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Abstract—103 words  

To increase situational awareness and support evidence-based policy-making, we 

formulated a mathematical model for COVID-19 transmission within a regional population. This 

compartmental model accounts for quarantine, self-isolation, social distancing, a non-

exponentially distributed incubation period, asymptomatic individuals, and mild and severe 

forms of symptomatic disease. Using Bayesian inference, we have been calibrating region-

specific models daily for consistency with new reports of confirmed cases from the 15 most 

populous metropolitan statistical areas in the United States and quantifying uncertainty in 

parameter estimates and predictions of future case reports. This online learning approach allows 

for early identification of new trends despite considerable variability in case reporting.  

Text—3,500 words 

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) (1), was detected in the United States (US) in January 2020 (2). In 

February, COVID-19-caused deaths were detected (3). Thereafter, surveillance testing expanded 

nationwide (4). These and other efforts revealed community spread across the US and 

exponential growth of new COVID-19 cases throughout most of March with a doubling time of 

2 to 3 d (5), similar to that of the initial outbreak in China (6). This situation led to government 

mandates prohibiting, for example, public gatherings, as well as broad adoption of social-

distancing practices, such as working-from-home, curtailing of travel, and face mask-wearing 

(7). Although the US became a hot spot of the COVID-19 pandemic, detection of new cases 

peaked in late-April and steadily declined until mid-June (4), suggesting that mandates and social 



distancing were effective at slowing COVID-19 transmission. Attempts to quantify the impacts 

of these measures suggest substantial reduction of disease burden (8, 9). 

In mid-June and mid-September, the number of new daily cases in the US began 

increasing a second and third time (4). It is imperative that we effectively monitor ongoing 

COVID-19 transmission, so that dangerous upticks in cases can be responded to as quickly as 

possible.  

To contribute to situational awareness of COVID-19 transmission dynamics, we 

developed a mathematical model for the regional COVID-19 epidemic in each of the 15 most 

populous US metropolitan statistical areas (MSAs) (10). Each model is composed of ordinary 

differential equations (ODEs), which characterize the dynamics of various populations, including 

mixing and protected-by-social-distancing subpopulations.  

In an ongoing online-learning effort, we have been calibrating our models for regional 

COVID-19 epidemics on a daily basis for consistency with historical case reports. We have also 

been applying Bayesian methods to quantify uncertainties in predicted detection of new cases. In 

the face of variability in case detection, this approach allows for identification of new epidemic 

trends, enabling an evidence-based response by policy makers.  

Methods 

Data Used in Online Learning 

 The COVID-19 surveillance data used to parameterize models—reports of new 

confirmed cases—are obtained daily (at variable times of day) from the GitHub repository 

maintained by The New York Times newspaper (11). We aggregate county-level case counts to 



obtain case counts for each of the 15 most populous US MSAs. These MSAs encompass the 

following cities: New York City; Los Angeles; Chicago; Dallas; Houston; Washington, DC; 

Miami; Philadelphia; Atlanta; Phoenix; Boston; San Francisco; Riverside, CA; Detroit; and 

Seattle. The political entities comprising each MSA, which are almost always counties1, are 

those delineated by the federal government (10). 

Models for COVID-19 Transmission and Model Parameters 

 In ongoing work, each day, for the regional COVID-19 epidemic in each of the 15 MSAs 

of interest, we parameterize a compartmental model for consistency with all daily reports of new 

confirmed cases that are available at the time2.  

Each MSA-specific model accounts for 25 populations (Figure 1 and Appendix Figure 1). 

Infectious individuals are taken to be exposed and incubating virus (e.g., presymptomatic), 

asymptomatic while clearing virus, or symptomatic. The parameters 𝜌! and 𝜌" characterize the 

relative infectiousness of exposed and asymptomatic individuals compared to symptomatic 

individuals. Infected individuals move to quarantine with rate constant 𝑘#. Symptomatic 

individuals with mild disease quarantine themselves with rate constant 𝑗#. Social distancing is 

modeled by allowing susceptible and infectious individuals to transition between mixing and 

protected populations. The size of the protected population is determined by two parameters: 𝜆$, 

a rate constant, and 𝑝$, a steady-state population setpoint, where index 𝑖 refers to the current 

social-distancing period. The model allows for 𝑛 distinct social-distancing periods beyond an 

initial period of social distancing. Individuals in the protected population are less likely to be 

infected and less likely to transmit disease by a factor 𝑚% < 1. Within the mixing population, 

disease is transmitted with rate constant 𝛽. The model reproduces a non-exponentially distributed 



incubation period by dividing the incubation period into five sequential stages of equal mean 

duration, 1/𝑘&. Individuals in the first incubation period are taken to be non-infectious and non-

detectable as infected. A fraction of exposed individuals exiting the incubation period, 𝑓", never 

develop symptoms. The remaining individuals develop mild disease. A fraction of these 

individuals, 𝑓', progress to severe disease/hospitalization; the others recover. A fraction of 

individuals with severe disease, 𝑓(, recover; the others die. Hospitalized individuals (or at home 

with severe disease) are taken to be quarantined. Individuals leave the asymptomatic state with 

rate constant 𝑐", leave the mild disease state with rate constant 𝑐), and leave the severe 

disease/hospitalized state with rate constant 𝑐'. 

The model consists of 25 ordinary differential equations (ODEs), defined by Equations 

(1)–(22) in the Appendix. Each state variable of the model represents the size of a population. In 

addition to the 25 ODEs, we consider an auxiliary 1-parameter measurement model that relates 

state variables to expected case reporting (see Equations (23) and (24) in the Appendix) and a 

negative binomial model for variability in new case detection (see Equations (25)–(27) in the 

Appendix). The model is formulated so as to allow consideration of multiple periods of social 

distancing with distinct setpoints for the protected population size. In the model, there is always 

an initial period of social distancing. The number of additional social-distancing periods is 

indicated by 𝑛. Here, we only consider two cases: 𝑛 = 0 and 𝑛 = 1. The best value of 𝑛 is 

determined using a model selection procedure described in the Appendix.  

For 𝑛 = 0, the compartmental model and auxiliary measurement model have a total of 20 

parameters. We take six of these parameters to have adjustable values (Table 1) and 14 to have 

fixed values (Tables 2 and 3). In the Appendix, we describe each parameter and explain the fixed 

parameter settings, which are based on information in Refs. (12)–(20) and assumptions. The 



adjustable model parameters are 𝑡*, the start time of the local epidemic; 𝜎 > 𝑡*, the time at 

which social distancing begins; 𝑝*, which establishes a setpoint for the quasi-stationary fraction 

of the total population practicing social distancing; 𝜆*, which characterizes the rate of movement 

between the mixing and protected subpopulations and establishes a timescale for population-

level adoption of social-distancing practices; and 𝛽, which characterizes the rate of disease 

transmission in the absence of social distancing. The measurement-model parameter, 𝑓+, 

represents the time-averaged fraction of new cases detected. Inference of adjustable parameter 

values is based on a negative binomial likelihood function (Equation (27) in the Appendix). The 

dispersal parameter 𝑟 of the likelihood is taken to be adjustable; its value is jointly inferred with 

those of 𝑡*, 𝜎, 𝑝*, 𝜆*, 𝛽, and 𝑓+.  

For 𝑛 > 0 distinct social-distancing periods after an initial social-distancing period, the 

compartmental model has three additional adjustable parameters for each additional period of 

social distancing. For one additional period of social distancing (𝑛 = 1), the additional 

adjustable parameters are 𝜏, > 𝜎, the onset time of second-phase social-distancing; 𝑝,, the 

second-phase quasi-stationary setpoint parameter; and 𝜆,, which determines the timescale for 

transition from first- to second-phase social-distancing behavior. A second social-distancing 

period is considered by replacing 𝑝* with 𝑝, and 𝜆* with 𝜆, at time 𝑡 = 𝜏,. If adherence to 

effective social-distancing practices begins to relax at time 𝑡 = 𝜏,, then 𝑝, < 𝑝*.  

Statistical Model for Noisy Case Reporting 

The compartmental model is deterministic. We interpret the model to predict the 

expected number of new confirmed COVID-19 cases reported daily. In other words, we assume 

that the number of new cases reported over a 1-d period is a random variable and its expected 



value follows a deterministic trajectory. We further assume that day-to-day fluctuations in the 

random variable are independent and characterized by a negative binomial distribution, which 

we will denote as NB(𝑟, 𝑝). We use NB(𝑟, 𝑝) to statistically model noise in reporting (and case 

detection) because its support—the non-negative integers—is natural for populations and its 

shape is flexible enough to recapitulate an array of unimodal distributions. With these 

assumptions, we obtain a likelihood function (Equation (27) in the Appendix) taking the form of 

a product of probability mass functions of NB(𝑟, 𝑝). Formulation of a likelihood is a prerequisite 

for standard Bayesian inference3. 

Online Learning of Model Parameter Values through Bayesian Inference 

 We use Bayesian inference to learn adjustable model parameter values. Inferences are 

performed daily for each MSA of interest. In each inference, we assume a uniform prior and use 

an adaptive Markov chain Monte Carlo (MCMC) algorithm (21) to generate samples of the 

posterior distribution for the adjustable parameters. A full description of our inference procedure 

is provided in the Appendix. 

 The maximum a posteriori (MAP) estimate of a parameter value is the value of the 

parameter corresponding to the mode of its marginal posterior, where probability mass is highest. 

MAP estimates are maximum likelihood estimates because we assume a uniform prior. 

Forecasting with Quantification of Prediction Uncertainty: Bayesian Predictive Inference 

In addition to inferring parameter values, we quantify uncertainty in predicted trajectories 

of daily case reports. A predictive inference of the expected number of new cases detected on a 

given day is derived from a model by parameterizing it using a randomly chosen parameter 

posterior sample generated in MCMC sampling. The number of cases detected is then predicted 



by adding a noise term, drawn from NB(𝑟, 𝑝), where 𝑟 is set at the randomly sampled value and 

𝑝 is set using Equation (26) in the Appendix.  

For any given (1-day) surveillance period and specified settings for parameter values, a 

prediction of the compartmental model is obtained by using LSODA (22) to numerically 

integrate Equations (1)–(17) and (23) in the Appendix; the initial condition is defined by the 

inferred value of 𝑡* (Table  1) and the fixed settings for 𝑆* and 𝐼* (Tables 2 and 3). A prediction 

of the actual number of new cases detected is obtained by entering the predicted expected 

number of new cases into Equation (29) of the Appendix. 

