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This paper explores automated approaches for the analysis and categorization of turbulent

flow data, as a means of assessing the quality of a turbulence dataset used for constructing

data-driven turbulence closures. Single point statistics from several high-fidelity turbulent flow

simulation data sets are differentiated into groups using a Gaussian mixture model clustering

algorithm. Candidate features are proposed, and a feature selection algorithm is applied to the

data in a sequential fashion, flow by flow, to identify a good feature set and an optimal number of

clusters for each dataset. Clusters are first identified for plane channel flows, producing results

that agree with existing theory and empirical observations. Further clusters are then identified

in an incremental fashion for flow over a wavy-walled channel, flow over a bump in a channel,

and flow past a square cylinder. Some clusters are closely identified with the anisotropy state

of the turbulence, whereas others can be connected to physical phenomena, such as boundary

layer separation and free shear layers. Exemplar points from the clusters, or prototypes, are

then identified using a prototype selection method. These exemplars effectively summarize the

dataset using a greatly reduced collection of data points. The clusters and their prototypes are

used to assess the quality of a training dataset constructed by simply pooling the four flows. We

enumerate the dataset’s shortcomings and state the limits of generalizability of any data-driven

closure trained on it.
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Nomenclature

𝑏 Prototype quality measure

𝑏𝑖 𝑗 , b Reynolds stress anisotropy tensor

𝐶1, 𝐶2, 𝐶3 Barycentric map limiting state coordinates

𝑑𝑀 Mahalanobis distance

𝑓𝑥 Feature set, with case label 𝑥

𝑔𝑖 Coefficient in Pope tensor basis expansion

𝑖 Impurity

𝑘 Number of clusters

𝑚 Misclassification rate

𝑁𝑝𝑟𝑜𝑡𝑜 Number of prototypes

P Turbulent production

𝑅𝑒𝜏 Channel flow Reynolds number based on friction velocity and channel half-width

𝑆𝑖 𝑗 , S Mean strain rate tensor

T𝑖 Pope tensor invariant

𝑢 Fraction of uncovered examples

𝑢+ Mean velocity normalized by friction velocity

W Mean rotation rate tensor

𝑥𝐵, 𝑦𝐵 Barycentric map Cartesian coordinates

𝑦+ Distance from wall normalized by viscous length scale

𝛿 Prototype algorithm sphere radius

𝜖 Turbulent dissipation

𝜂1, 𝜂2, . . . , 𝜂5 Scalar invariants of Reynolds stress, strain, and rotation rate tensor combinations

𝜃, 𝜙, 𝜁 Angles defining relative tensor or vector coordinate system orientations

𝜅1, 𝜅2, 𝜅3 Eigenvalues of the Reynolds stress anisotropy tensor

𝜆1, 𝜆2, . . . , 𝜆5 Pope scalar invariants
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𝜉 Data set example

𝜏𝑖 𝑗 ≡ 𝑢′
𝑖
𝑢′
𝑗

Reynolds stress tensor

𝜒 Prototype penalty parameter

𝜔𝑖 Mean vorticity vector

I. Introduction

Recently, there has been significant research activity in development of fluid turbulence models using machine

learning approaches. The models are typically trained using high-fidelity simulation data, from either direct

numerical simulation (DNS) or sufficiently resolved large-eddy simulation (LES). Being data-driven, the models can

only be trusted to reproduce the turbulent states and dynamics present in the training data (TD) and therefore it becomes

imperative to identify those states in the TD if the model is to generalize (i.e., be used to simulate flows other than those

in the TD) in a controlled fashion. Further, the TD should contain approximately equal proportions of examples of

diverse turbulence physics, lest the model trained on it be biased against the dynamics poorly represented in the TD (see,

e.g., Ref. [1]). In this paper, we develop methods that could be used to gauge these qualities of the TD.

Machine-learned turbulence models have been constructed for closure terms in LES [2] and Reynolds-Averaged

Navier-Stokes (RANS) models [3]. They have also been studied as a way of post-processing experimental measurements

e.g., using convolutional neural nets to map particle images (from particle image velocimetry experiments) to the

resultant velocity fields, with the velocity field training data generated via DNS [4]. Machine-learned closure models

generally predict some turbulence quantity of interest, given some set of input variables or, in the machine learning

parlance, features. For the RANS equations, the model may predict either the Reynolds stress [3], or a perturbation to a

modeled Reynolds stress [5]. Feature selection is a well-studied topic in machine learning. In the context of regression

models using supervised learning, the aim of feature selection is to identify a set of inputs to a model that leads to

optimal outputs. In turbulence modeling studies to date, features for machine-learned models are often “hand-selected,”

using domain knowledge to guide the selection. It would be preferable to select features in a principled way, guided by

theory, expertise and structures present in turbulence data sets, and this paper takes the first steps in identifying what

such a procedure might be.

Another context for feature selection is clustering (see Ref. [6], Chp. 14) of unlabeled data using unsupervised

learning approaches. Unsupervised learning is the branch of machine learning that seeks to find structure in a data

set without recourse to labeling of data records (also called examples) and, thus, without the injection of exogenous

information by an analyst. In this context, we seek a set of features that effectively divides turbulence data into distinct

clusters. This clustering is performed with the aid of a metric (or distance function) defined in terms of flow-features. We
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wish the clusters to conform, as much as possible, to our human understanding of turbulence, which requires a judicious

selection of flow-features, and definition of the metric. This type of construct can be useful in turbulence modeling for

the identification of canonical turbulent states. Moreover, in the analysis of turbulence models, this construct could be

used to extract data points that conform to well-studied turbulent states, so that we can verify that the behavior of a

data-driven turbulence model reproduces known relationships. Thus, unsupervised learning methods provide tools

for automated identification of a data point (or example) as a member of a particular cluster of points with similar

characteristics of the turbulent state. These tools can be useful for determining the completeness of a training data

set; that is, whether the training data are sufficiently rich to produce models that are predictive for a given application.

Further, if a data-driven turbulence model is evaluated at a test example that does not “belong” to a previously identified

cluster, it is an indication that we may be extrapolating to a new region of physics not covered by the TD.

Note that since clustering is performed based on a metric, the segregation of examples into subsets may not be

clear-cut, and it is quite possible to find outliers that could plausibly be assigned to other clusters. This can considerably

complicate the calibration or validation of turbulence models, as the training/validation data would be inconsistent with

the turbulence/physics being studied. Thus we seek a subset of examples that avoid outliers, i.e., are representative of

the cluster and can be tested, via theory, if the clusters map to canonical turbulent flows. We call these representative

examples prototypes, or exemplars, and describe a method to identify them from a clustered data set.

Unsupervised learning has previously been applied to unsteady vortical and turbulent fluid flow in a number of

contexts. Cluster-based analysis of instantaneous flowfield snapshot data has been used to define a representative set of

states to serve as a basis for a reduced order model [7, 8], to identify coherent structures or other key spatial features

in the flow [9, 10], and to identify important nonlinear dynamical behaviors [11]. Features other than field data have

been used to develop cluster-based analysis as well; for example, Nair et al. [12] used force coefficient features derived

from LES of flow past an airfoil, and clustered into distinct dynamical regions, to derive optimal flow control laws for

improved aerodynamic performance. Several studies have utilized unsupervised learning to partition turbulent flow

data into regions with distinct physical behavior. Ser-Giacomi et al. [13] created flow networks from geophysical flow

data, then used a network community detection algorithm to partition the flowfields into coherent, well-mixed regions

with little fluid interchange between regions. Ali et al. [14] applied the k-means clustering algorithm to large eddy

simulation data for wind farms, to extract physically significant flow regions based on the Reynolds stress anisotropy

state. Callaham et al. [15] have developed the concept of data-driven balance models to partition regions of a flow (or

other physical system) based on the local “dominant balance” at play. Each term in the governing equation at each

location in space provides a data record with information on the relative importance of the terms; these data are clustered

using a Gaussian Mixture Model, then a sparse Principal Components Analysis extracts the dominant balance of terms

from each cluster. They have shown how this automated, data-driven procedure is able to correctly identify known

asymptotic states in turbulent flows.
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In the present study, we target the problem of clustering of turbulent flow statistical data sets, followed by the

selection of examples that could serve as prototypes for clusters (called prototype placement). In Sec. II, we review

the numerical algorithms used to assemble a feature-space and perform clustering. As our first task, in Sec. III, we

formulate a set of features that could be used for clustering purposes, as well as the theoretical rationale for doing

so. Thereafter, in Sec. IV, we apply clustering and feature selection algorithms to turbulent flow data to explore the

feasibility and effectiveness of these algorithms. The candidate features are comprised of statistics that are typically

available from DNS or LES data sets; most of the quantities are derived from invariants of the Reynolds-averaged

strain rate, rotation rate, and turbulent stress tensors. We begin with a study of turbulent channel flow, as it is well

characterized and has already been classified into distinct regions by theoretical analysis and empirical observations.

We apply a feature selection algorithm that wraps around a Gaussian mixture model (GMM) clustering algorithm to

identify a feature set that effectively clusters the data, and that can be reconciled with our existing domain knowledge of

the regions of turbulent channel flow. We then consider several other two-dimensional turbulent flows, re-applying the

clustering algorithm to these flows in sequential fashion to find new clusters that the channel flow data did not identify.

In our second task, in Sec. V, we formulate prototype placement as a set-cover problem [16] and test the efficacy of

a solution algorithm for its applicability to turbulent data sets. We define figures of merit that measure the quality of a

set of prototypes, allowing us to trade-off simplicity of representation (i.e., a small number of prototypes) against the

fidelity of representation.

Finally, in Sec. VI, we illustrate some practical ramifications of our clustering study, viz., how flow simulation data

sets could be assessed for inclusion in a training data set for data-driven turbulence models. We also illustrate how

prototypes can be used to study and characterize the turbulence in individual clusters, and thus “label” them by the type

of physics they contain. Together, they are used to assess the quality of a TD that could be assembled by simply pooling

the flow data sets used in this paper.

Fig. 1 summarizes the process followed in this paper. In Sec. III andIV we develop the principles for partitioning a

simulation data set into clusters with similar types of turbulent processes. In doing so, we also find flows that contain

much the same physical (turbulent) processes that have been encountered in the flows studied before. In Sec. V we

develop the principles of summarizing simulation data sets with a handful of prototypes, which are then used to interpret

the physical contents of the training data set (TD) and identify the missing physics (Sec. VI). The missing physics, in

turn, qualifies any data-driven model trained on the TD.

Turbulence data sets are large and unwieldy, often containing distinct regions with different turbulent processes.

