use of �>?C . This is quite visible in the positively-oriented vortex depicted in Fig. 5. This sometimes

occurred at the expense of a slightly less accurate core center location, but it appears obvious which of the simulated

cores is "more correct" in the figure, even if the center of the core is slightly less accurate with �>?C . Visual inspection

of all cases finds that this is a common trend.

Moving on to comparisons of the three bulk metrics, 50 total comparisons were made between the data determined

from RANS using the two different sets of parameters and PIV data (Fig. 7). These came from the 24 planes of data

taken in the TWT and the two additional planes taken in the vicinity of the full-scale flight vehicle model, and the fact

that two variables, +H and l were compared—though the streamwise vorticity was not calculated on the centerplanes.

The "(� values determined when comparing the PIV data to the RANS solution using �>?C were lower (better)

than the "(�s determined based on �=>< in every one of the 50 comparisons (Fig. 7(a)). This is a strong indication

22



0 1 2 3 4 5
0

0.5

1

1.5

2

2.5 (a)

Improved accuracy

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

1.2

1.4 (b)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(c)

Fig. 7 The bulk quality metrics comparing the RANS using �=>< and �>?C to the PIV data. (a) "(� , (b)
�"� , and (c) 2>AA.

that the use of �>?C is a general improvement over using �=>< for these jet-in-crossflow experiments, regardless of

the specific flow case. Using �>?C produced more accurate peak velocity and vorticity values than did �=>< in every

case. Again the impact of this result cannot be understated. A small change in the model parameters to a set defined as

optimal for a single transonic JIC case improved the measured squared error in every other case tested.

It also appears that the improvement in "(� is somewhat more pronounced for the U = 0° and 15° cases than

for the other inclination angles. This may be related to the fact that as U increases, the vortex cores stay closer to the

wall and are increasingly tied to the boundary layer and HSV flow. This results in a merging of the vortical structures

with the wall-bounded features outside of the PIV frame and therefore fewer visible features to be modeled within the

window [35]. The simpler visible flow fields of the cases with the higher nozzle inclination angles had less room for

improvement than did the cases with the lower angles. �=>< already performed relatively well for these cases. It may

also be related to the fact that the U = 0° and 15° cases are the most similar to the case used for the calibration procedure
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that resulted in the determination of �>?C . The cases with the steeper inclination angles (and with the lowest �s) were

the most different from the calibration case and therefore constitute a more extreme test of the applicability of �>?C .

Additionally, it appears that the improvements in the predictions of l were more significant than the improvements

in predictions of +H . When considered collectively, the "(� values for l were lowered by 71% on average when

�>?C was used. The predictions for +H already had lower "(� values than did l when using �=>< but still showed

improvement of 65% when �>?C was used.

Uncertainty bands were again used to depict the confidence intervals that came out of the Monte Carlo uncertainty

propagation and again only the same subset of the available cases are shown so as not to clutter the figures. Although

none of the bands chosen for depiction crossed the 1-to-1 line, a total of five confidence intervals of "(� crossed the

1-to-1 line, suggesting that for only those five cases, the probability of improvement by using of �>?C was less than 95%.

The rarity of the uncertainty bands crossing the 1-to-1 line suggests improvement in "(� was nearly universal when

using �>?C . Interestingly, all five of the points which had confidence intervals cross the line were from cases where the

vortex structures sat very near the wall (low � and high U).

Investigation of the �"� results showed a similar, though slightly less dramatic result than "(� (Fig. 7(b)). In 46

of the 50 comparisons, the RANS results based on �>?C produced a better �"� measure than did the results based on

�=><. Because �"� is a measure of how well the model does at predicting values away from the most extreme-valued

regions, this result suggests that not only does the use of �>?C improve the predictions of peak values of the investigated

variables, but also does better at predicting those variables around the edges of the core regions and in the freestream.

The four comparisons where the nominal approach remained slightly better than the calibrated approach were two

comparisons of +H on planes at G = 321.8 mm with U = 45° and � = 2.8 and 5.6, the comparison of the streamwise

vorticity as discussed above (Table 3), and the comparison of +H at G = 215 mm from that same U = 0°, � = 10.2 case.

Contour plots of the mean velocities from the PIV for the cases with U = 45° and � = 2.8 and 5.6 can be found in

Beresh et al. [35], and show the relative simplicity of the visible flow topology for those cases as mentioned above. The

use of �>?C reduced the peak velocity magnitudes correctly, resulting in the improved "(� values, but resulted in CVP

cores that were more laterally inclined than in the PIV or �=>< simulations. This inclination resulted in poor alignment

of velocity values around the edges of the CVP cores, leading to slightly elevated �"� values. These two cases were

arguably the most different from the case used in determining �>?C . For the case with � = 5.6, this incorrect inclination

of the vortex cores also resulted in a poorer 2>AA value, discussed next. The confidence intervals on these two cases did

reach back across the 1-to-1 line, meaning, that along with the vorticity for the U = 0°, � = 10.2 case (Fig. 7(b)) 49 of

the 50 studied planes may have had improved �"� values when using �>?C . The confidence intervals also suggest,

that in the worst possible case, as many as 11 planes may not have been improved by using �>?C .