The 95% credible interval for the predicted number of new case reports on a given day is 

the central part of the marginal predictive posterior capturing 95% of the probability mass. This 

region is bounded above by the 97.5 percentile and below by the 2.5 percentile 

Results 

The objective of our ongoing study is to detect significant new trends in new COVID-19 

cases as early as possible by 1) systematically and regularly updating mathematical models 

capturing historical trends in regional COVID-19 epidemics through Bayesian inference and 2) 

making forecasts with rigorously quantified uncertainties through Bayesian predictive inference. 

An important aspect of how we are analyzing COVID-19 data is our focus on the 

populations of US cities and their surrounding areas (i.e., MSAs) vs. the regional populations 

within other political boundaries, such as those of the US States. The boundaries of MSAs are 

defined on the basis of social and economic interactions (10), which suggests that the population 

of an MSA is likely to be more uniformly affected by the COVID-19 pandemic than, for 

example, the population of a State. In accordance with this expectation, daily reports of new 



COVID-19 cases for New York City (Figure 2, panel A) are more temporally correlated than for 

the US State of New York (Figure 2, panel B), New Jersey (Figure 2, panel C), or Pennsylvania 

(Figure 2, panel D). New York, New Jersey, and Pennsylvania are the three States encompassing 

the New York City MSA. 

For each of the 15 most populous MSAs in the US, we parameterized a compartmental 

model using MSA-specific surveillance data, namely, aggregated county-level reports indicating 

the number of new confirmed COVID-19 cases within a given MSA each day. Bayesian 

parameterization and forecasting with uncertainty quantification (UQ)—predictive inference—

were performed daily for each of the 15 MSAs.  

Results of Bayesian predictive inference are exemplified in Figure 3. Predictions are 

obtained in the form of a predictive posterior distribution. In Figure 3, the entire shaded region 

indicates the 95% credible interval of the predictive posterior as a function of time. In other 

words, this band indicates where 95% of predictions of daily case reports fall at the times 

indicated. Predictions vary because of the uncertainties in adjustable model parameter estimates, 

which are characterized quantitatively through Bayesian inference. The colors within the shaded 

band indicate other credible intervals (10%, 20%, etc.) and also the median of all predictions as a 

function of time. The dataset used in inference is the complete time series of available daily new 

case counts for the region of interest. 

Predictive inferences for all 15 MSAs of interest are shown in Figure 4. The predictions 

of Figure 4 are conditioned on the compartmental model with 𝑛 = 0. These results demonstrate 

that, for the timeframe of interest, the compartmental model with 𝑛 = 0 is capable of 



reproducing many but not all of the empirical epidemic curves for the MSAs of interest, which 

vary in shape.  

Recall that predictive inferences are made daily. In Figure 5, we show predictive 

inferences for New York City and Phoenix made over a series of progressively later dates. These 

results illustrate that accurate short-term predictions are possible but continual updating of 

parameter estimates is required to maintain accuracy. In Videos 1 and 2, daily predictions for 

New York City and Phoenix, respectively, are shown as animations. 

In practice, we find that the adjustable parameters of the compartmental model have 

identifiable values, meaning that their marginal posteriors are unimodal. This finding is 

illustrated in Figure 6, which displays a 7 × 7 matrix of 1- and 2-dimensional projections of the 

7-dimensional MCMC posterior samples underlying predictive inferences for New York City. In 

Figure 6, plots of marginal posteriors are shown on the diagonal extending from top left to 

bottom right. The other 2-dimensional plots reveal correlations between pairs of parameter 

estimates (if any). In the context of a deterministic model, the significance of identifiability is 

that, despite uncertainties in parameter estimates, we can expect predictive inferences of daily 

new-case reports to cluster around a central trajectory. The results shown in Figure 6 are 

representative. We routinely recover unimodal marginal posteriors. However, it should be noted 

that we do not have a mathematical proof of identifiability. 

How does learning the region-specific adjustable parameter values of the compartmental 

model and a subsequent predictive inference (i.e., a forecast with UQ) improve situational 

awareness? In the vast majority of cases, when we forecast with UQ, the empirical new-case 

count for the day immediately following our inference (+1), and very often for each of several 



additional days, falls within the 95% credible interval of the predictive posterior. When the 

reported number of new cases falls outside the 95% credible interval and above the 97.5% 

percentile, we interpret this event, which we will call an upward-trending rare event, to have a 

probability of 0.0275 or less assuming the model is both explanatory (i.e., satisfactorily 

consistent with historical data) and predictive of the near future. If the model is predictive of the 

near future, the probability of two consecutive rare events is far smaller, less than 0.001. Thus, 

consecutive upward-trending rare events, which we will refer to as an upward-trending anomaly, 

can be reasonably taken as a sign that the model is not in fact predictive. Indeed, an anomaly 

suggests that the rate of COVID-19 transmission has increased beyond what can be explained by 

the model. 

For New York City, anomalies are not seen, as illustrated in Figure 7, panel A. However, 

for Phoenix, there are several anomalies, which preceded rapid and sustained growth in the 

number of new cases reported per day in June (Figure 7, panel B).  

We assume that these anomalies arose from changes in behavior. Thus, to explain them, 

we allowed the compartmental model to account for a distinct second social-distancing period, 

i.e., we increased the setting for 𝑛 from 0 to 1. With this change, the number of adjustable 

parameters increases from 7 to 10. One of the new parameters is 𝜏,, the start time of the second 

social-distancing period. The other new parameters, 𝜆, and 𝑝,, replace 𝜆* and 𝑝* at time 𝑡 = 𝜏,. 

As can be seen by comparing the plots in Figure 8, panels A and B, the compartmental model 

with two social-distancing periods (Figure 8, panel B) better explains the Phoenix data than the 

compartmental model with just one social-distancing period (Figure 8, panel A)4. Furthermore, 

the MAP estimate for 𝑝, (~0.38) is less than that for 𝑝* (~0.49) (cf. panels C and D, Figure 8), 

and the marginal posteriors for these parameters are largely non-overlapping (Figure 8, panel D). 



These findings suggest that the increase in COVID-19 cases in Phoenix can indeed be explained 

by relaxation in social distancing, which is quantified by our estimates for 𝑝* and 𝑝,. The MAP 

estimate of the start time of the second period of social distancing corresponds to 24-May-20205. 

Intriguingly, 8 of the 9 anomalies noted in Figure 8, panel B occurred after this period, with the 

first of these occurring on 02-June-2020. 

We considered the hypothesis that a one-time event generating 1000’s of new infections, 

such as a mass gathering, might trigger a new upward trend in COVID-19 transmission. 

Simulations for New York City and Phoenix do not support this hypothesis (Appendix Figure 2). 

In each of these simulations, at a specified time, we moved a specified number of individuals 

from the 𝑆- (mixing susceptible) population into the 𝐸, (exposed) population and then simulated 

forward in time. Each perturbation increased disease burden, but the perturbation had minimal 

effect on the slope of the trajectory of new case detection. 

Besides Phoenix, four other MSAs have contemporaneous trends explainable by 

relaxation of social distancing (Appendix Figure 3 and Appendix Table 1). Upward-trending 

anomalies were detected for these MSAs (Appendix Figure 4, panels A–D), but not for three of 

four other MSAs having epidemic curves consistent with sustained social distancing (Appendix 

Figure 4, panels E–H). Daily predictions for the MSAs considered in Appendix Figure 4 are 

shown in Videos 3–10.  

An assessment of the overall prediction accuracy of the region-specific compartmental 

models is provided in Appendix Figure 5. 

Discussion 



Daily online learning of model parameter values from real-time surveillance data is 

feasible for mathematical models for COVID-19 transmission. Furthermore, predictive inference 

of the daily number of new cases reported is feasible for the regional COVID-19 epidemics 

occurring in multiple US metropolitan areas. Our model-based analyses are ongoing and daily 

forecasts are being disseminated (23). However, it should be noted that inferences are 

computationally expensive and the cost increases as new data become available. Thus, at some 

point, daily inferences using our methodology may become impractical. 

We have suggested how our predictive inferences can be used to identify harbingers of 

future growth in COVID-19 transmission rate. Two consecutive upward-trending rare events 

(i.e., instances where the number of new cases reported is above the upper limit of the 95% 

credible interval of the predictive posterior) seem to indicate potential for increased transmission 

in the future. This signal of future growth is perhaps especially strong when anomalies are 

accompanied by increasing prediction uncertainty, as is the case for Phoenix (Figure 7, panel B).  

We find that the June increase in rate of transmission of COVID-19 in the Phoenix 

metropolitan area can be explained by a reduction in the percentage of the population adhering to 

effective social-distancing practices6 (Figure 8, panel D), from ~49% to ~38%. Relaxation is 

inferred to have begun around 24-May-2020 (Figure 8, panel B). Contemporaneous upward 

trends in the rate of COVID-19 transmission in the Houston, Miami, San Francisco, and Seattle 

metropolitan areas can also be explained by relaxation of social distancing (Appendix Figure 3 

and Appendix Table 1). These findings are qualitatively consistent with earlier studies indicating 

that social distancing is effective at slowing the transmission of COVID-19 (7, 8), and 

encouragingly, they suggest that the future course of the pandemic is controllable, especially 



with accurate recognition of when stronger nonpharmaceutical interventions are needed to slow 

COVID-19 transmission. 

We caution that our work has several limitations. One is that trend detection is data-

driven, which means that a new trend cannot be detected until enough evidence of it has 

accumulated. The data we are using are reports of new cases, which reflect transmission 

dynamics of the past vs. current transmission dynamics. Other types of surveillance data, such as 

assays of viral RNA in wastewater samples, may permit improved situational awareness. 