This work begins to lay a foundation for semi-automated isolation and classification of turbulent flow states, which is

the first contribution of this paper. We also show how prototypes, selected from clusters, can be used to identify the

turbulent processes that exist in a turbulence data set and therefore could be learned from it by a data-driven model.

This is the second contribution of our paper. Together, the two advances assist in the assembly of well-balanced training
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Clustering

• Feature-space discovery

• Correct number of clusters

• Physics-informed setting of
cluster extents

TD assembly

• Detection of redundant 
datasets

• Check interpretation of
physics in clusters

Prototype-based summarization

• Prototype placement

• Definition of summarization 
error

• Trade-off prototypes versus 
summarization quality

Interpreting TD with prototypes

• Coverage of feature-space

• Identification of missing 
physics

• Qualifying data-driven
models

Fig. 1 Schematic of the process followed in this paper. We start with clustering (left) which allows us to
identify redundant flow data sets (upper half). The lower half concerns itself with rendering the flow data sets
interpretable (via prototype selection) which helps us qualify the training data (TD) and models trained on it.

data sets, which are necessary for learning accurate and generalizable data-driven turbulence closures.

II. Clustering and Feature Selection Algorithms
The aim of the present work is to identify, from a set of candidate flow state features, a subset of features that

successfully clusters turbulent flow states. While many metrics have been devised to compare the performance of

clustering algorithms, defining success in a clustering application can be challenging. Here, we loosely define success

as automated partitioning of the data into flow-field regions that reconcile with our human understanding of turbulent

flow physics. We will rely heavily on the plane channel flow case to select parameters for the clustering and feature

selection algorithms since, for this flow, where the single-point statistics vary only in a single coordinate direction, we

have a good concept of how the flow should be divided into regions based on empirically supported theory.

To perform this unsupervised learning task, we use the Feature Subset Selection (FSS) algorithm described in Dy

and Brodley [17]. The FSS algorithm is an example of a wrapper approach for unsupervised learning, where a search

for optimal feature subsets is wrapped around a clustering algorithm. There are three tasks involved in the wrapper

approach: the feature search, the clustering algorithm, and the feature subset evaluation [17].

For the search, we use a sequential forward search that starts with a small number of features (or no features) and

adds one feature at a time. The feature that is added maximizes some chosen (scalar) evaluation criterion. This leads to
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a maximum complexity of the search that is 𝑂 (𝑑2) for 𝑑 features, whereas an exhaustive search would need to evaluate

2𝑑 possible feature subsets. The sequential search stops when adding more features no longer improves the evaluation

criterion.

The clustering algorithm used here is the soft Gaussian mixture model algorithm [18]. The GMM algorithm

approximates the probability distribution function of the data using a finite mixture of multi-variate Gaussian distributions.

The parameters of the Gaussian mixture are calculated by a maximum likelihood fit, using the Expectation-Maximization

algorithm [18]. We used the Matlab function fitgmdist() for this calculation. The k-means++ algorithm [19] is used

to seed the initial Gaussian component means. The output of the k-means++ algorithm is not completely deterministic

and the problem of finding local optima is mitigated by replicating the fitting calculation forty times, and selecting the

best fit from the replicates.

A data point can belong to more than one cluster, with a probability assigned to each point/cluster pair. The number

of clusters, 𝑘 , is an input parameter for the GMM algorithm. For each candidate feature subset considered, a sweep over

number of clusters from 2 to 𝑘𝑚𝑎𝑥 is performed in order to identify an optimal number of clusters. In this work we set

𝑘𝑚𝑎𝑥 = 9. The metric used to evaluate the suitability of the number of clusters is Bayes’ Information Criterion (BIC),

also known as the Schwarz Information Criterion (SIC) [20]; we seek the fit that minimizes the BIC. For our turbulence

data sets, we observed that the BIC tended to favor large numbers of clusters (ten or more). Its value often decreased

rapidly with 𝑘 initially, then more gradually as 𝑘 became larger. We adopted a selection criterion that the BIC for 𝑘 + 1

clusters, denoted 𝐵𝐼𝐶 (𝑘 + 1), must be less than 𝐵𝐼𝐶 (𝑘) − 2𝜎𝑘 , where 𝜎𝑘 is the standard deviation of BIC values over

the ensemble of forty GMM trials using 𝑘 clusters. In this way, we demand that the benefit of adding an additional

cluster be clear relative to the variation in results over the trials for one less cluster.

We follow Dy and Brodley [17] and use the scatter-separability metric as the feature subset evaluation criterion.

This metric is larger (more optimal) when the distances between samples within a cluster are small (low scatter) and

when the cluster means are far apart (separated). The metric is also invariant to linear transformations of the features.

Cross-projection is used to remove the bias of the scatter-separability metric towards larger feature sets, when comparing

two feature sets of different size [17].

All clustering calculations were performed in serial, in Matlab. The computational cost of the sequential search

algorithm scales with 𝑑2, so for large candidate feature vectors the search could become costly. For the relatively modest

number of features considered here, computations were not onerous, with the feature selection taking less than one hour

in each case. More efficient search algorithms, in addition to parallelization of the search and/or clustering operations,

could be pursued for larger problem sizes.
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III. Candidate Features for Turbulent Flow
We must begin with some candidate features that are readily available, satisfy Galilean and rotational invariance,

and preferably play some role in our current understanding of turbulence. In RANS, we typically have available the

mean flow velocity, pressure, temperature, and density fields, the spatial gradients of these quantities, as well as the

Reynolds stress as provided by the turbulence model. Ignoring temperature and density variations for the moment, we

thus have statistical quantities in the form of two symmetric tensors: the mean strain rate tensor 𝑆𝑖 𝑗 and Reynolds stress

tensor 𝜏𝑖 𝑗 ; and three vectors: the mean velocity vector, the vorticity vector (which can be represented using the rotation

rate tensor), and the pressure gradient vector. The velocity vector and pressure gradient vector depend on the particular

reference frame, i.e. they are not Galilean invariant, and so are not used to derive features. Invariant features can be

constructed from the other quantities, as summarized in the following. A more complete description of the features is

contained in Barone et al[21]. Other features that have not been used here may prove useful for classification, should

they be available in both training data sets as well as accessible in a RANS model. For example, intermittency factor, a

measure of the level of transition from a laminar to turbulent state [22], could be a useful feature when the turbulence

model includes a transition model.

Barycentric Coordinates

The degree and type of anisotropy present in the turbulent stress is described by the barycentric map [23]. The

normalized Reynolds stress anisotropy tensor is 𝑏𝑖 𝑗 =
𝑢′
𝑖
𝑢′
𝑗

2𝑘
− 1

3𝛿𝑖 𝑗 . The eigenvalues of the anisotropy tensor, 𝜅𝑖 , are first

computed and ordered according to 𝜅1 ≥ 𝜅2 ≥ 𝜅3. The eigenvalues are then transformed to two coordinates within an

equilateral triangle via a linear mapping:

𝐶1 = 𝜅1 − 𝜅2, 𝐶2 = 2 (𝜅2 − 𝜅3), 𝐶3 = 3𝜅3 + 1 (1)

𝑥𝐵 = 𝐶1𝑥1 + 𝐶2𝑥2 + 𝐶3𝑥3 (2)

𝑦𝐵 = 𝐶1𝑦1 + 𝐶2𝑦2 + 𝐶3𝑦3 (3)

Here, (𝑥1, 𝑦1) are the two-dimensional coordinates of the “one-component” vertex of the triangle, (𝑥2, 𝑦2) are the

coordinates of the “two-component” vertex, and (𝑥3, 𝑦3) are the coordinates of the “three-component” vertex. The

limiting state coordinates 𝐶1, 𝐶2, 𝐶3 are the weights of each of these three limiting anisotropy states associated with the

triangle vertices.

Typically, the barycentric map is plotted on an equilateral triangle with vertices at, for example, (0, 0), (1, 0),

and (0,
√

3/2). The vertices correspond to physical anisotropy states of turbulence. The right vertex corresponds to
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one-component turbulence, where turbulent fluctuations act only in one direction. This state is approximately achieved in

the buffer layer of turbulent channel flow. The left vertex corresponds to the two-component axisymmetric limit, where

turbulent fluctuations are active in two directions, but not in the third. The top vertex corresponds to the homogeneous

limit, where turbulent fluctuations are omnidirectional. Other physical situations can be described by lines in the

barycentric map, such as axisymmetric contraction, axisymmetric expansion, and plane strain [23].

Angles Between Tensors and Vectors

The strain rate and Reynolds stress tensors are symmetric and, therefore, can be diagonalized to reveal a set of

principal axes, defined by the set of orthonormal eigenvectors of the tensor. Thus, each tensor defines a coordinate

system, and one can describe their relative orientation by describing the angular coordinates of one tensor in the

other tensor’s coordinate system. Three angles are required for this purpose. The same can be done to describe the

orientation of a vector relative to a tensor, for which two angles are required. These angles can be useful features for

classifying a turbulent flow state because they are coordinate-system invariant (at least for the quantities involving

velocity gradients), and they are naturally scaled, O(1) quantities.

This development follows the eigensystem ordering conventions of Tao et al. [24], described in the present context

in [21]. The relative orientation of the coordinate systems implied by two tensors is described by a collection of three

angles: 𝜃, 𝜙, and 𝜁 . Likewise, the orientation between a vector and the coordinate system implied by one of the tensors

can be described by two angular coordinates: 𝜃 and 𝜙. Given the tensors 𝑆𝑖 𝑗 and 𝜏𝑖 𝑗 , and mean vorticity vector 𝜔𝑖 , we

can calculate seven angles that can be used to describe the alignment of the tensor-tensor and tensor-vector eigensystems.

Some of these angles can be assigned a physical interpretation. For example, the production term in the enstrophy

evolution equation can be written in terms of the alignment of the principal strain directions with the vorticity. The

intermediate strain eigenvector is often preferentially aligned with the vorticity, although the degree of alignment can

vary depending on instantaneous turbulent structure [25]. Presumably, the alignment of the mean strain intermediate

eigenvector and mean vorticity also vary depending on the location within an inhomogeneous turbulent flow. Other angles

contain information relevant for turbulence modeling. For example, the commonly invoked Boussinesq approximation

assumes alignment of the turbulent stress with the local strain. Angles between the principal stress and strain directions

give a measure of the degree to which this assumption is violated. We hypothesize that these angles may also help

differentiate between different turbulent flow states.
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Scalar Invariants

A general polynomial expression relating the Reynolds stress anisotropy tensor to the mean rate of strain and rate of

rotation tensors is given in Pope [26]. This ten-term expression is∗

b =

10∑︁
𝑖=1

𝑔𝑖 (𝜆1, 𝜆2, . . . , 𝜆5) T𝑖 . (4)

The coefficients of this expansion, 𝑔𝑖 , are functions of the following scalar invariants of the strain rate tensor, S, and

rotation rate tensor, W.

