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Abstract We present a simple, near-real-time Bayesian method
to infer and forecast a multiwave outbreak, and demonstrate
it on the COVID-19 pandemic. The approach uses timely
epidemiological data that has been widely available for COVID-
19. It provides short-term forecasts of the outbreak’s evolu-
tion, which can then be used for medical resource planning.
The method postulates one- and multiwave infection mod-
els, which are convolved with the incubation-period distri-
bution to yield competing disease models. The disease mod-
els’ parameters are estimated via Markov chain Monte Carlo
sampling and information-theoretic criteria are used to se-
lect between them for use in forecasting. The method is
demonstrated on two- and three-wave COVID-19 outbreaks
in California, New Mexico and Florida, as observed dur-
ing Summer-Winter 2020. We find that the method is ro-
bust to noise, provides useful forecasts (along with uncer-
tainty bounds) and that it reliably detected when the initial
single-wave COVID-19 outbreaks transformed into succes-
sive surges as containment efforts in these states failed by
the end of Spring 2020.

Keywords Markov Chain Monte Carlo · pseudo-marginal
MCMC · Bayesian framework · COVID-19 · infection rate ·
incubation model

1 Introduction

At the time of writing this paper, in December 2020, the
US is deep in the throes of the Fall wave of the COVID-19
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pandemic. Over the last 8 months, many COVID-19 models
e.g., Ref. [14], have been used to forecast the spread of the
disease and the consequent demand for medical resources
(Ref. [3]). In fact, models and the data that they are built
on, have played a central role in forecasting the spread, and
consequently preparing for it (see Ref. [4]), and have be-
come the topic of news reporting (e.g., Ref. [5]). It would
be safe to say that the abundance of COVID-19 data (new
detected cases, as well as deaths; see Ref. [2]), coupled with
models, have been widely used to understand the COVID-19
pandemic and its multiple waves.

In this paper, we develop a methodology by which we
can provide short-term forecasts (about 10 days ahead) of
COVID-19 evolution, which can then be used for medical
planning e.g., hospital demand and logistics. In the current
context, this implies an outbreak with multiple waves, each
with a potentially different cause. Our focus is on provid-
ing accurate, actionable predictions in a timely manner, us-
ing the latest available data and without using specialized
computational resources, so that such forecasts may be com-
puted daily, and for a multitude of regions. Such modeling
efforts do exist (as in Ref. [9,10]), and some are quite well-
known (see Ref. [14,3]). Such a forecasting and planning
methodology requires some quantification of the trustwor-
thiness of the forecasts so that appropriate hedges and mar-
gins may be included in resource planning and logistics. Fi-
nally, it is also helpful for such a methodology to herald the
arrival of a new, if incipient, surge/wave of infections, as it
indicates the failure of containment efforts. Our methodol-
ogy provides both these capabilities.

The construction of a near-real-time forecasting tech-
nique, predicated on timely COVID-19 data, poses a few
challenges, especially if multiple waves are expected. Mul-
tiple waves in the current epidemic have been driven by in-
creased social mixing caused by lockdown-exhaustion (see
Ref. [10]) or the premature opening of the economic ac-
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tivity, followed by flouting of social-distancing rules and
super-spreading (e.g., Ref. [16]). However, there are no di-
rect ways of measuring social mixing in near-real-time. Mo-
bility of a population can be measured quite promptly using
mobile phone data, but that is an indirect measure of so-
cial mixing - coupled with proper social distancing and other
precautions, a mobile population need not spread a disease.
The frequenting of restaurants, bars and indulgence in other
social activities is a reliable proxy of social mixing, but col-
lecting real-time quantitative data is difficult. Thus a disease
model that relies on information on social mixing (or en-
hanced disease transmission because of it) often has diffi-
culties in predicting the start of a new wave of infections.

One way of circumventing these difficulties is to pos-
tulate an unseen, parameterized infection rate curve (i.e.,
number of people infected every data), with multiple waves
if need be, and infer the infection rate from observed data
(a time-series of detected cases, as available in repositories
such as Ref. [2]). Such a model, for a single wave, was de-
veloped by the authors in Ref. [21]. It used Bayesian infer-
ence to estimate the parameters of the infection rate curve
as a probability density function, to capture the shortcom-
ings of the estimation process. This infection rate curve, in
conjunction with a disease model (specifically, just the in-
cubation period distribution of COVID-19) could be used to
provide short-term probabilistic forecasts of the evolution of
COVID-19 i.e., provide bounds on the trustworthiness of the
forecasts. The inference and forecasting process is compu-
tationally fast, taking less than one hour to process regional
data. The model, extended to a multiwave outbreak, would
satisfy all the prerequisites of a near-real-time forecasting
and planning system for COVID-19 and is the topic of this
investigation. It is conceptually simple, as it only requires
us to postulate a parameterized, multi-wave infection-rate
curve, but poses a few practical challenges:

– The observed data is noisy and could, erroneously, in-
dicate the arrival of a new surge, which could then dis-
appear as more data became available. Not being able to
reliably decide such a fundamental aspect of an outbreak
could seriously erode trust in any modeling effort. Thus
there needs to be a rigorous method to select the number
of waves to include in the infection rate curve, with is
then used for forecasting purposes.