Another limitation is that our inferences are based on a mathematical model associated with 

considerable structure and fixed parameter uncertainties as well as simplifications. Among the 

simplifications is the replacement of certain time-varying parameters, such as that characterizing 

testing capacity, with constants, which are assumed to provide an adequate time-averaged 

characterization. The model form is that of a deterministic compartmental model. A stochastic 

version of the model may be more appropriate if conditions change (from the current situation of 

high disease prevalence to low prevalence). Although the model is capable of reproducing 

historical data and making accurate short-term forecasts, its structure and fixed parameters are 

subject to revision as we learn more about COVID-19. In the future, results from serological 

studies and estimates of excess deaths should allow model improvements.  
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Footnotes 

1 For the metropolitan statistical areas (MSAs) of interest, the number of political units (counties 

and independent cities) comprising an MSA ranges from 2 (for the Los Angeles and Riverside 



MSAs) to 29 (for the Atlanta MSA); the median (mean) number of counties is 7 (10). The 

number of States encompassing an MSA ranges from 1 (for eight of the 15 MSAs) to 4 (for 

Philadelphia); the median (mean) number of encompassing States is 1 (2).  

2 Through mid-2020, we considered a curve-fitting model alongside the compartmental model, 

but we abandoned use of curve fitting after the MSAs of interest all experienced multiple-wave 

dynamics. The curve-fitting model is only able to generate single-peak epidemic curves. See the 

Appendix for details. 

3 It should be noted that some related methods, typified by approximate Bayesian computation 

(ABC), do not rely on a likelihood. 

4 This conclusion is supported by the Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) values we calculated for the two scenarios (Appendix Table 1). 

Although AIC and BIC are crude model-selection tools because the posteriors here are non-

normal, we deem them to be adequately discriminatory. Each strongly indicates that the model 

with two social-distancing periods is more explanatory of the data than the model with just one 

social-distancing period. 

5 The 95% credible interval places the start date within the period beginning on 20-May-2020 

and ending on 28-May-2020. 

6 Unfortunately, our study sheds no light on which social-distancing practices are effective at 

slowing COVID-19 transmission. 
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Table 1. Inferred values of the adjustable parameters of the compartmental model (𝑡*, 𝜎, 𝑝*, 𝜆*, 

and 𝛽), the auxiliary measurement model (𝑓+), and the associated statistical model for noise in 

case detection and reporting (𝑟).  

Parameter Estimate* (Units) Comment 

𝑡* 33 (d) Start of COVID-19 transmission 

Start of social distancing 

Social-distancing setpoint 

Social-distancing rate parameter 

Disease-transmission rate parameter 

Fraction of active cases reported 

Dispersal parameter of NB(𝑟, 𝑝)** 

𝜎 33 (d)  

𝑝* 0.87 

𝜆* 0.10 (/d) 

𝛽 2.0 (/d) 

𝑓+ 0.12 

𝑟 12 

*All estimates are region-specific and inference-time-dependent. Inferences are performed 

daily. Here, we report the maximum a posteriori (MAP) estimates inferred for the New York 

City MSA using all confirmed COVID-19 case-count data available in the GitHub repository 

maintained by The New York Times newspaper (11) for the period starting on 21-January-2020 

and ending on 21-June-2020 (inclusive dates). Time 𝑡 = 0 corresponds to 0000 hours on 21-

January-2020. **The probability parameter of NB(𝑟, 𝑝) is constrained, i.e., its reporting-time-

dependent value is determined by a formula, which is given by Equation (26) in the Appendix. 

 

 

 



Table 2. Estimates for the fixed parameters of the compartmental model. 

Parameter Estimate (Units) Source  

𝑆* 19,216,182*  (13)  

𝐼* 1 Assumption  

𝑛 0** Assumption   

𝑚% 0.1 Assumption  

𝜌!  1.1 Arons et al. (14)  

𝜌" 0.9 Nguyen et al. (15)  

𝑘& 0.94 (/d) Lauer et al. (12)  

𝑘# 0.0038 (/d) Assumption  

𝑗# 0.4 (/d) Assumption  

𝑓" 0.44 (16, 17)  

𝑓' 0.054 Perez-Saez et al. (18)  

𝑓(  0.79 Richardson et al. (19)  

𝑐" 0.26 (/d) Sakurai et al. (17)  

𝑐) 0.12 (/d) Wölfel et al. (20)  

𝑐' 0.17 (/d) Richardson et al. (19)  

*All estimates listed in this table are taken to apply to all regions of interest except for 𝑛, the 

number of distinct social-distancing periods that follow an initial social-distancing period, and 

𝑆*, the region-specific initial number of susceptible individuals. The value given here for 𝑆* is 

the US Census Bureau-estimated total population of the New York City metropolitan 

statistical area. **We assume  𝑛 = 0 unless stated otherwise. 

 



Table 3. Description of the fixed parameters of the compartmental model. 

Parameter Comment 

𝑆* Initial size of susceptible population1 

𝐼* Initial number of infected individuals2 

𝑛 Number of prior social-distancing periods (e.g., 0 or 1) 

𝑚% Protective effect of social distancing3 

𝜌!  Relative infectiousness of an exposed individual without symptoms 

during the incubation period4 

𝜌" Relative infectiousness of an asymptomatic individual in the immune 

clearance phase of infection4 

𝑘& Rate constant for progression through each stage of the incubation 

period5 

𝑘# Rate constant for entry into quarantine for an individual without 

symptoms 

𝑗# Rate constant for entry into quarantine for an individual with mild 

symptoms 

𝑓" Fraction of all cases that are asymptomatic 

𝑓' Fraction of all cases marked by severe disease (and hospitalization or 

isolation at home) 

𝑓(  Fraction of individuals with severe disease who eventually recover 

𝑐" Rate constant for recovery of asymptomatic individuals in the immune 

clearance phase of infection 



𝑐) Rate constant for recovery of symptomatic individuals with mild 

disease or progression to severe disease6 

𝑐' Rate constant for recovery of symptomatic individuals with severe 

disease or progression to death7 

1We assume that the initial susceptible population with a given region is the total regional 

population. 2We assume that initially there is a single infected (and symptomatic) individual. 

3This parameter defines the reduction in disease transmission attributable to the protective effects 

of social distancing. 4This parameter characterizes infectiousness relative to a symptomatic 

individual with all other factors being equal (i.e., a symptomatic individual exhibiting the same 

social-distancing behavior). 5The incubation period is divided into five stages, each of equal 

duration on average. 6In the model, after a mean waiting time of 1/𝑐), symptomatic individuals 

with mild disease are taken to either recover or progress to severe disease. 7In the model, after a 

mean waiting time of 1/𝑐', symptomatic individuals with severe disease are taken to either 

recover or die. 

 

Figure 1. Illustration of the populations and processes considered in a mechanistic 

compartmental model for the dynamics of COVID-19 transmission. The model accounts for 

susceptible individuals (𝑆), exposed individuals without symptoms in the incubation phase of 

disease (𝐸), asymptomatic individuals in the immune clearance phase of disease (𝐴), mildly ill 

symptomatic individuals (𝐼), severely ill individuals in hospital or at home (𝐻), recovered 

individuals (𝑅), and deceased individuals (𝐷). The model also accounts for social distancing, 

which establishes mixing and protected subpopulations denoted by M and P subscripts, 

respectively; quarantine driven by testing and contact tracing, which establishes quarantined 



subpopulations denoted by a Q subscript; and self-isolation spurred by symptom awareness. 

Individuals who are self-isolating because of symptoms are taken to be members of the 𝐼# 

population. The incubation period is divided into 5 stages (𝐸, through 𝐸.), which allows the 

model to reproduce an empirically determined (non-exponential) Erlang distribution of waiting 

times for the onset of symptoms after infection (12). The exposed population (consisting of 

individuals incubating virus) includes both presymptomatic and asymptomatic individuals. The 

𝐴-populations consist of true asymptomatic individuals in the immune clearance phase. The gray 

background indicates the populations that contribute to disease transmission. An auxiliary 

measurement model (Equations (23) and (24) in the Appendix) accounts for imperfect detection 

and reporting of new cases. Only symptomatic cases are assumed to be detectable in surveillance 

testing. 

 

Figure 2. Temporal correlations in surveillance data. Shown here are time-series of fractional 

(i.e., normalized) case counts. We define the fractional case count for a county on a given date to 

be the reported number of cases on that date divided by the total reported number of cases in the 

county over the entire period of interest. The panels in this figure show fractional case counts for 

(A) the 23 counties comprising the New York City metropolitan statistical area (MSA), (B) the 

62 counties comprising the State of New York, (C) the 21 counties comprising the State of New 

Jersey, and (D) the 67 counties comprising the State of Pennsylvania. Within each plot, a 

different color is used for the data points from each distinct county. As can be seen, time-series 

for the counties of the New York City MSA are more temporally correlated than for the State-

level time-series. Daily case counts for New Jersey are similar to those for New York City 

because the two populations overlap considerably: ~74% of New Jersey’s population is part of 



the New York City MSA and ~32% of the population of the New York City MSA is part of the 

State of New Jersey. Time-averaged Fano factors for the four regions are as follows: 0.0026 

(New York City), 0.021 (State of New York), 1.2 (State of New Jersey), and 0.028 (State of 

Pennsylvania). A smaller Fano factor indicates less county-to-county variability. 

 

Figure 3. Illustration of Bayesian predictive inference using daily new case counts in the New 

York Metropolitan Statistical Area. We forecast future daily reports of new COVID-19 cases 

with rigorous uncertainty quantification (UQ) through online Bayesian learning of model 

parameters. Each day, using all daily case-reporting data available up to that point, we perform 

Markov chain Monte Carlo (MCMC) sampling of the posterior distribution for a set of adjustable 

parameters. Subsampling of the posterior samples then allows us to use the relevant model to 

generate trajectories of the epidemic curve that account for both parametric and observation 

uncertainty. The entire shaded region indicates the 95% credible interval for predictions of daily 

case reports. In other words, the central 95% of all predictions lie within the shaded region. The 

color-coded bands within the shaded region indicate other credible intervals, as indicated in the 

legend. 

 

Figure 4. Bayesian predictive inferences for the 15 most populous metropolitan statistical areas 

(MSAs) in the United States. Predictions are conditioned on the compartmental model with 

structure defined by 𝑛 = 0, i.e., the simplest version of the model, which accounts for only a 

single period of social distancing. 

 



Figure 5. The necessity of online learning. (A)–(E) Shown are predictions for the New York City 

metropolitan statistical area (MSA) made over a series of progressively later dates, as indicated. 

(F)–(J) Shown are predictions for the Phoenix MSA made over a series of progressively later 

dates, as indicated. Predictive inferences, which are all conditioned on the compartmental model, 

are data-driven. Accurate short-term predictions are possible but continual updating of parameter 

estimates is required to maintain accuracy. 