𝜆1 = {S2}, 𝜆2 = {W2}, 𝜆3 = {S3}, 𝜆4 = {W2S}, 𝜆5 = {W2S2} (5)

Truncated forms of Eq. 4 can be used, which contain a subset of terms. For example, Schmitt and Hirsch [27] used a

four-term expansion, retaining only terms T𝑖 that are linear or quadratic in S and W. This enabled them to solve for the

coefficients in Eq. 4 as algebraic expressions involving both the set of invariants 𝜆𝑘 , as well as additional invariants that

involve the anisotropy tensor:

𝜂1 = {b2}, 𝜂2 = {bS}, 𝜂3 = {bSW}, 𝜂4 = {bS2}, 𝜂5 = {bW2} (6)

The set of five invariants, 𝜆𝑘 , 𝑘 = 1, . . . , 5, in addition to the five invariants, 𝜂𝑘 , 𝑘 = 1, . . . , 5, together provide a

set of ten scalar quantities that contain information on the local stress-strain relationship in a turbulent flow. The 𝜆𝑘

invariants only describe the mean velocity gradient tensor and, as such, do not directly contain any information about

statistics of the turbulence itself. The 𝜂𝑘 invariants are formed from combinations of the strain, rotation, and anisotropy

tensors, and thus contain information about both the mean velocity gradients as well as the turbulent stress. We do

not attach any particular physical significance to any of these invariants, except inasmuch as they describe the local

stress-strain relationship in a manner that respects coordinate-system invariance.

In their dimensional form, these scalar invariants can vary over orders of magnitude from invariant to invariant

within the same flow, or for the same invariant across different flows with varying length and time scales. They are

much more useful as descriptors of a turbulent flow state when they are cast in non-dimensional form. We use the local

mean turbulence kinetic energy and mean turbulent dissipation to nondimensionalize these features. For our DNS data

sets, we did not have the dissipation available for all the data, so we used a linear eddy viscosity relation to estimate

dissipation [21].
∗Here we employ matrix notation, representing e.g. the two-dimensional tensor 𝑆𝑖 𝑗 using the matrix symbol S.
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Additional Candidate Feature

Other ad-hoc features may be useful for classification of turbulent states. The ratio of turbulent production to

turbulent dissipation rate, P/𝜖 is often used to characterize turbulent flows. It is approximately equal to unity in the

logarithmic layer of an equilibrium turbulent boundary layer, for example, and takes on other values in different regions

of turbulent flows.

Summary of Candidate Features

There are a total of twenty-one candidate features: the three limiting state barycentric map coordinates, seven

tensor-tensor and tensor-vector angles, ten scalar invariants, and the ratio of turbulent production to dissipation rate. We

consider only two-dimensional turbulent flows in the present study, with a homogeneous third dimension. In this case,

only one of the angles is non-trivial - 𝜃𝑆−𝜏 - and there are then only 15 candidate features.

We note that the choice and scaling of candidate features is arbitrary. We are guided by physical principles, such

as choice of invariant features that are non-dimensionalized by the local turbulence time scale, where appropriate,

in order that the features generalize across many flow of interest. The scatter separability metric for determining

suitability of features for clustering has the important property that it is invariant to arbitrary linear scaling of any of the

features, such that the feature selection process itself is not sensitive to such scaling. However, the collection of selected

features remains a heuristic. Norms in the feature space do not possess a physical significance and, as such, we have no

guarantees that other features or other scalings may not perform better for developing a balanced training data set for

turbulence models. We must rely on performance of the clustering on data sets with known partitioning (on theoretical

grounds), such as the channel flow described in detail in the next section, to make such assessments. The ultimate test,

not covered in the scope of this paper, will be to demonstrate that a turbulence model trained on a data set balanced

using the present approach performs better than a naively constructed training data set.

IV. Clustering Results
The present study analyzes simulation data from four two-dimensional turbulent flows: plane channel flow at five

Reynolds numbers [28], a wavy-walled channel at a bulk Reynolds number of 6850 [29], a bump in a channel [30]

at 𝑅𝑒𝜏 ≈ 600, and a square cylinder in cross-flow at Reynolds number of 21,400. Figure 2 shows mean stream-wise

velocity fields for each of the latter three flows; these plots also illustrate the sampling of the fields, with one symbol

plotted for each sampled data point.

We initially attempted to pool all of the training data from the four flow cases into one data set and performed feature

selection and clustering on the pooled data. These initial experiments did not result in clusters that we could interpret in

a meaningful way, so we took the approach of applying the classification in a flow-by-flow manner, as described in the

following sections.
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Fig. 2 Mean stream-wise velocity fields, normalized by a reference velocity, at sampled data points for the wavy
wall, bump, and square cylinder flows. Arrows indicate bulk flow direction.

Plane Channel Flow

We first investigate the performance of clustering and feature selection on a single flow: plane turbulent channel flow.

Channel flow is one of the most well-studied and well-characterized turbulent flows, and therefore serves as a good

case with which to judge the machine learning techniques. In other words, the clustering results should be consistent

with our existing understanding of this flow. If they are not, then it is likely not worth pursuing the application of these

clustering techniques to more complex flow situations.

We apply the clustering algorithm to DNS data for plane channel flow at five different Reynolds numbers:

𝑅𝑒𝜏 = 180, 550, 1000, 2000 and 5200 (the data sets are described in [28]). For clustering and feature selection, we

operate on a single channel flow data set that includes the data from all five Reynolds numbers. All of the proposed

candidate features are available in this data set, including the dissipation rate for calculation of the ratio of production to

dissipation and for non-dimensionalization of the velocity gradients. We make the choice to populate the feature set

with an initial set of features consisting of the barycentric coordinates, either in Cartesian form (𝑥𝐵, 𝑦𝐵) or limiting state

form (𝐶1, 𝐶2, 𝐶3). We first apply the GMM algorithm to cluster the data based only on the barycentric coordinates;

the results are shown in Figure 3. The results are presented as mean velocity profiles, with individual data points

colored by the most likely cluster for each point. The known regions of turbulent channel flow are easily identified

from the mean velocity profiles: the viscous sublayer (𝑦+ / 5), the buffer layer (5 / 𝑦+ / 30), the logarithmic layer

(30 / 𝑦+, 𝑦/𝐻 / 0.15), and the outer layer (𝑦/𝐻 ' 0.15). Accordingly, we choose initially to set the number of

clusters equal to four. The barycentric coordinate feature sets allows for reasonable clustering of the data into four

regions that approximately resemble the known regions of turbulent channel flow. However, there is a lack of sharp

distinction between the viscous sublayer region and the buffer layer, and the Cartesian coordinates result in a viscous

sublayer that ends slightly early, whereas the limiting state coordinates result in a viscous sublayer that extends too far
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Fig. 3 Clustering results for turbulent channel flow. Velocity profiles are vertically offset from one another for
clarity. Left: Cartesian barycentric coordinate feature set (𝑥𝐵, 𝑦𝐵). Right: Limiting state barycentric coordinate
feature set (𝐶1, 𝐶2, 𝐶3).

away from the wall.

We then ran the FSS algorithm to augment the feature set with further useful features, and to automatically find

the optimal number of clusters. We found that we first needed to filter the data to remove anomalous outlier points.

Certain tensor angle features were especially problematic. For example, the mean strain rate tensor becomes very small

(theoretically zero) at the channel centerline, causing angles between the mean strain rate and Reynolds stress tensors

to become ill-defined. We found that removing data points that had features which lay greater than eight standard

deviations away from the mean value was sufficient. This resulted in only one percent of the data being eliminated. The

optimal feature set identified by the algorithm includes four new features and five clusters; the complete optimal feature

set, denoted 𝑓𝑐ℎ, is: 𝑓𝑐ℎ = {𝐶1, 𝐶2, 𝐶3, 𝜂1, 𝜆1, 𝜂4, 𝜂3}. The resulting clusters are shown in Figure 4. The clustering is

remarkably consistent with our prior knowledge of turbulent channel flow regions. Note that no explicit information on

distance from the wall, or the wall shear stress typically used for inner scaling, was provided to the algorithm. The

boundaries of the regions are in approximately the correct locations, and the boundaries are “sharp,” with little overlap

between the clusters.

Upon initial examination, the selection of five clusters seems to be inconsistent with the conventional categorization

of four regions of channel flow. However, the buffer region is in actuality simply a transition region between the viscous

sublayer and the logarithmic layer, and we do not have much in the way of theory to suggest that the buffer region

turbulence has uniform characteristics throughout. The clustering algorithm has split the buffer region into two regions

(cluster ID’s 2 and 3), with the boundary at 𝑦+ ≈ 25. The algorithm has also placed the boundary between the viscous

sublayer (cluster ID 5) and the buffer regon at 𝑦+ ≈ 2.5, which seems to contradict the usual demarcation of 𝑦+ ≈ 5.

Figure 4 shows, however, that the theoretical curve 𝑢+ = 𝑦+ for the mean velocity profile in the viscous sublayer is
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Fig. 4 Clustering results for turbulent channel flow with feature set including the limiting state barycentric
coordinates and the invariants 𝜂1, 𝜆1, 𝜂4, 𝜂3. On the left, velocity profiles are vertically offset from one another for
clarity. For reference, the theoretical profile for the viscous sublayer is shown as a solid black line.

accurate to within three percent at 𝑦+ = 5, but strictly speaking begins to depart from the DNS closer to the wall. At

𝑦+ = 2.5, the error relative to the theoretical profile is close to one percent; thus, the cluster boundary near 𝑦+ = 2.5 is

not unreasonable. We are re-assured that there is a distinct cluster (ID 4) associated with the inertial, or logarithmic

layer, of the flow. Interestingly, the lowest Reynolds number case, at 𝑅𝑒𝜏 = 180, does not contain any points in this

cluster. This is consistent with previous observations that channel flow does not exhibit a clear logarithmic layer at

this low Reynolds number, while we also note that entirely precise identification of a logarithmic layer has remained

somewhat elusive for all DNS results to date. The cluster with ID 1 groups the outer layer points, despite the distribution

of these points across a broad range of 𝑦+ values.

Overall, the clustering produced by the FSS algorithm is consistent with our existing knowledge of channel flow

turbulence, lending some confidence that this technique can group data points by a physical state that is, in some way,

meaningful.