– A multiwave infection rate curve will be complex i.e.,
have many parameters, and may be difficult to infer from
noisy observable data. However, if the parameters admit
a natural partitioning e.g., if a subset of parameter con-
trol the first wave, it may be possible to infer the mul-
tiwave infection rate curve piecemeal, using subsets of
the observed data.

In this paper, we develop solutions to these practical dif-
ficulties, and extend our original one-wave model to three
waves. We address the question of the number of waves to

include in the infection rate curve by model selection i.e., we
fit one- and multi-wave models to data and select between
them using information-theoretic criteria. Finally, we exploit
the “partition-able” nature of the infection rate curve’s pa-
rameters to infer them piecemeal, with the novelty lying in
the method by which we use previous inferences to formu-
late empirical priors for a high-dimensional estimation prob-
lem. These priors stabilize the inverse problem and acceler-
ate the computations, thus making the inferences feasible,
practical and scalable to a multi-wave epidemic.

The paper is structured as follows. In Sect. 2, we re-
view our previous model, and in Sect. 3, we introduce the
data. The new model and numerical algorithm are described
in Sect. 4, which are them proven on two- and three-wave
COVID-19 outbreaks, using data from New Mexico, Cali-
fornia and Florida. Discussions and conclusions, which fol-
low thereafter, complete the paper.

2 Modeling Approach

We present here an epidemiological model to characterize
and forecast the rate at which people turn symptomatic from
disease over time. The model is an extension of previous
work by Safta et al [21] for a single infection wave to epi-
demics exhibiting multiple infection waves. For the purpose
of this work, we assume that once people develop symp-
toms, they have ready access to medical services and can
be diagnosed readily. From this perspective, these forecasts
represent a lower bound on the actual number of people
that are infected with COVID-19 as the people currently in-
fected, but still incubating, are not accounted for. A fraction
of the population infected might also exhibit minor or no
symptoms at all and might not seek medical advice. There-
fore, these cases will not be part of patient counts released
by health officials. The epidemiological model consists of
two canonical elements: an infection rate model and an in-
cubation rate model. One or more infection rate models are
then combined through a convolution with the incubation
rate model to yield the number of cases that turn symp-
tomatic daily. We briefly describe below the mathematical
formulation for the single wave model, followed by a de-
scription of the multiple wave approach. For more details on
the single wave model the reader is refered to Ref. [21]. Fi-
nally, some considerations for the data used to fit the models
are discussed in this section

2.1 Single Wave Model

The single-wave model consists of an infection rate compo-
nent convolved with information about the incubation rate
once a person is infected. The infection rate model is given
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by [21]

fΓ (t;k,θ , t0) = θ
−k(t− t0)k−1 exp(−(t− t0)/θ)

/
Γ (k) (1)

where fΓ (·) it the probability density function (pdf) of
the gamma distribution, with shape k and scale θ parameters
strictly positive. The time parameter t0 represents the start of
the epidemic. The choice of values for the pair (k,θ) can ac-
comodate both sharp increases in the number of infections,
which would correspond to strained medical resources, as
well as weaker gradients corresponding to a smaller pres-
sure on the available medical resources.

The results presented in this paper employ a lognormal
incubation distribution for COVID-19 [17]. The PDF, fLN ,
and cumulative distribution function (CDF), FLN , of the log-
normal distribution are given by

fLN(t; µ,σ) =
1

tσ
√
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)
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σ
√

2

)
(3)

In this work we model the mean µ as Student’s t distribution
with n = 36 degrees of freedom which provided the closest
agreement for the 95% CI with the data in Ref. [17]. Sim-
ilarly, the standard deviation σ is assumed to have a chi-
square distribution. The resulting 95% CIs are [1.48,1.76]
and [0.320,0.515] for µ and σ , respectively.

With these assumptions the number of people infected
and with completed incubation period at time ti can be writ-
ten as a convolution between the infection rate and the cu-
mulative distribution function for the incubation distribu-
tion [8,20,22]

Ni = N
∫ ti

t0
fΓ (τ− t0;k,θ)FLN(ti− τ; µ,σ)d τ (4)

where N is the total number of people that will be infected
throughout the epidemic. This formulation assumes inde-
pendence between the calendar date of the infection and the
incubation distribution. Using Eq (4), the number of people
developing symptoms in the time interval ti−1, ti is computed
as

ni ≈ N(ti− ti−1)
∫ ti

t0
fΓ (τ− t0;k,θ) fLN(ti− τ; µ,σ)d τ (5)

Here, we approximated the difference FLN(ti − τ; µ,σ)−
FLN(ti−1− τ; µ,σ) as

FLN(ti− τ; µ,σ)−FLN(ti−1− τ; µ,σ)≈
(ti− ti−1) fLN(ti− τ; µ,σ)

(6)

Numerical tests (results not shown) indicate this approxima-
tion has a negligible impact on the model inference results
presented in this paper. Ref [21] provides more details for
the single wave model.