 

Figure 6. Matrix of 1- and 2-dimensional projections of the 7-dimensional posterior samples 

obtained for the adjustable parameters associated with the compartmental model (𝑛 = 0) for the 

New York City metropolitan statistical area (MSA) on the basis of daily reports of new 

confirmed coronavirus disease 2019 (COVID-19) cases from 21-January-2020 to 21-June-2020 

(inclusive dates). Plots of marginal posteriors (1-dimensional projections) are shown on the 

diagonal from top left to bottom right. Other plots are 2-dimensional projections, which indicate 

how correlated pairs of parameter estimates are. Brightness indicates higher probability density. 

A compact bright area indicates absence of or relatively low correlation. An extended, 

asymmetrical bright area indicates relatively high correlation.  

 

Figure 7. Rare events and anomalies, as defined in the main text, detected in the surveillance data 

available for (A) the New York City metropolitan statistical area (MSA) and (B) the Phoenix 

MSA. Yellow arrows mark upward-trending rare events. Red arrows mark upward-trending 

anomalies.  

 



Figure 8. Predictions of the compartmental model (A) with consideration of only one period of 

social distancing (𝑛 =0) and (B) with consideration of an initial period of social distancing 

followed by a distinct period of relatively lax adherence to social-distancing practices (𝑛 = 1) 

for the Phoenix metropolitan statistical area (MSA). In panel (C), the marginal posterior for the 

social-distancing setpoint parameter 𝑝* inferred in the analysis of (A) is shown. In panel (D), the 

marginal posteriors for the social-distancing parameters 𝑝* and 𝑝, inferred in the analysis of (B) 

are shown. Model selection indicates that the two-phase model is to be preferred (Appendix 

Table 1). In this analysis, we used data available from 21-January-2020 to 18-June-2020 

(inclusive dates).  

 

 

 

 

 

 

 

 

 



Appendix Table 1. Strength-of-evidence comparison of compartmental models accounting for 

an initial social-distancing period only (𝑛 = 0) and for an initial social-distancing period 

followed by a distinct second-phase social distancing period (𝑛 = 1). 

MSA ΔAIC* ΔBIC* 𝑝*/0* (95%)** 𝑝*/0, (95%)** 𝑝,/0, (95%)** 

New York City 17 8.6 0.88 (0.85–0.90) 0.87 (0.80–0.89) 0.36 (0.11–0.83) 

Los Angeles −6.5 −15 0.45 (0.38–0.45) 0.47 (0.42–0.80) 0.38 (0.33–0.97) 

Chicago 18 9.5 0.57 (0.46–0.61) 0.52 (0.46–0.75) 0.25 (0.03–0.68) 

Dallas 18 9.4 0.52 (0.41–0.52) 0.59 (0.49–0.77) 0.41 (0.33–0.60) 

Houston 50 42 0.39 (0.34–0.45) 0.49 (0.39–0.79) 0.30 (0.20–0.56) 

Washington 1.0 −7.5 0.39 (0.30–0.47) 0.77 (0.71–0.80) 0.68 (0.63–0.76) 

Miami 75 67 0.51 (0.46–0.57) 0.92 (0.81–0.97) 0.69 (0.61–0.80) 

Philadelphia 12 3.7 0.65 (0.57–0.69) 0.55 (0.49–0.81) 0.22 (0.03–0.69) 

Atlanta 9.9 1.5 0.54 (0.41–0.52) 0.58 (0.44–0.78) 0.29 (0.06–0.63) 

Phoenix 66 58 0.43 (0.37–0.49) 0.55 (0.43–0.73) 0.34 (0.26–0.54) 

Boston −31 −39 0.36 (0.29–0.37) 0.80 (0.69–0.85) 0.18 (0.06–0.97) 

San Francisco 20 12 0.32 (0.29–0.35) 0.36 (0.34–0.74) 0.17 (0.07–0.63) 

Riverside 3.8 −4.7 0.41 (0.36–0.46) 0.43 (0.38–0.74) 0.34 (0.03–0.48) 



Detroit 5.9 −2.6 0.75 (0.60–0.78) 0.80 (0.64–0.92) 0.93 (0.14–0.97) 

Seattle 55 46 0.87 (0.75–0.90) 0.82 (0.76–0.85) 0.59 (0.48–0.68) 

*ΔAIC ≡ AIC/0* − AIC/0, and ΔBIC ≡ BIC/0* − BIC/0,, where AIC/0* and AIC/0, are the 

Aikake information criterion (AIC) (24) values calculated for the 𝑛 = 0 and 𝑛 = 1 versions of 

the compartmental model and, similarly, BIC/0* and BIC/0, are the Bayesian information 

criterion (BIC) (24) values calculated for the 𝑛 = 0 and 𝑛 = 1 versions of the compartmental 

model. There are five MSAs for which ΔAIC and ΔBIC are both greater than 10: Houston, 

Miami, Phoenix, San Francisco, and Seattle. There is one MSA for which ΔAIC and ΔBIC are 

both less than −10: Boston. **The first entry in each row of this column is the maximum a 

posteriori (MAP) estimate. The next entry, a pair of numbers within parentheses, indicates the 

95% credible interval. In this analysis, we used data available from 21-January-2020 to 26-June-

2020 (inclusive dates).  

 

 

 

 

 

 

 



Appendix Table 2. Parameters of the curve-fitting model (𝑁, 𝑡*, 𝑘, 𝜃, 𝜇&1, and 𝜎&1) and the 

associated likelihood function (𝑝 and 𝑟) used in predictive inference.  

Parameter Estimate (Units) Comment 

𝑁 470,000*  Population size 

Start of COVID-19 transmission 

Shape parameter of Γ(𝑘, 𝜃) 

Scale parameter of	Γ(𝑘, 𝜃) 

𝜇-parameter of log-normal distribution 

𝜎-parameter of log-normal distribution 

Probability parameter of NB(𝑟, 𝑝) 

Dispersal parameter of NB(𝑟, 𝑝) 

𝑡* 35* (d) 

𝑘 6.6* 

𝜃 7.9* 

𝜇&1 1.6** 

𝜎&1 0.42** 

𝑝 Constrained*** 

𝑟 4.4* 

*Estimates of the adjustable parameters (𝑁, 𝑡*, 𝑘, 𝜃, and 𝑟) are region-specific and inference-

time-dependent. Inferences are performed daily. Here, we report the maximum a posteriori 

(MAP) estimates inferred for New York City using all confirmed COVID-19 case-count data 

available in the GitHub repository maintained by The New York Times newspaper (11) for the 

period starting on 21-January-2020 and ending on 21-June-2020 (inclusive dates). Time 𝑡 = 0 

corresponds to 0000 hours on 21-January-2020. **Estimates of the fixed parameters 𝜇&1 and 

𝜎&1 are those of Lauer et al. (12). These parameter estimates define a log-normal distribution 

that reproduces the empirical distribution of waiting times for the onset of symptoms after 

infection with SARS-CoV-2. ***The value of 𝑝 is constrained, i.e., its reporting-time-

dependent value is determined by a formula, which is given by Equation (26). 

 



 

Appendix Figure 1. Detailed diagram of the populations and processes considered in the 

mechanistic compartmental model. In this illustration of the compartmental model, the labels 

attached to arrows indicate the parameters and variables that affect the rates of the processes 

represented by the arrows. There is a one-to-one correspondence between arrow labels and terms 

on the right-hand sides of Equations (1)–(17). The diagram is otherwise the same as that shown 

in Figure 2. 

 

Appendix Figure 2. We evaluated the potential impact of a one-time mass gathering that causes 

50,000 and 5,000 individuals to become newly infected on 30-May-2020 in (A) the New York 

City metropolitan statistical area (MSA) and (B) the Phoenix MSA, respectively. As can be seen, 

such an event will step the epidemic curve up without significantly changing the slope of the 

curve. According to the model, the trend in the slope of the curve is determined by the sustained 

level of adherence to effective social-distancing practices. We conclude that the recent trajectory 

of the epidemic curve of the Phoenix MSA cannot be explained by a one-time mass gathering.  

 

Appendix Figure 3. Predictive inferences conditioned on the compartmental model with either 

(A)–(E) one or (F)–(J) two distinct social-distancing periods. We consider five metropolitan 

statistical areas (MSAs), which according to Appendix Table 1, have epidemic curves better 

explained by the compartmental model with two social-distancing periods than by the 

compartmental model with just one. Maximum a posteriori (MAP) estimates for 𝜏, indicate that 

the second social distancing period began on 27-May-2020 for Houston, 19-April-2020 for 



Miami, 24-May-2020 for Phoenix, 12-June-2020 for San Francisco, and 07-June-2020 for 

Seattle. In this analysis, we used the data available from 21-January-2020 to 26-June-2020 

(inclusive dates). 

 

Appendix Figure 4. Comparison of next-day predictions and the corresponding empirical case 

reports for (A) Houston, (B) Miami, (C) San Francisco, (D) Seattle, (E) Los Angeles, (F) 

Chicago, (G) Dallas, and (H) Washington, DC. Like Phoenix, Houston, Miami, San Francisco, 

and Seattle have epidemic curves that are better explained by the compartmental model with two 

social-distancing periods vs. just one (Appendix Table 1). Upward-trending anomalies were 

detected for each of these MSAs. Los Angeles, Chicago, Dallas, and Washington, DC have 

epidemic curves better explained by the compartmental model with just one social-distancing 

period vs. two (Appendix Table 1). Upward-trending anomalies were not detected for three of 

these MSAs. The exception is Chicago. Two anomalies were detected for Chicago near the end 

of the period considered in the analysis.   

 

Appendix Figure 5. Out-of-sample validation of forecasting accuracy. For region-specific 

compartmental models with values of 𝑛 determined by model selection, the empirical coverage 

was calculated for predicted detection of new cases 1, 4 and 7 days into the future (as indicated 

in the legend) over the period from 14-July-2020 to 9-September-2020. Coverage indicates the 

frequency at which the actual future number of new cases detected fell below the indicated 

predicted quantile. To create this figure, we combined the predictions and out-of-sample new-



cases-detected data for the 15 metropolitan statistical areas (MSAs). The dotted line indicates the 

coverage expected for unbiased prediction. 

 

Appendix Figure 6. Comparison of forecasting accuracy of deterministic and stochastic versions 

of the compartmental model for the New York City (NYC) metropolitan statistical area (MSA). 