Wavy Wall

The next flow we consider is the flow in a plane channel with a wavy bottom wall. Again, as with all the flow

cases considered in this paper, the geometry is two-dimensional with a homogeneous lateral dimension. We wish to

completely utilize the clusters already obtained with the channel flow data, so we first assign clusters to the wavy wall

data points that are well-classified by the channel flow clusters. We use the Mahalanobis distance 𝑑𝑀 (see Ref. [6], Chp.

12) to determine the distance from each wavy wall data point to each of the channel flow cluster means. For the channel

flow data, the vast majority of the data points satisfied 𝑑𝑀 < 25, so we applied this threshold to the wavy wall data.

The procedure followed was: 1) calculate the Mahalanobis distance from each wavy wall data point to each channel

flow cluster, 𝑑𝑘
𝑀

; 2) determine the nearest channel flow cluster based on the minimum distance 𝑑𝑘
𝑀𝑚𝑖𝑛

≡ min
𝑘

𝑑𝑘
𝑀

; 3)
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Fig. 5 Left: Wavy wall data that is well-classified by the channel flow clusters, colored by cluster. Right: Wavy
wall clusters, showing only one periodic segment of the domain.

if the minimum distance satisfies 𝑑𝑘
𝑀𝑚𝑖𝑛

< 25, then the data point is assigned to the 𝑘 𝑡ℎ channel cluster; 4) apply the

FSS algorithm to the remaining unclassified wavy wall data points to identify new wavy wall clusters; 5) group the

remaining wavy wall data points using the new clusters.

Figure 5 shows the wavy wall data points that are well-classified by the channel flow clusters. Virtually the entire

top half of the domain is well-classified by the channel flow clusters, as well as many points near, but not immediately

adjacent to, the wavy wall surface. Many of the points associated with the region of flow separation downstream of the

hump apexes are classified by channel cluster 3, which is associated with near-wall buffer layer points. This is due

primarily to both regions being characterized by one-component anisotropy (observed also in Emory and Iaccarino

[31]).

The FSS algorithm was run on the remaining data, again beginning with an initial feature set {𝐶1, 𝐶2, 𝐶3}, resulting

in an optimal clustering with five clusters and an optimal feature set 𝑓𝑤𝑤 = {𝐶1, 𝐶2, 𝐶3, 𝜂1}. The clusters for one

periodic segment of the wavy wall domain are shown in Figure 5. There are two near-wall clusters (cluster ID’s 8 and 9)

which alternately appear along the wall surface direction. Interestingly, these do not correspond to distinct regions

based on the sign of the stream-wise pressure gradient. Two other clusters (cluster ID’s 6 and 7) group points lying just

outside this near-wall region, while a fifth cluster (ID 10) classifies a small region of near-wall flow just downstream of

the hump apex.

Further visualizations reveal connections between the spatial distributions of the features and the clusters. For the

wavy wall flow, the barycentric map coordinates play an important role. The primacy of the barycentric coordinates in

determining the clusters for the wavy wall data is demonstrated in Figure 6. Here, the points are colored by position

within the barycentric triangle, following Emory and Iaccarino [31]. The clusters from Figure 5 correspond closely to

the position within the barycentric map. This is not surprising since only one additional feature, 𝜂1, is employed in the

wavy wall clustering. The two near-wall clusters that alternately appear along the wavy surface are largely determined

by the stream-wise and span-wise normal stress components 𝑢′𝑢′ and 𝑤′𝑤′, respectively. These two components are

much larger than 𝑣′𝑣′. In cluster 9, which appears just upstream of the apex, on the lee side of the wave, and in the

trough of the wave, 𝑢′𝑢′ ≈ 𝑤′𝑤′, and the anisotropy state is close to the two-component limiting state (lower left corner

of the barycentric map). Cluster 8 appears at the apex, on the lee side of the wave downstream of the inflection point,
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Fig. 6 Wavy wall clustered points, colored by position within the barycentric map.

and from the re-attachment point up to the inflection point on the windward side of the wave. This cluster is associated

with an anisotropy state between the one-component and two-component limiting states, where two components of the

stress are active, but one is larger than the other. For the first two regions associated with this cluster, 𝑢′𝑢′ > 𝑤′𝑤′. For

the latter location (downstream of re-attachment), the anisotropy state is similar but now 𝑤′𝑤′ > 𝑢′𝑢′ (see also [32]).

Contours of 𝜂1 are shown in Figure 7. It appears that 𝜂1 is useful in differentiating cluster 10 from Figure 5, which

describes points just downstream of the apex of the wavy surface, where the boundary layer has separated. The invariant

𝜂1 is a scalar measure of the degree of anisotropy. Its relatively large value in this separation shear layer cluster reflects

the dominance of the streamwise normal stress component 𝑢′𝑢′. Likewise, cluster 7, which lies just above the two

near-wall clusters described previously, is associated with a lower value of 𝜂1 indicating a relatively low degree of

anisotropy, and a position within the barycentric map closer to the three-component, isotropic, limiting state.

In summary, the data points from the wavy wall data set that are not already well-classified by the channel flow data,

correspond largely to the region of the flow-field close to the wavy wall. It is observed (but not explicitly shown here)

that even points in the near-wavy-wall region with similar anisotropy state as one of the channel clusters, have remaining

features from 𝑓𝑐ℎ – 𝜂1, 𝜆1, 𝜂4, 𝜂4 – that differ from the near-wall channel flow clusters, explaining why these points are

not classified by the channel clusters. A different optimal feature set, 𝑓𝑤𝑤 , is found to classify these points which is,

interestingly, a subset of the optimal feature set for channel flow. This can be explained partly by the observations, noted

above, that the new near-wavy-wall clusters are largely differentiated by the anisotropy state of the turbulence, which is

described by the barycentric map coordinate features 𝐶1, 𝐶2, 𝐶3. The additional feature in 𝑓𝑤𝑤 , 𝜂1, appears useful for

distinguishing the separation shear layer from surrounding flow regions.

Bump in Channel

The third flow considered is a two-dimensional bump in a channel. The available data set for this flow did not include

data near solid surfaces; the minimum distance from the closest point to a wall was about twenty percent of the channel

half-width. The channel flow clusters were able to classify 46.3 % of the bump-in-channel data points, while the wavy
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Fig. 7 Contours of scalar invariant 𝜂1 for the wavy wall clustered points.

wall clusters classified a further 49.8 %, leaving only 3.9 % of the data points left to be clustered. It is re-assuring that

the previous clusters were good fits for much of the bump flow-field. The remaining points were run through the FSS

algorithm, with an additional six clusters found as optimal, and the best feature set was 𝑓𝑏 = {𝐶1, 𝐶2, 𝐶3, cos 𝜃𝑆−𝜏 , 𝜆3}.

It is notable that the bump feature set is the first set to include the stress-strain tensor angle. For brevity, we do not show

the bump clusters here (see Supplementary Online Material for more details).

Square Cylinder

The fourth flow considered is a square cylinder in cross-flow at a Reynolds number of 21,000 based on cylinder

width†. Despite the significantly different flow topology relative to the previous three cases, a large number of points are

well-classified by the existing clusters identified from those cases. In fact, the Mahalanobis distance threshold used for

the square cylinder case was lowered from 25 to 15 to allow for an adequate number of data points to identify new

clusters. With this threshold, 15 % of the square cylinder points were classified by channel flow clusters, while 63 %

were classified by the wavy wall points. These points are visualized in Figure 8. Of interest is the large number of

points in the wake region that are well-classified by wavy wall cluster 6. This cluster was associated with wavy-wall

points between the near-wavy-wall and outer regions, see Figure 5. These wake points have a similar anisotropy state to

the identified region of the wavy wall flow, but otherwise a physical interpretation of this cluster is not clear. Only

three points were classified by the bump clusters. The remaining points were grouped into three clusters by the FSS

algorithm, with optimal feature set 𝑓 = {𝐶1, 𝐶2, 𝐶3, 𝜃𝑆−𝜏}. Although the optimal feature set for the square cylinder

clusters is a subset of that for the bump clusters, the bump clusters occupy a different region of feature space than the

square cylinder clusters.

The square cylinder clusters are shown in Figure 9. Cluster 19 is comprised of points mainly located around the

forward corners of the cylinder and in the early separtion shear layers, a high strain-rate region where the flow accelerates

around the corner; note that the flow in this region has likely not fully transitioned to turbulence. Its position in the

barycentric map is close to the one-component limiting state. The two other clusters (ID’s 17 and 18) are comprised of

points that mainly lie within the mean position of the shear layers above and below the cylinder, although with some
†Results obtained from S. Arunajatesan, personal communication
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points also in the near-wake region. Points in these two clusters lie along the edge of the barycentric map connecting the

one-component and three-component limiting states. Note that Pope has reported that DNS results for the central region

of a turbulent mixing layer show similar anisotropy states [33]. These two clusters are differentiated by the feature

describing the angle between the strain rate and Reynolds stress principal directions. This is somewhat of an artifact of

how the principal direction is defined (the eigenvector associated with the most extensive, or positive, eigenvalue). This

angle can change suddenly when the ordering of stress eigenvalues changes, which is the case here. This may motivate a

search for a different feature describing alignment of stress and strain that is less sensitive to perturbations in those

tensors.
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Fig. 8 Left: Square cylinder data that is well-classified by the channel flow clusters, colored by cluster. Right:
Square cylinder in channel data that is well-classified by the wavy wall clusters, colored by cluster.
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V. Prototype Placement
An example in a data set, 𝜉, is a single data record, consisting of an 𝑛-dimensional vector of features. Prototype

placement (also known as selection of exemplars) is the selection of a subset of examples from a data set that can

adequately summarize it. It yields a tractably small data set that can be used to interpret and understand a larger data set.
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Prototype placement can be performed in an unlabeled data set or in a data set where the examples have been “colored”,

i.e., where they have been labeled/categorized via clustering, as in our case (see Sec. IV). Below, we describe some

prototype placement approaches and apply them to our turbulence data sets, to extract a subset. The distribution of the

prototypes provides an approximate measure of the variation of the features in space.

Concepts similar to prototype placement have arisen in fluid dynamics research. The use of cluster-based and

network-community-based reduced-order models (ROMs) for flow control has been explored [8, 12, 34]. Here, one

models the flow discretely as a set of vortices arising, for example, from the disaggregation of coherent structures in

turbulent flows. For computational ease and speed, the vortices are collated into clusters and some aerodynamic variable

e.g., drag, is modeled by representing each cluster in a simplified manner. If the simplified model for a cluster has to be

associated to a point in the feature-space, the cluster-centroid is generally employed for the purpose. This is similar to a

prototype conceptually, but the details are different. A prototype would ensure that the location in feature-space would

correspond to one of the members of the cluster, but there are only a handful of scenarios where this would be helpful

(see Sec. VII). Prototypes would also quantify how well the chosen locations summarize the clusters, but it is unclear

how this information would be used to improve the ROMs. Thus prototype placement, though somewhat allied to the

construction of network-community ROMs, has not been pursued in that field.