The 2>AA value based on +H for the � = 5.6, U = 45° case was one of only six comparisons, from among the 50,

where the correlation coefficient was slightly worse when �>?C was used instead of �=>< (Fig. 7(c)). The remaining five
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comparisons where �=>< produced superior 2>AA values were the comparisons of l taken from the same two U = 45°

cases for which the �"� of +H was also worsened, the comparison of vorticity for the U = 0° case discussed above

(Table 3), the comparison of +H for that same U = 0°, � = 10.2 case, and the comparison of +H on the centerplane as

discussed above (Table 2). When the uncertainties were accounted for, the confidence intervals for three of the six cases

just mentioned extended across the 1-to-1 line, meaning that as many as 47 of the 50 planes saw improvement with the

change to the optimal parameters. In contrast, as many as 22 cases may have not been improved (six plus 16 which have

intervals that cross below the 1-to-1 line).

An average of all 50 2>AA pairs showed an average improvement of > 16% when +H and l were considered together.

In each of the cases where either �"� or 2>AA were not improved by the use of �>?C , the results were scarcely worse

than when �=>< was used. The improvements to �"� and 2>AA (and obviously "(�) for the remaining cases were

typically much more significant than were the declines in accuracy for the cases where they were worsened.

Cases involving the flight-vehicle configuration deserve special attention since their setup varies the most from the

calibration cases. For all six metrics, these data points sit comfortably within the general scatter of all points in the

plots, exhibiting no special deviation from the simpler geometries in the smaller-scale wind tunnel. This indicates the

robustness of the �>?C model and suggests that the pertinent JIC physics are captured by it regardless of what additional

geometric complexities are added to the case.

Overall, five of the metrics show anything from a strong improvement in the aggregate of all data sets to a universal

improvement. The outlier is the perimeter. The global flow field is improved, the vortex strength and position are

improved, but the vortices become more diffused in the process, leading to perimeter error. This perimeter error is

greater and more common for the negative vortex situated near the wall for inclined nozzles. Also, in cases where the

five successful metrics do not show a clear improvement, it is likely that one or more vortex is in close proximity to the

wall. Nonetheless, depending on the engineering application, difficulties with predicting the vortex perimeters may be

of lesser consequence than predictions of the vortex circulation and position.

V. Discussion
Some of the results seen here could be partially conjectured from the later papers by Ray et al. In Ray et al. [26], the

authors showed that high-order eddy viscosity models will not perform appreciably better than linear eddy viscosity

models for the JIC dynamics, when both were tuned to data. This could perhaps indicate that the linear eddy viscosity

model was sufficient to get satisfactory answers, provided that its parameters were appropriately calibrated. In Ray et al.

[27], the authors tuned the same parameters to three other JIC interactions ((Mach 0.6, � = 10.2), (Mach 0.7, � = 10.2),

and (Mach 0.8, � = 16.7)) and obtained estimates of {�`, �n 1, �n 2} that were similar to �>?C , indicating again that the

calibrated �>?C would generalize beyond the (Mach 0.8, � = 10.2) case where �>?C was originally learned. The same

paper derived analytical values for {�`, �n 1, �n 2} from first principles (i.e., without any data fitting or assuming that
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U = 0), leading one to conjecture that perhaps the calibrated values of {�`, �n 1, �n 2} represented physical processes

inherent in JIC interactions rather than being artifacts of the fitting process. Consequently, there was some reason to

believe that the tuned �>?C would be predictive for other interactions, perhaps including the canted jet.

A weakness of the fitting performed in Ray et al. [25, 27] is the use of strong jets (� = 10.2, 16.7) that penetrated

well into the crossflow and evolved with little interaction with the boundary layers on the wind-tunnel walls. This

would indicate that the values of {�`, �n 1, �n 2} inferred in Ray et al. [25, 27] do not reflect turbulent processes

involving CVP-to-boundary layer interactions, and �>?C would not be predictive in flows where the jet stays close to the

wind-tunnel wall e.g., weak jets (� = 2.8, 5.6) and steeply canted jets (U = 45°). To a large extent, this paper bears out

these conjectures. The use of �>?C , represents a nearly 14% increase in �` (which increases eddy viscosity), a 9%

increase in �n 2 which reduces turbulent dissipation, and a minimal change in �n 1. Together, these actions increase

turbulence everywhere. It is likely that this effective increase in turbulence everywhere in the simulation domain

resulted in a poorer prediction of the boundary layer. �>?C has been shown to be more predictive than �=>< in cases

where the jet does not interact with the boundary layer. In the cases where it does (because of the cant or the weakness

of the jet), �=>< remains better than �>?C according to some metrics.