In the three leftmost panels, credible intervals of predictive posteriors are shown. Inferences are 

based on the NYC data shown in the plots. At far left, results conditioned on the deterministic 

(ordinary differential equation, ODE) compartmental model are shown. In the two center plots, 

we show results conditioned on a comparable stochastic differential equation (SDE) model. Two 

realizations of the inference procedure were performed. In the rightmost panel, we show in-

sample validation results. As can be seen, the ODE is less biased than the SDE model. 

 

Appendix Figure 7. Comparison of forecasting accuracy of deterministic and stochastic versions 

of the compartmental model for the Miami metropolitan statistical area (MSA). In the three 

leftmost panels, credible intervals of predictive posteriors are shown. Inferences are based on the 

Miami data shown in the plots. At far left, results conditioned on the deterministic (ordinary 

differential equation, ODE) compartmental model are shown. In the two center plots, we show 

results conditioned on a comparable stochastic differential equation (SDE) model. Two 

realizations of the inference procedure were performed. In the rightmost panel, we show in-

sample validation results. As can be seen, the ODE is less biased than the SDE model.  

 



Appendix Figure 8. Illustration of shapes that can be produced by the fitting function that we 

used to capture trends in regional COVID-19 epidemic curves. The curve-fitting model is 

formulated such that it has the capacity to reproduce the shape of an epidemic curve having two 

timescales. 

 

Appendix Figure 9. Bayesian predictive inferences for the 15 most populous metropolitan 

statistical areas (MSAs) in the United States. Predictions are conditioned on the curve-fitting 

model.  

 

Video 1. An animation showing daily predictive inferences made for the New York City 

metropolitan statistical area from 19-Mar-2020 to 6-Jun-2020 (inclusive dates). Inferences are 

conditioned on the single-phase (𝑛 = 0) compartmental model. 

 

Video 2. An animation showing daily predictive inferences made for the Phoenix metropolitan 

statistical area from 30-Mar-2020 to 17-Jun-2020 (inclusive dates). Inferences are conditioned on 

the single-phase (𝑛 = 0) compartmental model. 

 

Video 3. An animation showing daily predictive inferences made for the Houston metropolitan 

statistical area from 30-Mar-2020 to 17-Jun-2020 (inclusive dates). Inferences are conditioned on 

the single-phase (𝑛 = 0) compartmental model. 



 

Video 4. An animation showing daily predictive inferences made for the Miami metropolitan 

statistical area from 30-Mar-2020 to 17-Jun-2020 (inclusive dates). Inferences are conditioned on 

the single-phase (𝑛 = 0) compartmental model. 

 

Video 5. An animation showing daily predictive inferences made for the San Francisco 

metropolitan statistical area from 30-Mar-2020 to 17-Jun-2020 (inclusive dates). Inferences are 

conditioned on the single-phase (𝑛 = 0) compartmental model. 

 

Video 6. An animation showing daily predictive inferences made for the Seattle metropolitan 

statistical area from 30-Mar-2020 to 17-Jun-2020 (inclusive dates). Inferences are conditioned on 

the single-phase (𝑛 = 0) compartmental model. 

 

Video 7. An animation showing daily predictive inferences made for the Los Angeles 

metropolitan statistical area from 30-Mar-2020 to 17-Jun-2020 (inclusive dates). Inferences are 

conditioned on the single-phase (𝑛 = 0) compartmental model. 

 

Video 8. An animation showing daily predictive inferences made for the Chicago metropolitan 

statistical area from 30-Mar-2020 to 17-Jun-2020 (inclusive dates). Inferences are conditioned on 

the single-phase (𝑛 = 0) compartmental model. 



 

Video 9. An animation showing daily predictive inferences made for the Dallas metropolitan 

statistical area from 30-Mar-2020 to 17-Jun-2020 (inclusive dates). Inferences are conditioned on 

the single-phase (𝑛 = 0) compartmental model. 

 

Video 10. An animation showing daily predictive inferences made for the Washington, DC 

metropolitan statistical area from 30-Mar-2020 to 17-Jun-2020 (inclusive dates). Inferences are 

conditioned on the single-phase (𝑛 = 0) compartmental model. 
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Figure 1. Illustration of shapes that can be produced by the fitting function that we are using to capture 
trends in regional COVID-19 epidemic curves. The curve-fitting model is formulated such that it has the 

capacity to reproduce the shape of an epidemic curve having two timescales. 
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Figure 2. Illustration of the populations and processes considered in a mechanistic compartmental model for 
the dynamics of COVID-19 transmission. The model accounts for susceptible (S), exposed (E), 

asymptomatic (A), symptomatic (I), hospitalized (H), recovered (R), and deceased (D) populations. It also 
accounts for social distancing, which establishes mixing and protected subpopulations, quarantine driven by 

testing and contact tracing, and self-isolation spurred by symptom awareness. The incubation period is 
divided into 5 stages, which allows the model to reproduce an empirically determined Erlang distribution of 

waiting times for the onset of symptoms after infection (12). The exposed population (consisting of 
individuals incubating virus) includes presymptomatic and asymptomatic individuals. The A-populations 

consist of true asymptomatic individuals in the immune clearance phase. The gray background indicates the 
populations that contribute to disease transmission. An auxiliary measurement model (Equations (27) and 

(28) in the Appendix) accounts for imperfect detection and reporting of new cases. 

Page 37 of 135

ScholarOne support: (434) 964-4100

Emerging Infectious Diseases



Peer Review

 

Figure 3. Temporal correlations in surveillance data. Shown here are time-series of fractional (i.e., 
normalized) case counts. We define the fractional case count for a county on a given date to be the reported 

number of cases on that date divided by the total reported number of cases in the county over the entire 
period of interest. The panels in this figure show fractional case counts for (A) the 23 counties comprising 

the New York City metropolitan statistical area (MSA), (B) the 62 counties comprising the State of New York, 
(C) the 21 counties comprising the State of New Jersey, and (D) the 67 counties comprising the State of 

Pennsylvania. Within each plot, a different color is used for the data points from each distinct county. As can 
be seen, time-series for the counties of the New York City MSA are more temporally correlated than for the 
State-level time-series. Daily case counts for New Jersey are similar to those for New York City because the 
two populations overlap considerably: ~74% of New Jersey’s population is part of the New York City MSA 

and ~32% of the population of the New York City MSA is part of the State of New Jersey. 
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Figure 3. Temporal correlations in surveillance data. Shown here are time-series of fractional (i.e., 
normalized) case counts. We define the fractional case count for a county on a given date to be the reported 

number of cases on that date divided by the total reported number of cases in the county over the entire 
period of interest. The panels in this figure show fractional case counts for (A) the 23 counties comprising 

the New York City metropolitan statistical area (MSA), (B) the 62 counties comprising the State of New York, 
(C) the 21 counties comprising the State of New Jersey, and (D) the 67 counties comprising the State of 

Pennsylvania. Within each plot, a different color is used for the data points from each distinct county. As can 
be seen, time-series for the counties of the New York City MSA are more temporally correlated than for the 
State-level time-series. Daily case counts for New Jersey are similar to those for New York City because the 
two populations overlap considerably: ~74% of New Jersey’s population is part of the New York City MSA 

and ~32% of the population of the New York City MSA is part of the State of New Jersey. 
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Figure 3. Temporal correlations in surveillance data. Shown here are time-series of fractional (i.e., 
normalized) case counts. We define the fractional case count for a county on a given date to be the reported 

number of cases on that date divided by the total reported number of cases in the county over the entire 
period of interest. The panels in this figure show fractional case counts for (A) the 23 counties comprising 

the New York City metropolitan statistical area (MSA), (B) the 62 counties comprising the State of New York, 
(C) the 21 counties comprising the State of New Jersey, and (D) the 67 counties comprising the State of 

Pennsylvania. Within each plot, a different color is used for the data points from each distinct county. As can 
be seen, time-series for the counties of the New York City MSA are more temporally correlated than for the 
State-level time-series. Daily case counts for New Jersey are similar to those for New York City because the 
two populations overlap considerably: ~74% of New Jersey’s population is part of the New York City MSA 

and ~32% of the population of the New York City MSA is part of the State of New Jersey. 
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Figure 4. Illustration of Bayesian predictive inference. We forecast future daily reports of new COVID-19 
cases with rigorous uncertainty quantification (UQ) through online Bayesian learning of model parameters. 

Each day, using all daily case-reporting data available up to that point, we perform Markov chain Monte 
Carlo (MCMC) sampling of the posterior distribution for a set of adjustable parameters. Subsampling of the 
posterior samples then allows us to use the relevant model to generate trajectories of the epidemic curve 
that account for both parametric and observation uncertainty. The entire shaded region indicates the 95% 
credible interval for predictions of daily case reports. In other words, the central 95% of all predictions lie 
within the shaded region. The color-coded bands within the shaded region indicate other credible intervals, 

as indicated in the legend. 
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Figure 5. Bayesian predictive inferences for the 15 most populous metropolitan statistical areas (MSAs) in 
the United States. Predictions are conditioned on the curve-fitting model. 
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Figure 6. Bayesian predictive inferences for the 15 most populous metropolitan statistical areas (MSAs) in 
the United States. Predictions are conditioned on the compartmental model. 
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Figure 7. The necessity of online learning. (A)–(E) Shown are predictions for the New York City metropolitan 
statistical area (MSA) made over a series of progressively later dates, as indicated. (F)–(J) Shown are 

predictions for the Phoenix MSA made over a series of progressively later dates, as indicated. Predictive 
inferences, which are all conditioned on the compartmental model, are data-driven. Accurate short-term 
predictions are possible but continual updating of parameter estimates is required to maintain accuracy. 
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Figure 8. Matrix of 1- and 2-dimensional projections of the 7-dimensional posterior samples obtained for the 
adjustable parameters associated with the compartmental model for the New York City metropolitan 

statistical area (MSA) on the basis of daily reports of new confirmed coronavirus disease 2019 (COVID-19) 
cases from 21-January-2020 to 21-June-2020 (inclusive dates). Plots of marginal posteriors (1-dimensional 

projections) are shown on the diagonal from top left to bottom right. Other plots are 2-dimensional 
projections, which indicate how correlated pairs of parameter estimates are. Brightness indicates higher 

probability density. A compact bright area indicates absence of or relatively low correlation. An extended, 
asymmetrical bright area indicates relatively high correlation. 
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Figure 9. Rare events and anomalies, as defined in the main text, detected in the surveillance data available 
for (A) the New York City metropolitan statistical area (MSA) and (B) the Phoenix MSA. Yellow arrows mark 

upward-trending rare events. Red arrows mark upward-trending anomalies. 
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Figure 10. Predictions of the compartmental model (A) with consideration of only one period of social 
distancing (n=0) and (B) with consideration of an initial period of social distancing followed by a distinct 

period of relatively lax adherence to social-distancing practices (n=1) for the Phoenix metropolitan statistical 
area (MSA). In panel (C), the marginal posterior for the social-distancing setpoint parameter p_0 inferred in 
the analysis of (A) is shown. In panel (D), the marginal posteriors for the social-distancing parameters p_0 
and p_1 inferred in the analysis of (B) are shown. Model selection indicates that the two-phase model is to 

be preferred (Appendix Table 1). In this analysis, we used data available from 21-January-2020 to 18-June-
2020 (inclusive dates). 
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Appendix Text 