Sensor placement is another field where prototype-like concepts have been explored [35]. Here, the aim is to

reconstruct spatiotemporal fields e.g., a velocity field downstream of an object in a flow, by measuring it at a few

sensor locations. These studies employ CFD (computational fluid dynamics) solutions of the fields on a grid, and

have to be approximated with the help of orthogonal bases (obtained via Proper Orthogonal Decomposition) and noisy

measurements in a few grid-cells. QR-decomposition with column pivoting has been used to isolate the most influential

grid-points for constraining the reconstructed fields [35], with impressive results. However, the objective in sensor

placement is quite different from prototype placement. Whereas sensor placement seeks to reconstruct the target field as

accurately as possible (while minimizing the number of sensors), in prototype placement, the field has to be represented

only so well that reconstruction errors of a feature vector does not change its class label (i.e., the cluster ID). This, of

course, is irrelevant in sensor placement, and so that body of work has ignored prototypes. On the other hand, it is

difficult to conceptualize how prototype selection could be cast as a sensor placement problem. To start with, it is

difficult to formulate a QR decomposition with a categorical variable (the class label), though it would certainly require

a classifier to map an imperfectly reconstructed feature vector into its class label, when optimizing sensor locations. In

addition, proper orthogonal decomposition (which is based on singular value decomposition) scales as 𝑁𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 × 𝑑2

(where 𝑁𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 is the number of feature vectors and 𝑑 is the length of the feature vector) which can get large for DNS

data sets. Thus sensor-placement concepts are not quite the same as those in prototype placement in labeled data.
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A. Prototype Placement

There are three different prototype placement scenarios, each with its own set of algorithmic solutions, viz. when

features are unlabeled but can be projected to a low-dimensional space, when they are unlabeled and intrinsically

high-dimensional and lastly, when they are high-dimensional but can be labeled (or “colored”). Methods exist to

place prototypes in unlabeled data, for both intrinsically low-dimensional [36–42], and high-dimensional feature

spaces [43, 44]. Our problem, however, involves placing prototypes among examples that have been labeled by the

cluster IDs.

Ref. [45] describes an algorithm by which prototypes can be placed in a colored data set and is the method used in

our study. The method is meant for problems where (1) 𝜉 can be represented by a point in a high-dimensional continuous

feature-space and (2) the 𝜉 can be “colored” or labeled by their cluster ID (signifying a particular type of turbulence that

they represent). One starts with the assumption that all 𝜉 could potentially be prototypes. One grows spheres, of radius

𝛿, around all 𝜉, with the aim of collecting a subset to serve as prototypes for class 𝑙. The prototypes are the smallest

subset of 𝜉 that provide maximum coverage (cover 𝜉 of class 𝑙) and minimum impurity (coverage of 𝜉 of class other

than 𝑙). Prototypes are assembled in a greedy manner. The example 𝜉𝑖 that provides the best coverage and impurity

is first added to the set of prototypes, and removed from 𝜉, along with the 𝜉 (of class 𝑙) that it covers. The process

then repeats to find the subsequent prototypes. A running estimate of the quality of a set of prototypes is maintained,

computed using the coverage, the impurity and a penalty 𝑁𝑝𝑟𝑜𝑡𝑜 × 𝜒, which is proportional to the number of prototypes

𝑁𝑝𝑟𝑜𝑡𝑜. The algorithm stops when the greedy search can no longer find another prototype (of any class) that would

maximize the quality of the set cover. The two user-defined inputs, 𝛿 and 𝜒, control the 𝑁𝑝𝑟𝑜𝑡𝑜 (number of prototypes)

that are placed and the quality of the cover/summarization that the prototypes achieve. Small 𝛿 usually lead to good

coverage and small impurity, but very large penalties, and thus may not lead to a high-quality set of prototypes. A set of

prototypes can incur three types of errors which ultimately define the quality of the coverage:

1) Uncovered features: A set of 𝑁𝑝𝑟𝑜𝑡𝑜 prototypes, with spheres of radius 𝛿 can leave a fraction 𝑢 of examples

uncovered. Optimal prototype selection will minimize 𝑢.

2) Impure spheres: A sphere of radius 𝛿, centered on example 𝜉𝑖 , of class 𝑙, could cover examples of a different

class, leading to its “impurity” 𝑖 (expressed as a ratio of examples from classes other than 𝑙 that the sphere

covers). As impurity is undesirable, the sum 𝑏 = 𝑢 + 𝑖 is a measure of the quality of the selected prototypes. An

overlap of clusters/classes will cause impurity, as will an excessively large 𝛿.

3) Misclassification rate: A set of prototypes, along with 𝛿, can serve as a nearest-neighbor classifier of the data,

and forms a second measure of the quality of a set of prototypes. The performance of this classifier can be

quantified as its misclassification or error rate 𝑚.
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B. Prototype Placement Procedure

The process of placing prototypes essentially reduces to determining a value for (𝛿, 𝜒) that delivers a desired

quality and level of summarization (as quantified by (𝑏, 𝑚, 𝑁𝑝𝑟𝑜𝑡𝑜) ) of a data set. The user specifies a desired quality

level (𝑏∗, 𝑚∗) and one searches for the “optimal” (𝛿∗, 𝜒∗) that can deliver it. Upper and lower bounds are specified

in the 𝛿 − 𝜒 space and we draw 200 samples of (𝛿, 𝜒) from it in a space-filling manner. The search for (𝛿∗, 𝜒∗) is

conducted via seven-fold cross-validation. Computations are performed in the R statistical framework using the package

protoclass [46] for prototype placement and randtoolbox [47] for random sampling.

The first step in prototype placement involves balancing the data set, since the sizes of the clusters vary widely.

Equal numbers of examples of each class are drawn from the data set to constitute a new data set for the search. The

features are centered (each component of 𝜉 has its mean subtracted from it) and scaled (each component of 𝜉 is divided

by the standard deviation, so that the values vary, approximately, between -3 and 3). This data set is then randomly

divided into seven folds. We iterate through the 200 (𝛿, 𝜒) samples. For a given (𝛿, 𝜒)-pair, we designate one of the

folds as the “testing” fold whereas the rest are the “learning” folds. Prototypes are placed, using protoclass, into

the “learning” folds and (𝑏, 𝑁𝑝𝑟𝑜𝑡𝑜) is computed from the placement. The prototypes, with their 𝛿, are next used as a

nearest-neighbor classifier to classify the data in the “testing” fold to compute 𝑚. We iterate through the seven folds to

compute seven different (𝑏, 𝑁𝑝𝑟𝑜𝑡𝑜, 𝑚) values; these are averaged to serve as the performance figures for the (𝛿, 𝜒)-pair.

200 such performance figures-of-merit are computed, and (𝑏, 𝑚) plotted as a function of 𝑁𝑝𝑟𝑜𝑡𝑜. The (𝛿, 𝜒)-pair that

yields (𝑏, 𝑚) closest to (𝑏∗, 𝑚∗) is designated the “optimal” (𝛿∗, 𝜒∗) result.

The final prototype placement is performed by configuring protoclass with (𝛿∗, 𝜒∗) and applying to the full data

set; (𝑢∗, 𝑖∗) are computed as a measure of the quality of final set of prototypes.

C. Channel Flow Results

As a first step, we apply prototype selection to the plane channel flow results in Sec. IV for Re𝜏 = 180, 550, 1000, 2000

and 5200. Here we set 𝜉 = 𝑓𝑐ℎ == {𝐶1, 𝐶2, 𝐶3, 𝜂1, 𝜆1, 𝜂4, 𝜂3}, the optimal feature set for clustering of channel data, and

perform prototype placement one Re𝜏 at a time. Figure 10 (left) shows the computation of (𝑏, 𝑚, 𝑁𝑝𝑟𝑜𝑡𝑜) via 7-fold

cross-validation (CV), as described in Sec. V.B, performed for the Re𝜏 = 1000 data set. We plot the “bad coverage” error

𝑏 and the misclassification error 𝑚 as a function of 𝑁𝑝𝑟𝑜𝑡𝑜, the number of prototypes chosen, as we iterate through the

(𝛿, 𝜒) samples. The horizontal line shows the desired values (𝑏∗, 𝑚∗) leading to a (𝛿∗, 𝜒∗) that results in 𝑁𝑝𝑟𝑜𝑡𝑜 = 16.

Similar analyses were run for all the other channel-flow cases, to calculate data set-specific (𝛿∗, 𝜒∗) configurations.

Since the prototype selection is performed one Re𝜏 at a time, the (𝑏∗, 𝑚∗) are slightly different, and the number of

prototypes selected varies substantially (see Table 1)

In Figure 10 (right), we plot the mean velocity profiles from the channel flow cases, colored by the cluster ID. The

open symbols denote the prototypes, placed for all the velocity profiles. As is clear, the number of prototypes changes
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from flow to flow, and their locations on the velocity profile are not the same. In Table 1 we tabulate the cluster sizes and

the number of prototypes chosen in each cluster, as a measure of the summarization achieved by the prototypes. (𝑢∗, 𝑖∗)

are also stated, as a measure of the quality of the summarization by the prototypes. We see that geometrically large

regions/clusters with many grid points need not necessarily have many prototypes. This is because spheres are grown

(when computing prototypes) after 𝜉 has been centered and scaled i.e., the spheres, mapped back to physical space are

highly skewed and irregular. In addition, the quality of the summarization by the prototypes is quite variable, e.g., some

sections of the boundary layer have many prototypes while others have only a few (see Table 1). The summarization is

also seen to become more efficient with Re𝜏 . This could be due, in part, to the improved separation of the log layer from

the inner and outer layers as the Reynolds number increases. For each case with a log layer present, a single prototype is

placed, consistent with the self-similar nature of the turbulence in this region.
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Fig. 10 Left: (𝑏, 𝑚) plotted against 𝑁𝑝𝑟𝑜𝑡𝑜 for plane channel flow Re𝜏 = 1000 case as we search through 200
(𝛿, 𝜒) samples for those close to the desired value (plotted in green). Right: Plots of the mean velocity profile,
colored by their cluster, for Re𝜏 = 180, 550, 1000, 2000 and 5200. Prototypes are plotted with open symbols and
have the same color as the cluster they summarize. For Re𝜏 = 5200 the prototype in the viscous sublayer (red)
points) is positioned at 𝑦+ < 1 and is not visible in the plot. The mapping between cluster colors and their IDs are
in Table 1. Note: The velocity profiles have been shifted vertically to make them legible.