2.2 Multiple Wave Model

The multiple wave model is an extension of the single wave
model presented in the previous section. In this paper, a set
of infection curves are superimposed model the evolution
of the epidemic that exhibits multiple peaks in several coun-
tries and regions in US. The resulting model has can be writ-
ten as,

ni =
∫ ti

t0

(
K

∑
j=1

N j fΓ (τ− t0−∆ t j;k j,θ j)

)
× (FLN(ti− τ; µ,σ)−FLN(ti−1− τ; µ,σ))d τ (7)

where N j is the number of people infected by wave j, while
k j and θ j are the shape parameters for wave j. The multi-
wave model has an additional parameter, ∆ t j, which repre-
sents the time in days between t0 and the start of wave j. By
definition, ∆ t1 = 0. The one wave model can be recovered
from Eq. (7) by setting K = 1.

As for the one wave model, we can approximate the CDF
difference term using the PDF, leading to an expression for
the multiple wave model analogous to Eq (5)

ni ≈(ti− ti−1)
∫ ti

t0

(
K

∑
j=1

N j fΓ (τ− t0−∆ t j;k j,θ j)

)
× fLN(ti− τ; µ,σ)d τ (8)

3 Data

The number of people developing symptoms daily ni, com-
puted through Eqs. (7), or (8) are compared to data obtained
from several sources at the national, state, or regional lev-
els. We present the data sources in the Appendix. We found
that, for some states or regions, the reported daily counts
exhibited a significant amount of noise. This is caused by
variation in testing capabilities and sometimes by how data
is aggregated from region to region. To filter the noise ob-
served in daily case count data, we make use of 7-day rolling
averages. We chose this rolling average because it is often
used by governments and media outlets to present data on
Covid-19 cases, hospitalizations, and deaths. Time series of
daily counts y (unfiltered) and ŷ (filtered) for two states are
presented in Fig 1. For the remainder of this paper we will
only use filtered data to infer epidemiological parameters.
For notational convenience, we will drop the hat and refer to
the filtered data as y.

4 Statistical Methodology

Given data, y, in the form of time-series of daily counts and
the model predictions ni for the number of new symptomatic
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(a) Florida

(b) New Mexico

Fig. 1: Daily confirmed cases of COVID-19 aggregated at
state level, shown in black symbols, and the corresponding
7-day averaged data shown with red lines and symbols.

counts daily, we will employ a Bayesian framework to cal-
ibrate the epidemiological model parameters. The discrep-
ancy between the data and the model is written as

y = n(Θ)+ ε (9)

where y and n are arrays containing the data and model
predictions

y= {y(t1),y(t2), . . . ,y(td)}, n= {n1(Θ),n2(Θ), . . . ,nd(Θ)}.

Here, d is the number of data points, Θ is a vector of model
parameters, and ε represents the statistical discrepancy be-
tween the model and the data. The discrepancy ε is dis-
cussed in more detail in Sect. 4.1.

The elements of Θ depend on the number of waves being
modeled.

Θ =Θ
(1)∪Θ

(2)∪ . . .∪Θ
(K)∪Θ

(ε) (10)

where Θ (i) are the parameter for the i-th wave of infections,
K is the number of waves and Θ (ε) are parameters for the
error model, to be discussed in Sect. 4.1. For the first wave,
the parameters are the same as for the single wave model

Θ
(1) = {t0,N1,k1,θ1} (11)

The parameters for subsequent waves are similar to the firs
wave set, except the start of the epidemic t0 is replaced by
the time shift with respect to t0, i.e.

Θ
(i) = {∆ ti,Ni,ki,θi} i = 2, . . . ,K (12)

The error model encapsulates, in this context, both er-
rors in the observations as well as errors due to imperfect
modeling choices. The observation errors include variations
due to testing capabilities as well as errors when tests are
interpreted. Values for the vector of parameters Θ can be es-
timated in the form of a multivariate PDF via Bayes theorem

p(Θ |y) ∝ p(y|Θ)p(Θ) (13)

where p(Θ |y) is the posterior distribution we are seeking
after observing the data y, p(y|Θ) is the likelihood of ob-
serving the data y for a particular set of values for the model
parameters Θ , and p(Θ) encapsulates any prior information
available for the model parameters. Bayesian methods are
well-suited for dealing with heterogeneous sources of un-
certainty, in this case from our modeling assumptions, i.e.
model and parametric uncertainties, as well as the commu-
nicated daily counts of COVID-19 new cases, i.e. experi-
mental or observational errors.

4.1 Likelihood Construction

In this work we use a stochastic formulation for the incuba-
tion model. The incubation model is stochastic with mean
and standard deviation of its natural logarithm treated as
Student’s t and χ2 random variables, respectively, as dis-
cussed in Sect. 2.1. Let us denote the underlying indepen-
dent random variables by ξ = {ξµ ,ξσ ,}. The model predic-
tion ni(ξ) is now a random variable induced by ξ plugged in
Eq (4), and n(ξ) is a random vector.