It also seems that the increased turbulence that results from the larger �` value in �>?C corrects the over-penetration

of the jet into the freestream seen when using �=><. Arunajatesan [13] reported that turbulence levels in nominal

models were likely too low upstream of where the PIV planes were collected—in the nearfield of the jet—and that this

resulted in inaccuracies in the jet trajectory and the CVP location. For some variables and features for some cases the

move from �=>< to �>?C resulted in an overcorrection (lowering the jet centerline), but appears to do so as a trade-off

for improving the predictions of the peak magnitudes. Additionally, the overcorrection may only be occurring in some

portions of the domain while other portions are corrected by the right amount. This was seen in the data for the U = 0°,

� = 10.2 case. The calibration procedure was performed on data from this case by Ray et al. [25] and indeed improved

the metric measurements (for both +H and l) at the G = 321.8 mm plane, but did so at the expense of the quality of the

results at the G = 215 mm plane. Arunajatesan [13] also suggested that while an increase in turbulence may be needed

in the jet nearfield, a reduction in turbulence may be needed much further downstream. That appears to be supported

here. This may point to larger limitations that exist with the structure of the linear RANS model itself.

One such limitation may be the use of constant scalar values for the model parameters. The potential variability of

model parameters as a function of flow variables is not accounted for in most traditional RANS codes [29]. A new

model that could pick optimal values for the RANS parameters at every location in space, may be capable of producing

even better results. Philosophically, this approach would be similar to the zone-dependent :-n parameters demonstrated

in Matai and Durbin [51]. The challenge in our case would be determining how to demarcate various zones and how to

ensure logical, continuous values of {�`, �n 1, �n 2} within each zone. Such definitions could further improve results

for the cases studied here, but would not generalize to other flows of interest. The data-driven approach proposed in
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Miller and Beresh [29] may be a viable route to a generalizable version of this same concept. Therein, the authors

demonstrated the ability to determine RANS model coefficients directly from experimental data and suggest that those

coefficients could then be cast as functions of local state variables also taken from the same experimental data. The

present work establishes a baseline for the behavior of a nominal and an optimized RANS model, against which future

modeling approaches will be compared. Nonetheless, even the present simple calibration of RANS parameters produces

better estimates of SRQs of interest to vehicle designers.

VI. Conclusions
Taken as a whole, the use of �>?C produces superior RANS solutions for a family of JIC cases than does using the

nominal parameter values. This was demonstrated across a variety of transonic JIC cases with varied jet-to-freestream

dynamic pressure ratios and nozzle inclination angles, with the most rigorous test done using PIV data taken in the

vicinity of a full-scale flight vehicle model. A variety of quality metrics were used to quantify the improvements in

the simulations and showed that the use of �>?C produced superior predictions of the SRQs across all the test cases.

Generally, the use of �>?C lowered the location and magnitude of the peaks in both +H and l within the flow volume.

This resulted in more accurate predictions of the spatial alignments of the vortex cores of the CVP and in better estimates

of both the peak vorticity and total circulation within each core. While the use of �>?C did result in more diffuse

vorticity fields that led to vortex cores often being larger than in the PIV, the general shapes of those cores and their

locations were still improved.

Perhaps the greatest revelation of this work is the apparent near-universality of �>?C for these JIC problems,

especially those that differ significantly from the original case used in the parameters’ derivation. In fact, many of

the cases which were significantly physically different from the calibration case showed larger improvements than

were seen in the calibration case itself. Although the case on which the calibration procedure was performed did show

considerable improvement in "(�—which is essentially the metric that was used for the calibration—it did not show

much improvement in 2>AA or �"� . Almost every other case showed more improvement in the correlation and �"� .

The quintessential example of this is the case of the flow around the full-scale flight vehicle model. In that case, the

nozzle was larger than in the calibration case, the nozzle was inclined, which it was not in the calibration case, � was

larger, more vortex cores were identifiable, the tunnel was larger, and the relief associated with the cylindrical body

shape was clearly different. And yet, the use of �>?C still significantly improved the modeling prediction of that flow

case, a result demonstrated by the quality metrics.

Although further testing could be done on JIC cases of other flow regimes (different �s, subsonic flows, etc), it

seems clear from this work that there is something inherent within �>?C that makes it nearly universally better than

the standard parameter values for simulating the JIC. For every case studied here, the use of �>?C produced superior

simulation results by at least some metrics than did �=><.
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