D. Complex Flow Results

We now apply the placement of prototypes to somewhat more complex flows, viz., flow over a wavy wall. The

feature set 𝜉 = 𝑓𝑤𝑤 = {𝐶1, 𝐶2, 𝐶3, 𝜂1} is used for placement of prototypes. Figure 11 (left) plots the cluster sizes and

the number of prototypes placed in each cluster. We see that there are 10 clusters whose sizes vary over a factor of

10. In the same figure, we also plot the ratio of the number of prototypes and the cluster size, as a measure of the
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Cluster Re𝜏 = 180 Re𝜏 = 550 Re𝜏 = 1000 Re𝜏 = 2000 Re𝜏 = 5200

Outer layer (brown; ID 1) 26 (4) 45 (3) 59 (2) 82 (1) 174 (1)
Log-layer (yellow; ID 4) 0 (0) 73 (1) 129 (1) 232 (1) 525 (1)

Outer buffer layer (blue; ID 2) 35 (3) 35 (3) 29 (2) 28 (1) 33(1)
Inner buffer layer (green; ID 3) 23 (11) 24 (13) 24 (8) 26 (5) 28 (3)
Viscous sublayer (red; ID 5) 5 (3) 15 (3) 15 (3) 16 (3) 8 (1)

𝑁𝑝𝑟𝑜𝑡𝑜 21 23 16 11 7
(𝑢∗, 𝑖∗) (0%, 0%) (0.5%, 4.7%) (0.4, 6.2%) (1.3%, 5.5%) (2%, 6%)

Table 1 Cluster sizes (number of examples) and number of prototypes (in parentheses) for the 5 plane channel
flow problems considered in this study. All flows have been segregated into 5 clusters, whose sizes are tabulated;
the figures in the parentheses are the number of prototypes placed in the cluster. The last row of the table
provides the fraction of examples left uncovered by the prototypes and the average impurity of the spheres grown
at the prototypes. Cluster colors and IDs are provided in line with Fig. 10.

summarization obtained by prototypes; it is clear that for all but the smallest cluster, prototypes form 5% or less of

the cluster. The data set has 461 prototypes, with the fraction of uncovered examples 𝑢 = 20% and the “impurity” or

misclassification fraction 𝑖 = 9.7%.

In Figure 11 (right) we plot the flow-over-a-wavy-wall data set colored by the cluster ID. The prototypes are plotted

with symbols of the same color. Not surprisingly, most of the cluster and prototypes are found near the wall where

high gradients of the turbulent statistics exist. The periodic structure of the wall causes periodicity of the blue and red

clusters. These distinct (in physical space) clusters have the same color because they occupy a contiguous region in the

𝜉-space (they are similar, from a turbulent processes point of view). The splitting of a contiguous region in feature space,

as seen in this figure, is one of the reasons for using prototypes (rather than cluster centers) to summarize a turbulent

data set. Prototypes, being examples drawn from the data set, can be mapped between 𝜉-space and physical space

trivially, which simplifies their fluid-dynamical interpretation. We see that the prototypes are not uniformly distributed

in physical space, indicating severe contortions of the clusters as they mapped between physical and 𝜉-space where

clustering and prototype-pacement is performed.

Prototype placement for the bump-in-channel and flow-around-a-square-cylinder data sets are illustrated in the

Supplementary Online Materials, with similar characteristics already noted in the description of the wavy wall prototypes.

VI. Discussion
As alluded to in Sec. I, data-driven turbulence models can only learn the turbulent states and dynamics in their

TD, making it imperative to be able to label or characterize a TD by the kind of turbulence physics it contains. It is

also necessary to balance a TD i.e., ensure that the various turbulent processes are represented by approximately equal

numbers of examples (or DNS/LES grid cells). Here we show how clustering and prototypes may help us achieve these
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Fig. 11 Left: Comparison of the size of the 10 clusters in the wavy-wall data set and the prototypes placed
in them. The prototypes, as a fraction of the cluster size, are also plotted (“summarization ratio”). The solid
horizontal line corresponds to 0.1 whereas the dashed line corresponds to 1. Except for the smallest cluster
(cluster ID 10), we obtain a reduction of 10x or more with the prototypes. Right: The flow-over-a-wavy-wall data
set with points clustered by their cluster ID. Prototypes are plotted with symbols. The flow is from left to right.
Cluster 10 has been colored cyan, instead of the original bright green, to distinguish it from Cluster 3 (colored
green).

aims.

Balancing a TD: A useful TD should have a diversity of turbulence physics in it, i.e., pooling DNS/LES simulations

with much the same physics will not lead to a generalizable turbulence model that is accurate in a diverse variety of flows.

We use our clustering method to identify the types of turbulent processes in a data set (e.g., the channel flows) and then

use previously learned physics to identify new ones in a previously unseen data set (e.g., the processes near the lower

wall of the wavy wall data set). This incremental learning process revealed that only about 4% of the examples/grid cells

in the “Bump in Channel” data set were new, making the bulk of the examples redundant. Thus the “Bump in Channel”

data set is a poor candidate for inclusion in a TD, as it contributes little to diversity or information content. Note that

without the ability to automatically group examples by their physics, it would be infeasible to detect the redundant

nature of this data set. In addition, the ability to cluster can also allow us to check whether a TD obtained by pooling of

DNS/LES results in a balanced TD. In our case, a naive pooling of our four data sets results in an extremely skewed

distribution of examples (see Fig. 12), with the bulk of them being drawn from the near-wall boundary layer region.

This is not entirely unexpected - DNS/LES grids are densely resolved in those regions. Thus our clustering method can

be used to uncover the (lack of) diversity and imbalance in a TD.

Labeling a TD: While clustering analysis allowed us to identify the homogenous partitions in the TD, it does not

allow us to characterize the type of physics in them, and thus discover the shortcomings of the TD assembled from a set
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Fig. 12 Distribution of cluster sizes, assembled from our four flow data sets. They vary over almost three orders
of magnitude.

of DNS/LES simulations. We show how prototypes assist in the process of TD characterization.

Difference in the anisotropy is a sufficient, though not necessary, condition for distinguishing two turbulence states.

If a TD, mapped to the barycentric triangle, leaves parts of it uncovered, it identifies some of the turbulence physics

that it does not contain. Since the barycentric coordinates are only a subspace of the clustering feature-space, it is

quite possible that if all the examples of all clusters are plotted inside it, they will completely occlude some of the data.

However, if a sparse, representative subset of the members of a cluster are plotted, the possibility of occlusion becomes

small, allowing for easier illustration and explanation. However, this representative subset should uniformly cover all

the clusters so that the (possibly sparsely populated) extremities of a cluster are well represented, as we seek to find the

coverage of the barycentric triangle. Prototypes, which are selected via coverage arguments, are well-suited for the

purpose and are used here.

In Fig. 13, left column, we plot prototypes from plane channel flow (Re𝜏 = 2000), the wavy wall flow and the

square cylinder simulation, within the barycentric triangle. In the right column, we plot them inside the flow domain.

Prototypes are colored by their cluster ID; therefore, many prototypes have the same color. The first row plots prototypes

from channel flow, showing its coverage of the barycentric triangle (Fig. 13, top-left corner) and their position (Fig. 13,

top-right corner) in the velocity profile. Their physical interpretations e.g., viscous layer etc. are evident. In the central

row, we plot prototypes from the wavy wall data set. We see two groups of prototypes. A set of prototypes, in the

center of the barycentric triangle (Fig. 13, middle row, left), occupies much the same locations as the prototypes from

plane channel flow. These are drawn from the top of flow, where the flow is indeed similar to a plane channel flow

(Fig. 13, middle row, right). The second set of prototypes (colors: violet, orange and brown ; cluster IDs: 7, 8 and 9

respectively) occupy the lower-left corner of the barycentric triangle and represent clusters with various combinations
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Fig. 13 Top row: Prototypes from the Re𝜏 = 2000 channel flow data set plotted inside the barycentric triangle
(left) and on the velocity profile (right). Middle row: Prototypes from the wavy wall data set plotted inside the
barycentric triangle (left) and inside the flow (right). Bottom row: Prototypes from the square cylinder data set
plotted inside the barycentric triangle (left) and inside the flow (right). Note: This figure uses a new color scheme
to constrast clusters adjacent in the barycentric triangle.
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of one-and-two-component turbulence and two-and-three-component turbulence, with the two-component turbulence

being the distinguishing characteristic. These are present near the lower wall. These clusters are characterized by

approximately equal turbulent stresses (𝑢′𝑢′ ≈ 𝑤′𝑤′) as well as clusters where one somewhat dominates over the other.

Details are in Sec. IV. Thus the wavy wall data set serves the role of supplying examples of two-component turbulence

to our TD.

In the bottom row, we plot prototypes from the square cylinder flow in the barycentric triangle (Fig. 13, bottom-left

corner) and inside the flow (Fig. 13, bottom-right corner). It contributes a combination of two-component turbulence

examples, in the lower left corner of the barycentric triangle, as well as examples (colors: khaki and dark green ;

cluster IDs: 17 and 18 respectively) that occupy the boundary along 1-component and 3-component turbulence. These

prototypes are drawn from the flow near the windward (or leading) corner where it accelerates around the square

cylinder (1-component turbulence) and from the clusters corresponding to the shear layers on the top and bottom of

the cylinder (barycentric triangle boundary joining 1- and 3-component turbulence). Details are in Sec. IV). Thus the

square cylinder data set supplies examples that “fill” the right half of the barycentric triangle.

Compositing the prototypes in the barycentric triangles in the left column, we find there are no prototypes that

occupy the 3-component corner of the barycentric triangle. Thus, apart from being very skewed, a naive TD assembled

by simply pooling our four data sets would have some very common and elementary turbulent physics missing from it.

This qualifies any data-driven turbulence closure trained with it. However, this shortcoming also identifies the type of

simulation data sets that would improve our TD most and render the data-driven closure more generalizable. Note that

the quantity of new simulation data required depends on the use-case, e.g., a deep neural net turbulence closure [3] will

require far more data than one constructed with a random forest [48].