A deterministic formulation for the incubation model
could also be used. In this case the mean and standard devia-
tion of the incubation model are fixed at their nominal values
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and the model prediction ni for day ti is a scalar value that
depends on Θ only. Although in this paper we only present
results with the stochastic formulation, the deterministic for-
mulation is useful for understanding the likelihood function.
For a deterministic incubation model the statistical discrep-
ancy ε between n and y is modeled a zero-mean Multivari-
ate Normal (MVN) distribution. Under this assumption the
likelihood p(y|Θ) for a deterministic incubation model can
be written as

p(y|Θ) = πn(Θ)(y)

= (2π)−D/2|Cn|−1/2 exp
(
−1

2
(y−n(Θ))TC−1

n (y−n(Θ))

)
(14)

The covariance matrix Cn can in principle be parameterized,
e.g. square exponential or Matern models, and the corre-
sponding parameters inferred jointly with Θ . However, given
the sparsity of data, we neglect correlations across time and
presume a diagonal covariance matrix with diagonal entries
computed as

Cn,ii = σ
2
i = (σa +σm ni(Θ))2 (15)

The additive, σa, and multiplicative, σm, components will be
inferred jointly with the model parameters Θ ,

Θ =Θ
(1)∪Θ

(2)∪ . . .∪Θ
(K)∪Θ

(ε),Θ
(ε) = {logσa, logσm}.

Here, we infer the logarithm of these parameters to en-
sure they remain positive. Under these assumptions, the MVN
likelihood in Eq (14) is written as a product of independent
Gaussian densities

p(y|Θ) =
D

∏
i=1

πni(Θ)(yi)

=(2π)−D/2
D

∏
i=1

σ
−1
i exp

(
− (yi−ni)

2

2σ2
i

)
(16)

where σi is given by Eq (15).
For the stochastic incubation model the likelihood reads

as

p(y|Θ) = πn(Θ),ξ(y), (17)

which we simplify by assuming independence of the dis-
crepancies between different days, arriving at

πn(Θ),ξ(y) =
D

∏
i=1

πni(Θ),ξ(yi). (18)

In the stochastic construction, the likelihood elements for
each day πni(Θ),ξ(yi) are not analytically tractable anymore
due to the variability in the incubation model parameters
and the non-linear epidemiological model. One can resort to

likelihood evaluations via kernel density estimates by sam-
pling ξ for each sample of Θ , and combining these samples
with samples of the assumed discrepancy ε , in order to ar-
rive at an estimate of πni(Θ),ξ(yi). Alternatively, by sampling
a single value of ξ for each sample of Θ , one can achieve an
unbiased estimate of the likelihood πni(Θ),ξ(yi), and given
the independent-component assumption, this also leads to
an unbiased estimate of the full likelihood πn(Θ),ξ(y). This
serves as the basis of the pseudo-marginal sampling algo-
rithm discussed below.

4.2 Posterior Sampling

A Markov chain Monte Carlo (MCMC) algorithm is used to
sample from the posterior density p(Θ |y). MCMC is a class
of techniques that allows sampling from a posterior distribu-
tion by constructing a Markov Chain that has the posterior
as its stationary distribution. In particular, we use a adaptive
Metropolis algorithm [12]. A key step in this approach is the
accept-reject mechanism. Each sample of Θ , drawn from a
proposal q(·|Θi) is accepted with probability

α(Θi+1,Θi) = min
(

1,
p(Θi+1|y)q(Θi|Θi+1)

p(Θi|y)q(Θi+1|Θi)

)
where p(Θi|y) and p(Θi+1|y) are the values of the poste-
rior pdf’s evaluated at samples Θi and Θi+1, respectively.
In this work we employ symmetric proposals, q(Θi|Θi+1) =

q(Θi+1|Θi). In stochastic incubation model, we employ the
unbiased estimate of the approximate likelihood as described
in the previous section. In other words, at each MCMC step
we draw a random sample ξ from its distribution, and then
we estimate the likelihood in a way similar to the deter-
ministic incubation model, in Eqs. (16) This is the essence
of the pseudo-marginal MCMC algorithm [7] guaranteeing
that the accepted MCMC samples correspond to the poste-
rior distribution.

Fig 2 displays 1D and 2D joint marginal distributions
based on two-wave model results. We used the Raftery-Lewis
diagnostic [19] to determine the number of MCMC sam-
ples required for converged statistics corresponding to sta-
tionary posterior distributions for Θ . The required number
of samples is of the order o(105 − 106) depending on the
geographical region employed in the inference. The result-
ing Effective Sample Size [15] varies between 8,000 and
15,000 samples depending on each parameter which is suf-
ficient to estimate joint distributions for the model parame-
ters.