Full Description of the Mechanistic Compartmental Model 

 The compartmental model, which is illustrated in Appendix Figure 1, consists of the 

following 25 ordinary differential equations (ODEs): 

𝑑𝑆!
𝑑𝑡 = −𝛽 '

𝑆!
𝑆"
( (𝜙!(𝑡, 𝜌) + 𝑚#𝜙$(𝑡, 𝜌)) − 𝑈%(𝑡)Λ&(𝑡)[𝑃&(𝑡)𝑆! − (1 − 𝑃&(𝑡))𝑆$] 
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(14) 

𝑑𝐻
𝑑𝑡 = 𝑓4𝑐3@𝐼! + 𝐼$ + 𝐼/A − 𝑐4𝐻 (15) 

𝑑𝐷
𝑑𝑡 =

(1 − 𝑓5)𝑐4𝐻 (16) 

𝑑𝑅
𝑑𝑡 = 𝑐1@𝐴! + 𝐴$ + 𝐴/A + (1 − 𝑓4)𝑐3@𝐼! + 𝐼$ + 𝐼/A + 𝑓5𝑐4𝐻 (17) 

where 𝛽, 𝑆", 𝑚#, 𝑘), 𝑘/, 𝑗/, 𝑓1, 𝑓4, 𝑓5, 𝑐1, 𝑐3, and 𝑐4 are positive-valued time-invariant 

parameters. (It should be noted that parameter names are unique but only within the namespace 



of a given model.) Each ODE in Equations (1)–(17) defines the time-rate of change of a 

(sub)population, i.e., the time-rate of change of a state variable. There are 25 state variables, one 

for each ODE. Note that Equations (5), (6), and (8) define 4, 4, and 3 ODEs of the model, 

respectively. It should be noted that the model does not include generation of new cases by 

travelers. 

The initial condition is taken to be 𝑆!(𝑡") = 𝑆", 𝐼!(𝑡") = 𝐼" = 1, with all other 

populations (𝑆$, 𝐸',! , … , 𝐸2,!, 𝐸',$ , … , 𝐸2,$, 𝐸0,/ , … , 𝐸2,/, 𝐴!, 𝐴$, 𝐴/, 𝐼$, 𝐼/ , 𝐻, 𝐷, and 𝑅) equal 

to 0. The parameter 𝑆" denotes the total region-specific population size. Thus, we assume that the 

entire population is susceptible at the start of the epidemic at time 𝑡 = 𝑡">0, where time 𝑡 = 0 is 

0000 hours on 21-January-2020. The parameter 𝐼", which we always take to be 1, denotes the 

number of infectious symptomatic individuals at the start of the regional epidemic. 

Subscripts attached to state variables are used to denote subpopulations. The subscripts 𝑀 

and 𝑃 are attached to variables representing mixing and protected populations, respectively. For 

example, the variables 𝑆! and 𝑆$ denote the population sizes of mixing and protected individuals 

who are susceptible to infection. Individuals in a protected population practice social distancing; 

individuals in a mixing population do not. The approach that we have taken to model social 

distancing is similar to that of Anderson et al. (24). 

The incubation period is divided into five stages. The numerical subscripts 1, 2, 3, 4, and 

5 attached to 𝐸 variables indicate progression through these five stages. Exposed individuals in 

the incubation period, except for those in the first stage, are taken to be infectious. They are also 

taken to lack symptoms. They are either presymptomatic (i.e., individuals who will later develop 

symptoms) or asymptomatic (i.e., individuals who will never develop symptoms).  



The subscript 𝑄 is attached to variables representing populations of quarantined 

individuals. The state variable 𝐼/ is a special case; it accounts for symptomatic individuals who 

are quarantined as well as individuals who are self-isolating because of symptom awareness.  

The parameter 𝑘/ characterizes the rate at which infected individuals move into 

quarantine because of testing and contact tracing. The parameter 𝑗/ characterizes the rate at 

which symptomatic individuals self-isolate because of symptom awareness. We recognize that 

susceptible individuals may enter quarantine (through contact tracing) but we assume that the 

size of the quarantined population is negligible compared to that of the total susceptible 

population and that susceptible individuals entering quarantine leave quarantine as susceptible 

individuals. 

The parameters 𝛽 and 𝑚# < 1 characterize transmission of disease: 𝛽 characterizes the 

rate of transmission attributable to contacts between two mixing individuals, 𝑚#𝛽 characterizes 

the rate of transmission attributable to contacts between one mixing and one protected individual, 

and 𝑚#
0𝛽 characterizes the rate of transmission attributable to contacts between two protected 

individuals. Infectious individuals taken to contribute to COVID-19 transmission include those 

in the following pools: 𝐸0,! , … , 𝐸2,! and 𝐸0,$ , … , 𝐸2,$, 𝐴! and 𝐴$, and 𝐼! and 𝐼$. Recall that we 

do not consider individuals in the first stage of the incubation period (i.e., individuals in 𝐸' 

pools) to be infectious. The assumption is that these individuals are not shedding enough virus to 

be infectious (or detectable in surveillance testing). In experiments with an animal model (the 

golden hamster), infectious virus could be recovered from animals 2 d post-inoculation (25). 

Moreover, it was found that SARS-CoV-2 could be detected in contacts of infected animals just 

1 d post-contact (25). Kucirka et al. (26) estimated that the false negative rate for nasal samples 



from exposed individuals tested for SARS-CoV-2 infection an estimated 1 d after exposure is 

100% but less than 100% thereafter. Thus, it seems reasonable to assume that exposed 

individuals beyond the first incubation stage, which has a duration of approximately 1 d (based 

on our estimate for 𝑘), which is discussed below), are infectious and may be detected as such. 

The variables 𝐸',! , … , 𝐸2,! and 𝐸',$ , … , 𝐸2,$ denote the population sizes of mixing and 

protected exposed individuals in the five stages of the incubation period. The variables 

𝐸0,/ , … , 𝐸2,/ denote the population sizes of quarantined exposed individuals in the five stages. 

There is no 𝐸',/ population, as we assume that individuals in the first stage of the incubation 

period are unlikely to test positive for SARS-CoV-2 or to be reached in contact tracing efforts 

before leaving the 𝐸' state. The parameter 𝑘) characterizes disease progression, from one stage 

of the incubation period to the next and ultimately to an immune clearance phase. Individuals 

leaving the 𝐸2 pools enter the immune clearance phase, meaning that they become eligible for 

recovery. An individual leaving an 𝐸2 pool with symptom onset enters an I pool, whereas an 

individual leaving an 𝐸2 pool without symptom onset enters an A pool. Individuals in 𝐼 pools are 

considered to have mild disease (with the possibility to progress to severe disease). 

The dynamics of social distancing are characterized by three step functions (i.e., 

piecewise constant functions having only finitely many pieces): 𝑈%, Λ&, and 𝑃&. The subscripts 

attached to these functions denote times: 𝜎 is a particular time, whereas 𝜏 is a set of times, as 

discussed later. The value of 𝑈% switches from 0 to 1 at time 𝑡 = 𝜎 > 𝑡", the start of an initial 

social-distancing period. As discussed later, the function Λ6 defines a timescale for change in 

social-distancing practices for one or more distinct periods of social distancing, and the function 

𝑃& establishes a setpoint for the fraction of the total population of susceptible and infectious, non-



quarantined/non-self-isolated/non-hospitalized individuals adhering to social-distancing practices 

for one or more distinct periods of social distancing.  

The parameter 𝑓1 denotes the fraction of infected individuals who never develop 

symptoms (i.e., the fraction of all cases that are asymptomatic). The variables 𝐴! and 𝐴$ denote 

the sizes of the populations of mixing and protected individuals who have been infected, 

progressed through the incubation period, are currently in the immune clearance phase, and will 

never develop symptoms. The parameter 𝑐1 characterizes the rate at which asymptomatic 

individuals recover. It should be noted that the duration of the immune clearance phase for 

asymptomatic individuals, 𝑡̂1, is distributed according to 𝑒.7&,8&. The mean value of 𝑡̂1 is 1/𝑐1. 

The variable 𝑅 tracks recoveries of asymptomatic individuals, symptomatic individuals 

with mild disease, and symptomatic (hospitalized) individuals with severe disease. All 

individuals who recover are assumed to have immunity. This assumption is supported by the 

finding that SARS-CoV-2 infection elicits functional T cell memory (27). Moreover, neutralizing 

antibodies evidently protect against SARS-CoV-2 infection (28). Reinfection has been detected 

(29) but the importance of this apparently rare phenomenon has yet to be determined. 

The variables 𝐼! and 𝐼$ denote the sizes of the populations of mixing and protected 

symptomatic individuals with mild disease. The parameter 𝑐3 characterizes the rate at which 

symptomatic individuals with mild disease recover or progress to severe disease. The parameter 

𝑓4 is the fraction of symptomatic individuals who progress to severe disease requiring 

hospitalization. As a simplification, we assume that all individuals with severe disease are 

hospitalized (or isolated at home in an equivalent state). It should be noted that the duration of 

the immune clearance phase for symptomatic individuals who never progress to severe disease, 



𝑡̂3, is distributed according to 𝑒.7',8'. The mean value of 𝑡̂3 is 1/𝑐3. As is implicit in our definition 

of 𝑐3, the time required for progression from mild to severe disease is taken to be the same as the 

recovery time of symptomatic individuals who experience only mild disease. 