Noisy Data: We have performed a limited number of studies on the effect of noisy data on the clustering for channel

flow. First, random noise was added to the training data features; the noise amplitude was specified as a fixed percentage

of the standard deviation of each feature, and the noise was assumed to be uncorrelated across features. We found that

the clustering results were somewhat sensitive to noise with magnitude of one percent or more. Second, we trained the

Gaussian mixture model with clean data (no added noise), then tested it on the noisy data. We found that the clustering

performed well with noise levels up to at least ten percent. The robustness of the classification to noise in the test data,

conditional on noiseless training data, is similar to the results in Ref. [35]. Representative results for these noisy data

scenarios are shown in the Online Supplementary Materials. These experiments suggest that care should be taken to

reduce noise for training data, but that the resulting clustering model will be robust to significant noise in subsequent

data that require classification. Note that our training data come from DNS, and as such do contain a small amount of

statistical sampling error (typically one percent or less, although this can vary by feature and was not quantified for our

training data sets). Caution should be taken when applying the present clustering algorithms and feature selection to

more noisy training data, such as data from experimental measurements.
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VII. Conclusions
In this paper we have explored the premise that turbulent states can be successfully classified, or categorized,

using unsupervised machine learning techniques. The clustering and prototype-placement methods demonstrated in

this paper serve a practical purpose - that of assessing the quality of a training data set used to construct data-driven

turbulence closures. These data sets are generally assembled from multiple DNS/LES simulations’ data and should

contain the types of turbulent states/dynamics the closure is supposed to reproduce. Further, for a widely generalizable

turbulence closure, the training data set should contain a diversity of turbulent physics, and considering DNS/LES data

sets with redundant physics serves little purpose. We demonstrate how these desirable properties of a training data set

might be investigated using the newly developed methods. Clustering analysis identifies partitions where the turbulent

states/statistics are approximately homogeneous, as well as how abundantly they would be represented if the DNS/LES

data sets were to be simply pooled together. In our case, we find that simply pooling the DNS/LES data sets considered

here would lead to a training data set that is immensely skewed, with examples drawn from boundary layers dominating

other forms of turbulent flows. In addition, we found that one of the DNS data sets considered here, channel with a

bump, is largely redundant. Prototypes drawn from the clusters illustrate the space of turbulent states that is occupied by

examples drawn from the training data, and more importantly, the parts that are not. Again, we find that simply pooling

our DNS/LES data sets would provide very few examples of three-component turbulence e.g., isotropic turbulence,

which would likely not be learned by any data-driven turbulence closure trained on it.

Apart from assessing the quality of a training data set, the methods developed here could have other uses. Prototypes

could be used in network community-based ROMs of vortical and turbulent flows [8, 34] e.g., for modeling the

aerodynamic forces on a pitching airfoil, caused by the Karman vortex street behind it. Such ROMs need collation of

entities (in this case, small vortices) into larger structures or “communities” (for dimensionality reduction) which can

them be approximated by a simpler model. Prototypes could be used to seed and grow communities via agglomerative

clustering, as it would ensure that these communities are evenly spaced out and of similar sizes. Prototypes can also

be used in the improved training of neural net turbulence models via transfer learning. Ref. [49, 50] describe how

(convolutional) neutral net models for turbulent flows benefit from “pre-training”. In Ref. [50], a previously trained

neural net model could be generalized to a different Reynolds number by retraining with a fraction of the appropriate

training data. In Ref. [49] a neural net was “pre-trained” using a smaller training data assembled by randomly sampling

the full data set. Prototypes could perhaps be used to assemble the data set for “pre-training” in a rigorous fashion. They

would ensure uniform representation of the various types of turbulence present, and the chances of omitting minority

classes from “pre-training” data set would be reduced. Our own motivation is to use the prototypes identified here to

facilitate the creation of explainable neural network turbulence models. The prototypes give a relatively small number

of data points, which can be considered representative of a certain set of turbulent flow physics. We can probe the

behavior of the neural network in the vicinity of the prototypes, and test whether its predictions are consistent with
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desired model behavior for the identified physical situation. The clustering method developed here could also be used to

identify when a data-driven closure, trained on a data set, is used in an extrapolatory fashion. Again we are considering

the case where a machine-learned turbulence model has been trained using a training data set, and then required to make

a prediction at a new point. If the new point clearly belongs to one of the clusters identified in the training data, then the

model will likely make a valid prediction. If the new point is not well-classified by one of the clusters in the training

data, this would indicate the model may not give a valid prediction, and new training data are required. Further studies

are certainly required to explore the full utility of the approach, using a greater variety of turbulence data and including

three-dimensional flow-fields. We conclude by noting that the present approach is not necessarily limited to single-point

statistical features but could, in principle, be applied to any invariant statistical quantities one may choose to define a

turbulent state.

Acknowledgements
This work was supported by the Laboratory Directed Research and Development program at Sandia National

Laboratories. This paper describes objective technical results and analysis. Any subjective views or opinions that might

be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States

Government.

References
[1] Bowyer, N. V. C. K. W., Hall, L. O., and Kegelmeyer, W. P., “SMOTE: Synthetic Minority Over-sampling Technique,” J.

Artificial Intelligence Research, Vol. 16, 2002, pp. 321–357. https://doi.org/10.1613/jair.953.

[2] Beck, A., Flad, D., and Munz, C.-D., “Deep neural networks for data-driven LES closure models,” Journal of Computational

Physics, Vol. 398, 2019, p. 108910. https://doi.org/10.1016/j.jcp.2019.108910, URL https://www.sciencedirect.com/science/

article/pii/S0021999119306151.

[3] Ling, J., Kurzawski, A., and Templeton, J., “Reynolds averaged turbulence modelling using deep neural networks with embedded

invariance,” J. Fluid Mech., Vol. 807, 2016, pp. 155–166. https://doi.org/10.1017/jfm.2016.615.

[4] Cai, S., Zhou, S., Xu, C., and Gao, Q., “Dense motion estimation of particle images via a convolutional neural network,”

Experiments in Fluids, Vol. 60, No. 73, 2019. 10.1007/s00348-019-2717-2.

[5] Wang, J.-X., Wu, J.-L., and Xiao, H., “Physics-informed machine learning approach for reconstructing Reynolds stress modeling

discrepancies based on DNS data,” Phys. Rev. Fluids, Vol. 2, 2017. https://doi.org/10.1103/PhysRevFluids.2.034603.

[6] Hastie, T., Tibshirani, R., and Friedman, J., The Elements of Statistical Learning, 2nd ed., Springer, 233 Sprint Street, New

York, NY, 2008.

29

https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.jcp.2019.108910
https://www.sciencedirect.com/science/article/pii/S0021999119306151
https://www.sciencedirect.com/science/article/pii/S0021999119306151
https://doi.org/10.1017/jfm.2016.615
10.1007/s00348-019-2717-2
https://doi.org/10.1103/PhysRevFluids.2.034603


[7] Kaiser, E., Noack, B. R., Cordier, L., Spohn, A., Segond, M., Abel, M., Daviller, G., Östh, J., Krajnović, S., and

Niven, R. K., “Cluster-based reduced-order modelling of a mixing layer,” J. Fluid Mech., Vol. 754, 2014, pp. 365–414.

https://doi.org/10.1017/jfm.2014.355.

[8] Gopalakrishnan Meena, M., Nair, A. G., and Taira, K., “Network community-based model reduction for vortical flows,” Physical

Review E, Vol. 97, 2018. https://doi.org/10.1103/PhysRevE.97.063103.

[9] Hadjighasem, A., Karrasch, D., Teramoto, H., and Haller, G., “Spectral-clustering approach to Lagrangian vortex detection,”

Physical Review E, Vol. 93, 2016. https://doi.org/10.1103/PhysRevE.93.063107.

[10] Baker, L., Frankel, A., Mani, A., and Coletti, F., “Coherent clusters of intertial particles in homogeneous turbulence,” J. Fluid

Mech., Vol. 833, 2017, pp. 364–398. https://doi.org/10.1017/jfm.2017.700.

[11] Murayama, S., Kinugawa, J., Tokuda, I. T., and Gotoda, H., “Characterization and detection of thermoacoustic combusion

oscillations based on statistical complexity and complex-network theory,” Physical Review E, Vol. 97, 2018. https://doi.org/10.

1103/PhysRevE.97.022223.

[12] Nair, A. G., Yeh, C.-A., Kaiser, E., Noack, B. R., Brunton, S. L., and Taira, K., “Cluster-based feedback control of turbulent

post-stall separated flows,” J. Fluid Mech., Vol. 875, 2019, pp. 345–375. https://doi.org/10.1017/jfm.2019.469.

[13] Ser-Giacomi, E., Rossi, V., López, C., and Hernández-García, E., “Flow networks: A characterization of geophysical fluid

transport,” Chaos, Vol. 25, 2015. https://doi.org/10.1063/1.4908231.

[14] Ali, N., Hamilton, N., Calaf, M., and Cal, R. B., “Classification of the Reynolds stress anisotropy tensor in very large

thermally stratified wind farms using colormap segmentation,” J. Renewable Sustainable Energy, Vol. 11, 2019. https:

//doi.org/10.1063/1.5113654.

[15] Callaham, J. L., Koch, J. V., Brunton, B. W., Kunz, J. N., and Brunton, S. L., “Learning dominant physical processes with

data-driven balance models,” Nature Communications, Vol. 12, 2021. https://doi.org/10.1038/s41467-021-21331-z.

[16] Wikipedia contributors, “Set cover problem — Wikipedia, The Free Encyclopedia,” https://en.wikipedia.org/w/index.php?title=

Set_cover_problem&oldid=977797135, 2020. [Online; accessed 31-October-2020].

[17] Dy, J. G., and Brodley, C. E., “Feature Selection for Unsupervised Learning,” J. of Machine Learning Research, Vol. 5, 2004,

pp. 845–889.

[18] McLachlan, G. J., and Peel, D., Finite Mixture Models, John Wiley & Sons, Inc., Hoboken, NJ, 2000.

[19] Arthur, D., and Vassilvitskii, S., “K-means++: The Advantages of Careful Seeding,” SODA ‘07: Proceedings of the Eighteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, 2007, p. 1027–1035.

[20] Schwarzl, G. E., “Estimating the dimension of a model,” Annals Statistics, Vol. 6, 1978, pp. 461–464. https://doi.org/10.1214/

aos/1176344136.