We use the distance correlation measure, R(X ,Y ), to
ascertain the degree of dependence in the posterior distri-
butions for pairs of parameters. This measure estimates the
dependence between two random variables. Given random
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Fig. 2: 1D and 2D joint marginal distributions the components of Θ = {t0,N1,k1,θ1,∆ t2,N2,k2,θ2, logσa, logσm} for data
from California up to 2020-08-19. Distance correlations [24] for each pair of parameters is displayed about each joint
marginal distribution.

variables X and Y with finite first moments, the R(X ,Y ) ∈
[0,1] is defined as

R(X ,Y ) =
ϑ 2(X ,Y )√

ϑ 2(X)ϑ 2(Y )
(19)

where ϑ 2(X ,Y ) is the “distance covariance” between X and
Y and ϑ 2(X) is the “distance variance”, ϑ 2(X) = ϑ 2(X ,X).

The distance covariance ϑ 2(X ,Y ) is defined as

ϑ
2(X ,Y ) =E(||X−X ′||||Y −Y ′||))

+E(||X−X ′||)E(||Y −Y ′||)
−2E(||X−X ′||||Y −Y ′′||)) (20)

where (X ′,Y ′), (X ′′,Y ′′) are independent and identically dis-
tributed random variables, with the same joint density as
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(X ,Y ). The distance correlation values for each pair of pa-
rameters are estimated using the MCMC samples drawn from
their posterior distribution using the algorithm presented in
[24].

Distance correlation values, shown on top of 2D marginal
density subplots in Fig 2, reveal the relationships between
a number of model parameters inside each wave and be-
tween waves. For instance, the scale θ1 of the first wave ex-
hibit strong dependencies on both the total number of symp-
tomatic counts N1 and the shape k1 of the first wave. A sim-
ilar dynamic is observed for the second wave. Across these
two waves, N2 and δ t2 show stronger connections with the
first wave while the infection rate parameters k2 and θ2 are
only showing relevant connections inside the 2nd wave. The
correlations can be explained by how the infection rate curve
varies with each parameter. For instance, θi corresponds to
the time scale of the infection curve; increasing it makes the
curve shorter and will stretch it over a longer time interval.
Therefore, to maintain an approximate fit to a set of case
data, the symptomatic count Ni will need to be increased
if θi is increased. A similar explanation can be made for
the negative correlation between ki and θi. These correla-
tions show the importance of estimating joint PDFs, and the
potential shortcomings for assuming independent PDFs for
each model parameter.

This information can be used to aid in model construc-
tion and gauge the connection between model components.
For this application space, and this will be discussed later in
the paper, the depedencies between model parameters can
be used to assess whether the epidemic waves can be con-
sidered separately, i.e. the model inference and forecast can
be independently applied to each epidemic wave.

4.3 Prior Construction

The multi-wave results presented in this paper use priors
constructed sequentially based on parameters’ statistics ob-
tained with symptomatic counts for earlier epidemic waves.
This allows us to insert temporal dependency information
corresponding to early waves to enhance the robustness of
the multi-wave model. To illustrate our prior construction
techniques we first consider the case where we use statistics
from one-wave model results to form a prior for the two-
wave model. It is important that the one-wave model results
should correspond to a time horizon over which there is still
only one wave, such as a horizon that ends sometime in the
range of dates indicated by the red box in Fig 3.

Several approaches can be considered to construct the
prior information for the first wave parameters t0,N1,k1,θ1.
For example the posterior samples extracted from the one-
wave MCMC chain can be used with either parametric, e.g.
multi-variate Gaussian, or non-parametric, e.g. kernel den-
sity estimates, approaches to provide priors for the two-wave

Time (Days)

Daily New Cases

Fig. 3: Schematic showing new case data with three infec-
tion waves. The red box indicates a range of final dates for
which one-wave model chain statistics have been used to
generate priors for a two-wave model. The blue box indi-
cates a range of final dates for which two-wave model chain
statistics have been used to generate priors for a three-wave
model.

inference. This information can be used directly in the model
inference or further simplified in the form of uniform priors
with bounds informed by the means and standard deviations
of the one-wave results. This gives us an informed guess
for part of the parameters, limiting the region of parameter
space that an MCMC approach needs to explore. A smaller
parameter range increases the chance that MCMC is able to
find regions of high likelihood p(y|Θ), making the model
more robust. The prior distributions for the parameters cor-
responding to the second wave should be chosen to include
values that approximate the case data well; these distribu-
tions may need to be selected by trial and error, although
∆ t j can be estimated by visually inspecting raw daily new
case data.

This prior construction technique can be extended to the
multi-wave case by sequentially computing one-, two-, and
then up to N-wave models using new case data that only
shows the corresponding amount of infection waves. For ex-
ample, we can construct a prior for a three-wave model by
fitting a two-wave model to data taken up to the dates in the
blue box in Fiq 3. This could be extended to as many waves
as desired by sequentially finding a time horizon containing
N−1 waves, running the model with N−1 waves, then us-
ing statistics from the model results to generate a priors for
the first N−1 waves in an N-wave model over a longer time
horizon.