The variable 𝐻 represents the population of hospitalized/severely ill individuals. In the 

model, these individuals are taken to be quarantined. Thus, the model does not consider 

nosocomial transmission. The parameter 𝑓5 denotes the fraction of hospitalized/severely ill 

individuals who recover. The parameter 𝑐4 characterizes the hospital discharge rate, i.e., the rate 

at which hospitalized individuals with severe disease either recover or die. The variable 𝐷 tracks 

deaths. Many deaths occur outside a hospital setting (30). As a simplification, the model does not 

distinguish between deaths at home and deaths in hospital. It should be noted that the mean 

duration of the immune clearance phase for hospitalized/severely ill individuals who recover, 𝑡̂4, 

is distributed according to @𝑒.7',8( − 𝑒.7(,8(A𝑐3𝑐4/(𝑐4 − 𝑐3), assuming 𝑐4 > 𝑐3. The mean value 

of 𝑡̂4 is 1/𝑐3 + 1/𝑐4. As is implicit in our definition of 𝑐4, the time required for progression 

from severe disease to death is taken to be the same as the recovery time of hospitalized/severely 

ill individuals. 

The time-dependent terms 𝜙!(𝑡, 𝜌) and 𝜙$(𝑡, 𝜌) appearing in Equations (1)–(4) 

represent the effective population sizes of infectious individuals in the mixing and protected 

subpopulations, respectively. These quantities are defined as follows: 

𝜙!(𝑡, 𝜌) ≡ 𝐼! + 𝜌+@𝐸0,! + 𝐸9,! + 𝐸:,! + 𝐸2,!A + 𝜌1𝐴! (18) 

𝜙$(𝑡, 𝜌) ≡ 𝐼$ + 𝜌+@𝐸0,$ + 𝐸9,$ + 𝐸:,$ + 𝐸2,$A + 𝜌1𝐴$ (19) 



where 𝜌 = (𝜌+ , 𝜌1), 𝜌+ is a constant characterizing the relative infectiousness of presymptomatic 

individuals compared to symptomatic individuals (with the same behaviors) and 𝜌1 is a constant 

characterizing the relative infectiousness of asymptomatic individuals compared to symptomatic 

individuals (with the same behaviors). Recall that infectiousness due to social-distancing 

behaviors is captured in Equations (1) and (2). Further recall that we assume that individuals in 

the first stage of the incubation period (i.e., individuals in either the 𝐸',! or 𝐸',$ population) are 

not infectious. We also assume that the individuals in these populations cannot be quarantined 

until after transitioning to the 𝐸0,! or 𝐸0,$ population (because they are assumed to test negative 

and because contact tracing is assumed to be too slow to catch individuals in the transient first 

stage of incubation). Recall that individuals in the 𝐴!, 𝐴$, and 𝐴/ populations are defined as 

individuals who became infected, passed through all five stages of the incubation period, are 

currently in the immune clearance phase, and will never develop symptoms. Thus, individuals in 

the exposed 𝐸 populations include both presymptomatic individuals (i.e., individuals who will 

enter the 𝐼 populations) and asymptomatic individuals (i.e., individuals who will enter the 𝐴 

populations). 

 The time-dependent terms 𝑈%(t), 𝑃&(𝑡), and Λ&(𝑡) appearing in Equations (1)–(6), 

Equations (9) and (10) and Equations (12) and (13) are step functions defined as follows: 

𝑈%(𝑡) = V	0 𝑡 < 𝜎
1 𝑡 ≥ 𝜎	 

(20) 

𝑃&(𝑡) = X

𝑝" 𝜎 ≤ 𝑡 < 𝜏'
𝑝' 𝜏' ≤ 𝑡 < 𝜏0
⋮ ⋮
𝑝; 𝜏; ≤ 𝑡 < ∞

 

(21) 



Λ&(𝑡) = X

𝜆" 𝜎 ≤ 𝑡 < 𝜏'
𝜆' 𝜏' ≤ 𝑡 < 𝜏0
⋮ ⋮
𝜆; 𝜏; ≤ 𝑡 < ∞

 

(22) 

where 𝜎 > 𝑡" is the time at which widespread social distancing initially begins, the integer 𝑛 ≥ 0 

is the number of societal (major/widespread) shifts in social-distancing practices after the initial 

onset of social distancing, each 𝑝- < 1 is a parameter characterizing the quasi-stationary fraction 

of susceptible individuals practicing social distancing during the (𝑖 + 1)th period of social 

distancing, each 𝜆- is a constant defining a timescale for change in social-distancing practices 

during the (𝑖 + 1)th period of social distancing, 𝜏 = {𝜏", … , 𝜏;<'}, 𝜏" ≡ 𝜎, 𝜏;<' ≡ ∞, and 

𝜏-<' > 𝜏- for 𝑖 = 0,… , 𝑛 − 1. The value of 𝑃&(𝑡)	defines a setpoint for the quasi-stationary size 

of the protected population of susceptible individuals: 𝑃&(𝑡) 	× 	100% of the total susceptible 

population. The value of  Λ&(𝑡) determines how quickly the setpoint is reached. As indicated in 

Equations (21) and (22), we only consider step-changes in the values of 𝑃&(𝑡) and Λ&(𝑡),  a 

simplification. Thus, for a period during which social-distancing practices are intensifying 

(relaxing), we increase (decrease) the value of 𝑃&(𝑡) at the start of the period in a step-change 

and then hold it constant until the next step-change, if any. It should be noted that 𝜎 is the start 

time of the initial social-distancing period. The time at which the initial social-distancing 

setpoint, determined by 𝑝", is reached occurs later and is determined by 𝜆". We caution the 

reader not to confuse the setpoint parameters 𝑝", 𝑝', … , 𝑝; with the distributional parameter 𝑝 in 

the negative binomial distribution NB(𝑟, 𝑝). 

Full Description of the Auxiliary Measurement Model 

 To determine how consistent a particular parameterization of the compartmental model is 

with available COVID-19 surveillance data, we need to define a quantity—a model output—that 



corresponds to daily reports of the number of new confirmed COVID-19 cases. Case reporting 

by public health officials is typically daily. We expect that the vast majority of cases are detected 

because of symptom-driven (vs. random) testing and/or presentation in a clinical setting. 

Accordingly, as a simplification, we assume that individuals detected in surveillance are 

symptomatic. To define a model output comparable to the number of new cases reported on a 

given day, we start by considering the predicted cumulative number of presymptomatic 

individuals who become symptomatic while evading quarantine (because of contact tracing) until 

at least the onset of symptoms, which we will denote as 𝐶=. According to the model, the time rate 

of change of 𝐶= is given by the following equation: 

𝑑𝐶=
𝑑𝑡 = (1 − 𝑓1)𝑘)(𝐸2,! + 𝐸2,$) 

(23) 

The right-hand side of this equation gives the rate at which non-quarantined presymptomatic 

individuals exit the incubation period and enter the immune clearance phase, in which they are 

symptomatic and therefore taken to be detectable in local surveillance efforts. We assume that 

symptomatic individuals in quarantine make a negligible contribution to detection of new cases. 

Equation (23) and the ODEs of the compartmental model form a coupled system of 

equations, which can be numerically integrated to obtain trajectories for the state variables and 

𝐶=, the expected cumulative number of symptomatic cases. From the trajectory for 𝐶=, we obtain 

a prediction for 𝐼(𝑡- , 𝑡-<'), the expected number of new COVID-19 cases reported on a given 

calendar date 𝒟>, from the following equation:  

𝐼(𝑡- , 𝑡-<') = 𝑓?[𝐶=(𝑡-<') − 𝐶=(𝑡-)] (24) 



where 𝑓? is taken to be an adjustable region-specific parameter characterizing the time-averaged 

fraction of symptomatic cases detected among non-quarantined and hospitalized individuals. 

Equation (24) completes the formulation of our measurement model. 𝐼(𝑡- , 𝑡-<') is the model 

output that we compare to 𝛿𝐶-, the number of new cases reported on calendar date 𝒟>. 

The Adjustable and Fixed Parameters of the Compartmental Model and Auxiliary Measurement 

Model 

 The parameters of the compartmental model (Equations (1)–(22)) and the auxiliary 

measurement model (Equations (23) and (24)) are taken to have either adjustable or fixed values. 

The adjustable parameter values are estimated (daily) through Bayesian inference on the basis of 

surveillance data (i.e., reports of newly detected cases). The fixed parameter values are held 

constant during inference; they are based on non-surveillance data and/or assumptions, which are 

discussed in the section below. In this section, we simply delineate the parameters with 

adjustable and fixed values. The compartmental model formulated for a given regional epidemic 

has a total of 16 + 3(𝑛 + 1) parameters. The value of 𝑛 is structural; it sets the number social-

distancing periods considered.  

The value of n corresponds to the number of periods of distinct social-distancing 

behaviors that follow an initial period of social distancing, which we take to begin at time 𝑡 =

𝜎 > 𝑡". Here, we take 𝑛 = 0 or 1 for all regional epidemics of interest. Initially, we set 𝑛 = 0. In 

cases where we set 𝑛 = 1, this setting was motivated by second wave-type dynamics suggested 

by the surveillance data, which we take to indicate a relaxation of social-distancing practices at 

time 𝑡 = 𝜏' > 𝜎. The parameters of the initial social-distancing period are 𝜎, 𝑝", and 𝜆". The 



parameters of the second social-distancing period, if considered, are 𝜏', 𝑝', and 𝜆'. Thus, there 

are 3(𝑛 + 1) social-distancing parameters, all of which are taken to be adjustable.  

In addition to the 3(𝑛 + 1) social-distancing parameters, we have 16 other parameters. 

Three of these define the initial condition: 𝑡", 𝑆!(𝑡 = 𝑡") = 𝑆", and 𝐼!(𝑡 = 𝑡") = 𝐼", where 𝑡" is 

the time at which the epidemic begins, 𝑆" is taken to be the total population of the region of 

interest, and 𝐼" (the initial number of infected individuals) is always taken to be 1 (an 

assumption). We take 𝑡" to be adjustable and 𝑆" and 𝐼" to be fixed. The value of 𝑆" is set on the 

basis of population estimates by the US Census Bureau for the metropolitan statistical areas of 

interest (13), which are delineated by the US Office of Management and Budget (10). 