30

https://doi.org/10.1017/jfm.2014.355
https://doi.org/10.1103/PhysRevE.97.063103
https://doi.org/10.1103/PhysRevE.93.063107
https://doi.org/10.1017/jfm.2017.700
https://doi.org/10.1103/PhysRevE.97.022223
https://doi.org/10.1103/PhysRevE.97.022223
https://doi.org/10.1017/jfm.2019.469
https://doi.org/10.1063/1.4908231
https://doi.org/10.1063/1.5113654
https://doi.org/10.1063/1.5113654
https://doi.org/10.1038/s41467-021-21331-z
https://en.wikipedia.org/w/index.php?title=Set_cover_problem&oldid=977797135
https://en.wikipedia.org/w/index.php?title=Set_cover_problem&oldid=977797135
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136


[21] Barone, M. F., Ray, J., and Domino, S., “Feature selection, clustering, and prototype placement for turbulence data sets,”

SciTech 2021, AIAA 2021-1750, 2021. https://doi.org/10.2514/6.2021-1750.

[22] Zhang, D. H., Chew, Y. T., and Winoto, S. H., “Investigation of intermittency measurement methods for transitional boundary

layer flows,” Experimental Thermal and Fluid Science, Vol. 12, No. 4, 1996, pp. 433–443. https://doi.org/10.1016/0894-

1777(95)00133-6.

[23] Banerjee, S., Krahl, R., Durst, F., and Zenger, C., “Presentation of anisotropy properties of turbulence, invariants versus

eigenvalue approaches,” J. of Turbulence, Vol. 8, No. 32, 2007. https://doi.org/10.1080/14685240701506896.

[24] Tao, B., Katz, J., and Meneveau, C., “Statistical geometry of subgrid-scale stresses determined from holographic particle image

velocimetry measurements,” J. Fluid Mech., Vol. 457, 2002, pp. 35–78. https://doi.org/10.1017/S0022112001007443.

[25] Buchner, A.-J., Lozano-Durán, A., Kitsios, V., Atkinson, C., and Soria, J., “Local topology via the invariants of the velocity

gradient tensor within vortex clusters and intense Reynolds stress structures in turbulent channel flow,” 2nd Multiflow Summer

School on Turbulence, J. of Physics: Conference Series, Vol. 708, 2016. https://doi.org/10.1088/1742-6596/708/1/012005.

[26] Pope, S. B., “A more general effective-viscosity hypothesis,” J. Fluid Mech., Vol. 72, No. 2, 1975, pp. 331–340.

https://doi.org/10.1017/S0022112075003382.

[27] Schmitt, F., and Hirsch, C., “Experimental study of the constitutive equation for an axisymmetric complex turbulent

flow,” Z. Angew. Math. Mech., Vol. 80, 2000, pp. 815–825. https://doi.org/10.1002/1521-4001(200011)80:11/12<815::AID-

ZAMM815>3.0.CO;2-H.

[28] Lee, M. K., and Moser, R. D., “Direct numerical simulation of turbulent channel flow up to 𝑅𝑒𝜏 ≈ 5200,” J. Fluid Mech., Vol.

774, 2015, pp. 395–415. https://doi.org/10.1017/jfm.2015.268.

[29] Gorlé, C., Emory, M., Larsson, J., and Iaccarino, G., “Epistemic uncertainty quantification for RANS modeling of the flow over

a wavy wall,” Center for Turbulence Research Annual Research Briefs, 2012.

[30] Marquillie, M., Ehrenstein, U., and Laval, J. P., “Instability of streaks in wall turbulence with adverse pressure gradient,” J.

Fluid Mech., Vol. 681, 2011, pp. 205–240. https://doi.org/10.1017/jfm.2011.193.

[31] Emory, M., and Iaccarino, G., “Visualizing turbulence anisotropy in the spatial domain with componentality contours,” Center

for Turbulence Research Annual Research Briefs, 2014.

[32] Yuan, J., Mishra, A. A., Brereton, G., Iaccarino, G., and Vartdal, M., “Single-point structure tensors in turbulent channel flows

with smooth and wavy walls,” Phys. Fluids, Vol. 31, 2019. https://doi.org/10.1063/1.5130629.

[33] Pope, S. B., Turbulent Flows, Cambridge University Press, 2000.

[34] Meena, M. G., and Taira, K., “Identifying vortical network connectors for turbulent flow modification,” Journal of Fluid

Mechanics, Vol. 915, 2021, p. A10. 10.1017/jfm.2021.35.

31

https://doi.org/10.2514/6.2021-1750
https://doi.org/10.1016/0894-1777(95)00133-6
https://doi.org/10.1016/0894-1777(95)00133-6
https://doi.org/10.1080/14685240701506896
https://doi.org/10.1017/S0022112001007443
https://doi.org/10.1088/1742-6596/708/1/012005
https://doi.org/10.1017/S0022112075003382
https://doi.org/10.1002/1521-4001(200011)80:11/12<815::AID-ZAMM815>3.0.CO;2-H
https://doi.org/10.1002/1521-4001(200011)80:11/12<815::AID-ZAMM815>3.0.CO;2-H
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1017/jfm.2011.193
https://doi.org/10.1063/1.5130629
10.1017/jfm.2021.35


[35] Manohar, K., Brunton, B. W., Kutz, J. N., and Brunton, S. L., “Data-Driven Sparse Sensor Placement for Reconstruction:

Demonstrating the Benefits of Exploiting Known Patterns,” IEEE Control Systems Magazine, Vol. 38, No. 3, 2018, pp. 63–86.

10.1109/MCS.2018.2810460.

[36] Elhamifar, E., Sapiro, G., and Vidal, R., “See all by looking at a few: Sparse modeling for finding representative objects,” 2012

IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 1600–1607. https://doi.org/10.1109/CVPR.2012.

6247852.

[37] Esser, E., Moller, M., Osher, S., Sapiro, G., and Xin, J., “A Convex Model for Nonnegative Matrix Factorization and

Dimensionality Reduction on Physical Space,” IEEE Transactions on Image Processing, Vol. 21, No. 7, 2012, pp. 3239–3252.

https://doi.org/10.1109/TIP.2012.2190081.

[38] Tropp, J. A., “Column Subset Selection, Matrix Factorization, and Eigenvalue Optimization,” Proceedings of the 2009 Annual

ACM-SIAM Symposium on Discrete Algorithms, 2009, pp. 978–986. https://doi.org/10.1137/1.9781611973068.106, URL

https://epubs.siam.org/doi/abs/10.1137/1.9781611973068.106.

[39] Boutsidis, C., Mahoney, M. W., and Drineas, P., “An Improved Approximation Algorithm for the Column Subset Selection

Problem,” Proceedings of the 2009 Annual ACM-SIAM Symposium on Discrete Algorithms, 2009, pp. 968–977. https:

//doi.org/10.1137/1.9781611973068.105, URL https://epubs.siam.org/doi/abs/10.1137/1.9781611973068.105.

[40] Chan, T. F., “Rank revealing QR factorizations,” Linear Algebra and its Applications, Vol. 88-89, 1987, pp. 67 – 82.

https://doi.org/10.1016/0024-3795(87)90103-0, URL http://www.sciencedirect.com/science/article/pii/0024379587901030.

[41] Balzano, L., Nowak, R., and Bajwa, W., “Column subset selection with missing data,” NIPS Workshop Low-Rank Methods Large-

Scale Mach. Learn., 2010. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.9188&rep=rep1&type=pdf.

[42] Bien, J., Xu, Y., and Mahoney, M. W., “CUR from a sparse optimization viewpoint,” Proc. Adv. Neural Inf. Process. Syst., 2010.

URL http://papers.nips.cc/paper/3890-cur-from-a-sparse-optimization-viewpoint.

[43] Frey, B. J., and Dueck, D., “Clustering by Passing Messages Between Data Points,” Science, Vol. 315, No. 5814, 2007, pp.

972–976. https://doi.org/10.1126/science.1136800, URL https://science.sciencemag.org/content/315/5814/972.

[44] Elhamifar, E., Sapiro, G., and Sastry, S. S., “Dissimilarity-Based Sparse Subset Selection,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 38, No. 11, 2016, pp. 2182–2197. https://doi.org/10.1109/TPAMI.2015.2511748.

[45] Bien, J., and Tibshirani, R., “Prototype selection for interpretable classification,” Annals of Applied Statistics, Vol. 5, No. 4,

2011, pp. 2403–2424. https://doi.org/10.1214/11-AOAS495, URL https://doi.org/10.1214/11-AOAS495.

[46] Bien, J., and Tibshirani, R., protoclass: Interpretable classification with prototypes, 2013. URL https://CRAN.R-project.org/

package=protoclass, r package version 1.0.

[47] Christophe, D., and Petr, S., randtoolbox: Generating and Testing Random Numbers, 2019. R package version 1.30.0.

32

10.1109/MCS.2018.2810460
https://doi.org/10.1109/CVPR.2012.6247852
https://doi.org/10.1109/CVPR.2012.6247852
https://doi.org/10.1109/TIP.2012.2190081
https://doi.org/10.1137/1.9781611973068.106
https://epubs.siam.org/doi/abs/10.1137/1.9781611973068.106
https://doi.org/10.1137/1.9781611973068.105
https://doi.org/10.1137/1.9781611973068.105
https://epubs.siam.org/doi/abs/10.1137/1.9781611973068.105
https://doi.org/10.1016/0024-3795(87)90103-0
http://www.sciencedirect.com/science/article/pii/0024379587901030
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.9188&rep=rep1&type=pdf
http://papers.nips.cc/paper/3890-cur-from-a-sparse-optimization-viewpoint
https://doi.org/10.1126/science.1136800
https://science.sciencemag.org/content/315/5814/972
https://doi.org/10.1109/TPAMI.2015.2511748
https://doi.org/10.1214/11-AOAS495
https://doi.org/10.1214/11-AOAS495
https://CRAN.R-project.org/package=protoclass
https://CRAN.R-project.org/package=protoclass


[48] Milani, P. M., Ling, J., and Eaton, J. K., “Physical Interpretation of Machine Learning Models Applied to Film Cooling Flows,”

Journal of Turbomachinery, Vol. 141, No. 1, 2018. https://doi.org/10.1115/1.4041291, 011004.

[49] Morimoto, M., Fukami, K., Zhang, K., and Fukagata, K., “Generalization techniques of neural networks for fluid flow estimation,”

, 2020.

[50] Guastoni, L., Güemes, A., Ianiro, A., Discetti, S., Schlatter, P., Azizpour, H., and Vinuesa, R., “Convolutional-network models

to predict wall-bounded turbulence from wall quantities,” , 2020.

33

https://doi.org/10.1115/1.4041291

	Introduction
	Clustering and Feature Selection Algorithms
	Candidate Features for Turbulent Flow
	Clustering Results
	Prototype Placement
	Prototype Placement
	Prototype Placement Procedure
	Channel Flow Results
	Complex Flow Results

	Discussion
	Conclusions