In this paper, we use Gaussian prior distributions for
t0 and ∆ t j, uniform prior distributions for all other model
parameters, and uniform priors for logσa and logσm. For
Gaussian priors the mean and variance are estimated from
the one-wave chain. For uniform priors the upper and lower
bounds are set equal to µchain ± 3σchain, where µchain and
σchain are the mean and standard deviation computed from
the one-wave chain. Note that positive parameters N j,k j,θ j
are restricted to positive values; that is, the lower bound is
set to zero if µchain−3σchain < 0.
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Finally, we note that the prior construction should not be
overly constraining for the parameters of the early epidemic
waves. Depending on the regional spread dynamics, the epi-
demic waves can be clustered together or well separated in
time. For example in, in the scehamtic shown in Fig 3 the
third wave is already underway during the downslope of the
second wave. In this case the two-wave model parameters
already contain some impact of epidemic counts from the
third wave and the corresponding priors generated from the
two-wave results should allow them to adjust as more infor-
mation becomes available.

4.4 Predictive Assessment

We will employ Bayesian posterior-predictive distributions [18]
to assess the predictive skill of the proposed statistical model
of the COVID-19 disease spread. The Bayesian posterior-
predictive distribution, defined in Eq (21) is computed by
marginalization of the likelihood over the posterior distribu-
tion of model parameters Θ :

ppp

(
y(pp)|y

)
=
∫
Θ

p(y(pp)|Θ)p(Θ |y)dΘ . (21)

In practice, we estimate the marginal ppp

(
y(pp)

i |y
)

for
each day i through sampling. Using MCMC samples of Θ

from the posterior distribution, we evaluate the model n(Θ)

and add random noise consistent with the likelihood model
settings presented in Sect. 4.1. The resulting samples are
used to compute marginal statistics in hindcast mode to check
consistency between the model n, the data y, and the choice
for the statistical discrepancy ε between them. The same ap-
proach is also used to generate ppp

(
y(pp)

i |y
)

in a forecast
mode, where day i refers to a date beyond the set of dates
with data available for training. These forecasts are limited,
however, to 7–10 ahead since the model proposed here does
not account for evolutions that modify the infection rate dy-
namics, e.g. changes in social behavior over the region of
interest.

4.5 Model Comparison

Quantitative comparisons between one-, two-, and three-wave
models are made with the Akaike Information Criteria (AIC),
Bayesian Information Criteria (BIC), and the Continuous
Ranked Probability Score (CRPS). Each of these is defined
below, starting with AIC [6],

AIC = 2mΘ −2lnLmax, (22)

where mΘ is the number of parameters in Θ and Lmax is the
maximum value of the likelihood p(y|Θ). In this context,

Lmax is estimated from MCMC results, picking the sample
with the maximum likelihood value in chain. Given a choice
of models with one or more waves, the model with the small-
est AIC value is considered to the highest quality by provid-
ing the best trade-off between complexity and goodness of
fit.

BIC is defined as [23]

BIC = mΘ lnd−2lnLmax, (23)

where d is the number of observations, equal to the length of
the arrayn from Eq (9), and mΘ and Lmax are defined above.
Given a choice of models, the model with the smallest BIC
value is preferable to those with larger values. In the context
of this paper, the data count d is the same for all models.
Given that d > exp(2) for all results presented in this paper,
it is expected that BIC will add a stronger penalty to multi-
wave models, compared to AIC since mΘ increases by 4 for
each additional wave.

CRPS [11] measures the difference between the CDF
of the provided data and that of the forecast/predicted data,
i.e., data generated based on the posterior predictive distri-
bution. It is computed by summing up marginal distributions
for each day that data is available

CRPS=
1
d

d

∑
j=1

∫
∞

−∞

(
Fpp, j

(
y(pp)

j |y
)
−Hy j

(
y(pp)

j

))2
dy(pp)

j ,

(24)

where y(pp)
j ≡ y(pp)(t j) is new daily case predictions on day

j obtained via the posterior-predictive distribution Eq (21),
y j ≡ y(t j) is new daily case data on day j and Fpp, j is the
1-D marginal posterior predictive CDF for day j computed
using 1-D marginal posterior predictive distributions

Fpp, j(y
(pp)
j |n) =

∫ y(pp)
j

−∞

ppp, j

(
y(pp)′

j |n
)

dy(pp)′
j (25)

where

ppp, j

(
y(pp)

j |n
)
=
∫

ppp(y
(pp)|y)dy(pp)

∼ j (26)

is the marginal 1-D posterior predictive density correspond-
ing to day j, based on ppp

(
y(pp)|y

)
computed in Eq 21.

Here, dy(pp)
∼ j ≡ dy(pp)

1 · · ·dy(pp)
j−1 dy(pp)

j+1 · · ·dy(pp)
d . The CDF of

the provided case data y is approximated as a Heaviside
function [13] centered at y j, Hy j(y

(pp)
j ) = 1

y(pp)
j ≥y j

. Simi-

lar to AIC and BIC, the model with the smallest value of
CRPS is selected.
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Fig. 4: One-wave model calibration and forecast for New
Mexico on 2020-05-13.

5 Results

The statistical models described above are applied to data
available from public repositories [1,2]. We will present re-
sults corresponding to the states of New Mexico, California,
and Florida, to gauge the agreement between the model and
the data. We will also provide short-term forecasts, typically
7-10 days ahead.

The posterior-predictive figures presented in this sec-
tion and the remainder of the manuscript show posterior-
predictive distributions with darker shades near the median
and lighter shades towards the 2.5 and 97.5 quantile lev-
els marked with dashed lines. The 25-75 interquartile range
is marked with green lines. These quantile levels are esti-
mated by sampling the posterior-predictive distributions us-
ing (21).

The blue shades correspond to hindcast dates along with
black symbols marking the data used for model calibration.
The red shades correspond to forecast and the white circles
mark the data collected after the forecasts were made. These
can be used to visually assess the quality of forecasts.

5.1 New Mexico, Spring/Summer 2020

We first demonstrate the two-wave model for New Mexico
using the reported daily new case data from May to August
2020. Two-wave model forecasts are compared with one-
wave forecasts qualitatively for New Mexico and quantita-
tively using AIC, BIC, and CRPS for all three states.

The prior for the two-wave model is constructed using
the workflow described in the Sect. 4.3 using one-wave model
data. Specifically, a one-wave model forecast from 2020-05-
13 is used for all three states. This date was chosen because
only one wave is clearly visible in the new case data, as seen
in Fig. 4.

Using our data-informed prior distribution, a two-wave
model runs was performed every week from 2020-05-20 un-
til 2020-08-26. One-wave model runs are also available for
the same dates. Fig. 5 shows one-wave and two-wave fore-
casts side by side for three dates, 2020-06-24, 2020-07-15,
and 2020-08-19. These three dates correspond to a short
time before the increase in cases at the start of the second
wave, near the peak of the second wave, and when the sec-
ond wave in cases had noticeably declined, respectively.

On the first date shown in this figure, in Figs. 5a and 5b,
the one-wave model predicts a continuing decline in cases,
since it is design to capture one wave and the early stages of
a second wave are treated as noise. The two-wave model is
capable of fitting a second wave, but there is no clear uptick
in cases as of 2020-06-24. Because of this, the forecast is
highly uncertain, and the distribution includes the impact of
a second wave as well as a continued slow decline in cases.

On 2020-07-15 and 2020-08-19, the two-wave model
provides a more accurate forecast with far less uncertainty
compared to the one-wave model. Since the one-wave model
lacks the fidelity needed to capture the second wave, the
model infers much large values of the error model parame-
ters, σa and σm, resulting in higher uncertainty in the 2020-
07-15 and 2020-08-19 forecasts in Figs. 5c and 5e. The abil-
ity of the two-wave model to capture a second increase in
infections allows it to infer a smaller errors with respect to
past case data, resulting in less uncertainty in its forecasts,
in Figs. 5d and 5f.

The information criteria and CRPS scores confirm the
conclusions drawn from the visual comparison of the one-
and two-wave model results for the range of dates presented
above. Fig. 6 shows the AIC, BIC and CRPS are all smaller
for the two-wave model after 2020-06-24, which is around
the time whant the number of daily counts point to the onset
of the second wave. Before 2020-06-24, the one- and two-
wave model forecasts have similar values of AIC, BIC, and
CRPS. Up until that date, only one wave of new cases is dis-
cernible from the data, so the one-wave model is sufficient
to fit the data.

5.2 California and Florida, Spring/Summer 2020

The interplay between one- and two-wave model can vary
from region to region depending on the evolution of the daily
symptomatic counts. Fig. 7 shows results for California and
Florida, respectively. For California, the second wave starts
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(a) One-wave, 2020-06-24 (b) Two-wave, 2020-06-24

(c) One-wave, 2020-07-15 (d) Two-wave, 2020-07-15

(e) One-wave, 2020-08-19 (f) Two-wave, 2020-08-19

Fig. 5: Comparison of one-wave and two-wave model calibration and forecasts for New Mexico.
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Fig. 6: Comparison of information criteria (AIC, BIC) and CRPS for the single and two-wave model results for New Mexico.

while the first wave is still near its peak, while for Florida
the first wave has a prolonged downslope before the second
wave takes hold. Figs. 8 and 9 show AIC, BIC, and CRPS
values corresponding to California and Florida, respectively.
Like New Mexico, both these states had smaller initial rise
in new cases followed by a second, larger increases in new
cases. The results corresponding to the end of May and be-
ginning of June indicate only a slight advantage for the two-
wave model. At later times the two-wave model is better
able to capture the evolution of daily counds compared to
the one-wave model, as shown by all three, AIC, BIC, and
CRPS in Figs. 8 and 9.

Although New Mexico and Florida have two fairly dis-
tinct peaks in new cases in April and July, this is not the
case for California. Instead, new cases were observed to rise
during March, then leveled off during April and May before
rising dramatically in late May. Despite the absence of two
clear peaks in the daily symptomatic counts for California,
the two-wave model offers an improvement in accuracy over
the one-wave model. This improvement in accuracy shows
that the superposition of infection waves can approximate
an epidemic with dynamics that increase monotonically but
do so at a rate which changes significantly over time.

5.3 New Mexico, Fall/Winter 2020

We discuss next results obtained with an increasing num-
ber of waves. We demonstrate a three-wave model for New
Mexico using the reported daily new case data from the be-
ginning of the pandemic to December 2020. The prior dis-
tributions for the first two infection waves is generated us-
ing two-wave model results from 2020-08-26. Fig. 10 shows
the three-wave forecast, which captures all three infection
waves and predicts new cases to keep increasing rapidly.
These results demonstrate the prior construction technique
enables our approach to be used for multiple waves if needed.

6 Discussion

The previous section demonstrates the increase in model
quality that can be obtained by adding additional infection
waves for an epidemic model to infer. However, care must
be taken when more than one wave is considered. The larger
parameter spaces required to infer more infection waves pro-
vide more model fidelity, but also pose a more difficult es-
timation problem. In higher dimensional parameter spaces,
it can be difficult for MCMC to find a sample with a suf-
ficiently large posterior density value to proceed to a new
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(a) California, 2020-08-19

(b) Florida, 2020-08-19

Fig. 7: Two-wave model results for California and Florida.

sample. This is observed for the two-wave model when the
prior distribution density p(Θ) spanned a relatively large
parameter range. This is overcome by constructing a prior
distribution with tighter distributions for the first wave pa-
rameters t0,N1,k1,θ1, inferred from a one-wave model using
data only containing the first-wave as explained in Sect. 4.3.
This empirical prior construction technique is also demon-
strated for the three wave model, where tighter distributions
for the first two waves were obtained from two-wave model
results. Note that the statistics-based prior estimates used
in this paper are one possible prior distribution choice; fu-

ture work with Bayesian epidemiological models will ex-
plore other choices, e.g. constructing correlations between
adjacent regions and running the model inferences simulta-
neously over these regions.

Finally, it should be noted that the multi-wave epidemic
model is not always necessary to capture multiple waves.
For example, consider the case that a country, state, or re-
gion recovers from a first wave, then has very low new daily
cases for some amount of time before the onset of a sec-
ond wave, as was seen in Spain and several other European
countries in September 2020. In such case, it is far simpler
and less computationally expensive to fit a one-wave models
separately for each wave.

7 Conclusion

This paper demonstrates a method for producing short-term
forecasts based only on observing daily counts for infectious
disease outbreak with multiple infection waves. The method
presented in this paper is an extension of our prior work on
infering single waves for partially-observed epidemics. We
apply our algorithms to the COVID-19 pandemic of 2020,
using data spanning March through December 2020. The
model calibration and subsequent forecast is formulated in
a Bayesian framework, predicated on a model for the in-
cubation distribution. The posterior distributions for latent
parameters that describe the infection rate curves are sam-
pled via Markov chain Monte Carlo. The forecast consists
of posterior-predictive distribution for the convolution be-
tween the one or more infection waves and the incubation
model, for a range of dates immediately following the daily
symptomatic counts used for calibration.

The method is applied to data aggregated at the state
level. The approach is sufficiently generic and can also be
applied to county-level or country-level data. We present re-
sults for California, Florida, and New Mexico. In all three
cases the two-wave models are shown to outperform the
one-wave model. The two-wave model provides a better fit
to past data and an improved forecast with far less uncer-
tainty than the one-wave model. This improved performance
is demonstrated qualitatively by model forecasts for vari-
ous dates in June, July, and August, and quantitatively via
information criteria and Continuous Rank Predictive Score
results. These performance indicators can be used to deter-
mine the appropriate model parsimony for the data available.

We also present a three-wave model results for New Mex-
ico in October/December 2020. These results indicate the
flexibility of the underlying model to capture the initial wave
in cases starting in March 2020 along with the subsequent
waves starting in June and September 2020. We provide
guidance on how to apply the multi-wave model to cases
with three or more waves, in particular how to construct
informative priors. We also point out that the multi-wave
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Fig. 8: Comparison of information criteria (AIC, BIC) and CRPS for the single and two-wave model results for California.

Fig. 9: Comparison of information criteria (AIC, BIC) and CRPS for the single and two-wave model results for Florida.
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(a) 2020-10-21

(b) 2020-12-21

Fig. 10: Three-wave model results for New Mexico on 2020-
10-21 and 2020-12-21.

model is unnecessary for cases in which the waves are clearly
separated by long periods of low case counts; in these cases
it is better to fit separate one-wave models.

Like the original one-wave model, the main shortcoming
of the multi-wave model is the reliance on the times series of
new case data for calibration. The lack of testing during the
early stages of an epidemic suggests the daily symptomatic
counts are likely an under-count. However, our approach,
with its emphasis on simplicity and reliance on easily ob-
served data is meant to used for medical resource forecasting

in situations with limited available data where more compli-
cated epidemiological models are likely to encounter diffi-
culties. While our approach could be modified to account
for factors such as increased testing, this would increase the
number parameters leading to possibly identifiability chal-
lenges during the early stages of the epidemic when data is
sparse.
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