There is only one more adjustable parameter of the compartmental model: 𝛽, which 

characterizes the rate of disease transmission attributable to contacts among individuals within 

the mixing population. In the period before the onset of social distancing, from 𝑡" to 𝜎, when 

𝑆!/𝑆" ≈ 1, the instantaneous rate of disease transmission is 𝛽𝜙!(𝑡, 𝜌), where 𝜙!(𝑡, 𝜌) is the 

effective number of infectious individuals at time 𝑡, a weighted sum of the numbers of 

symptomatic, presymptomatic, and asymptomatic individuals determined by 𝜌 = (𝜌+ , 𝜌1). We 

assume that exposed individuals after the first stage of disease incubation are infectious, as are 

asymptomatic individuals in the immune clearance phase who have passed through all 5 stages 

of disease incubation and who will never develop symptoms. 

The remaining 12 parameters of the compartmental model, which are taken to have fixed, 

region-independent values, are as follows: 𝑚#, 𝜌+, 𝜌1, 𝑘), 𝑘/, 𝑗/, 𝑓1, 𝑓4, 𝑐1, 𝑐3, 𝑓5 and 𝑐4 . Our 

estimates for these parameters are discussed in the section immediately below. It should be noted 

that settings for 𝑓5 and 𝑐4 do not affect predictions of new cases because these parameters 



characterize recovery/morbidity of hospitalized individuals. The parameter 𝑓5 is the fraction of 

hospitalized individuals who recover, and the parameter 𝑐4 characterizes the hospital discharge 

rate. Although nosocomial disease transmission is a significant concern, we assume that 

hospitalized individuals are effectively quarantined such that the overall rate of disease 

transmission in a given region is insensitive to the number of hospitalized individuals in that 

region. 

Estimates of 12 Fixed Parameter Values of the Compartmental Model 

 Here, in this section, we summarize the rationale/justification for each of our estimates 

for the values of the following 12 parameters of the compartmental model: 𝑚#, 𝜌+, 𝜌1, 𝑘), 𝑘/, 

𝑗/, 𝑓1, 𝑓4, 𝑐1, 𝑐3, 𝑓5, and 𝑐4 . These estimates are assumed to apply to all regions, i.e., we take 

these parameters to have region-independent values. The estimates given below should be 

understood to be rough and provisional. The information available to inform these estimates is 

limited. Although using point estimates for some of the model parameters can lead to 

underestimates of parametric uncertainty (31), it is necessary to aggressively leverage prior 

knowledge to reduce the number of adjustable parameters, because it is not feasible to infer all of 

the model parameters from case reporting data. For each region of interest, we focus on inferring 

model parameters that characterize when disease transmission started (𝑡"), how disease 

transmission depends on behavior (𝜎, 𝑝", 𝜆", and 𝛽), and surveillance (𝑓? and 𝑟). Given 1) the 

data streams being analyzed, 2) the evident importance of behavior/social distancing on disease 

transmission, and 3) our goal of situational awareness, it seems reasonable to focus on inference 

of these parameters. (As we discuss below, we fix the value of 𝑚#, which characterizes social 

distancing, only because we found it to be correlated with the value of 𝑝", another social-

distancing parameter, when both are inferred.)   



 The parameter 𝑚# characterizes the effects of social distancing on disease transmission. 

Without social distancing, all contacts responsible for disease transmission are between mixing 

individuals (i.e., between individuals in the 𝐼! and 𝑆! pools) and the rate of transmission is 

characterized by 𝛽. With social distancing, there are contacts involving 1 individual in a mixing 

population and 1 individual in a protected population (e.g., between individuals in the 𝐼! and 𝑆$ 

pools or in the 𝑆! and 𝐼$ pools) and also contacts involving 2 individuals in protected 

populations (e.g., between individuals in the 𝐼$ and 𝑆$ pools). In the model, the rates of 

transmission associated with these types of contacts are characterized by 𝑚#𝛽 and 𝑚#
0𝛽, 

respectively. We can be confident that social distancing is protective (i.e., 𝑚# < 1) but there is 

little information available to suggest the magnitude of the effect. We arbitrarily set 𝑚# = 0.1, 

which can be interpreted to mean that a susceptible individual practicing social distancing has a 

10-fold smaller chance of becoming infected than a susceptible individual that is not practicing 

social distancing. In exploratory analyses, wherein we allowed 𝑚# to be a free parameter, we 

found that its inferred value is positively correlated with the extent of social distancing, which is 

determined by the relevant social-distancing setpoint parameter (for example, 𝑝" during the 

initial social-distancing period). Thus, we interpret the inferred quasi-stationary value of 𝑆$ to be 

an effective population size. If our estimate for 𝑚# is too high (i.e., we underestimate the 

protective effect of social distancing), the effective size will be larger than the true size. 

Conversely, if our estimate for 𝑚# is too low, the effective size will be smaller than the true size. 

 The parameters 𝜌+ and 𝜌1 characterize the relative infectiousness of individuals without 

symptoms during the incubation period and the immune clearance phase, respectively. 

Infectiousness is compared to that of a symptomatic individual. Using a one-step real-time 

reverse transcriptase-polymerase chain reaction (rRT-PCR) assay to quantify viral RNA 



abundance in nasopharyngeal and oropharyngeal samples, Arons et al. (14) determined rRT-PCR 

threshold cycle (Ct) values for 17 symptomatic and 24 presymptomatic individuals. The former 

group of individuals had typical symptoms, and the latter group of individuals lacked symptoms 

at the time of testing but later developed symptoms (within 1 week after testing). At the time of 

testing, the median Ct values for symptomatic and presymptomatic individuals were 24.8 and 

23.1, respectively. (NB: Ct value is inversely proportional to abundance.) Based on these results 

and an assumption that infectiousness is proportional to viral load, we estimate that 𝜌+ = 1.1. An 

estimate for 𝜌+ greater than 1 is consistent with the findings of He et al. (32), who inferred that 

viral load is maximal 0.7 d before the onset of symptoms from an analysis of temporal viral load 

data and information available about infector-infectee transmission pairs. A review of the 

literature by Benefield (33) indicates that viral load is maximal before onset of symptoms. Over a 

period of 19 d, Nguyen et al. (15) performed daily rRT-PCR assays for viral RNA in 

nasopharyngeal samples from 17 symptomatic and 13 asymptomatic individuals. Ngyuen et al. 

(15) developed a curve-fitting model for each group to characterize their viral decay kinetics. 

These models indicate that the mean Ct value for symptomatic individuals was roughly 90% of 

the mean Ct value for asymptomatic individuals over the first week of the study, after which 

most individuals tested negative or had a Ct value near the threshold of detection, 40. Thus, we 

estimate that 𝜌1 = 0.9. Estimates of 𝜌+ and 𝜌1 should be considered crude. 

 The parameter 𝑘) characterizes the duration of the incubation period. In the model, the 

incubation period is divided into 5 stages (for reasons explained shortly). The waiting time for 

completion of all 5 stages is described by an Erlang distribution with a shape parameter 𝑘 = 5 

and a scale parameter 𝜇 = 1/𝑘). Lauer et al. (12) estimated times of exposure and symptom 

onset for 181 confirmed cases and found that the median time between SARS-CoV-2 infection 



and onset of COVID-19 symptoms is 5.1 d. Lauer et al. (12) also found that the empirical 

distribution of waiting times is fit by an Erlang distribution with 𝑘 = 6 and 𝜇 = 0.88 d. This 

latter finding suggests that the empirical waiting time distribution can be reproduced by dividing 

the incubation period into 6 stages and setting 𝑘) = 1.14 d.'. However, an Erlang distribution 

with 𝑘 = 5 and 𝜇 = 1.06 d has a nearly identical shape. Because simulation costs are reduced by 

dividing the incubation period into 5 instead of 6 stages, we considered 5 stages in the model. 

The distribution of waiting times estimated by Lauer et al. (12) is reproduced by our model when 

we set 𝑘) = 0.94 d.'. 

 The parameters 𝑘/ and 𝑗/ characterize testing-driven quarantine and symptom-driven 

self-isolation. We assume that testing is random. Thus, the number of infected individuals 

moving into quarantine per d is the number of infected individuals subject to quarantine times 

the fraction of the total population tested per d times a multiplier capturing the effect of contact 

tracing. We take the multiplier to be average household size, 2.5 (US Census Bureau). Thus, 

based on approximately 500,000 tests per d in the US (https://covidtracking.com/data/us-daily) 

and a total population of 330 million (https://www.census.gov/popclock/), we estimate 𝑘/ =

0.0038 d.'. It should be understood that the 𝑘/ parameter, which characterizes the rate at which 

exposed individuals move to quarantine because of testing and contact tracing, incorporates 

factors such as false negative test results. As a simplification, we assume that 𝑘/ is the same for 

each stage of disease progression. We assume 𝑗/ = 0.4 d.'. With this setting, the median 

waiting time from onset of symptoms to initiation of self-isolation is approximately 40 h. A 

faster timescale for self-isolation is probably not realistic despite general awareness of the 

COVID-19 pandemic, because as considered in the study of Böhmer et al. (34), for any given 



individual, there may be a prodromal phase of ~1 d marked by non-COVID-19-specific 

symptoms other than fever and cough. 

The parameter 𝑓1 is the fraction of infected individuals who never develop symptoms. 

We estimate 𝑓1 on the basis of information about the COVID-19 outbreak on the Diamond 

Princess cruise ship, as recounted by Sakurai et al. (17). See also Refs. (35) and (36). Before 

disembarking, 3,618 passengers and crew members were tested for SARS-CoV-2 infection. 410 

of 712 individuals testing positive for SARS-CoV-2 were without symptoms at the time of 

testing. The Ministry of Health, Labour, and Welfare of Japan (16) reported that 311 (76%) of 

these individuals remained asymptomatic over the course of long-term follow-up. See also Refs. 

(35) and (36). Thus, we estimate that 𝑓1 =
9''
@'0

≈ 0.44. This estimate is consistent with the results 

of other studies. Lavezzo et al. (37) estimated that 43% of all infections are asymptomatic. In the 

study of Gudbjartsson et al. (38), 7 of 13 individuals detected to have SARS-CoV-2 infection in 

random-sample population screening did not report symptoms; 43% of all SARS-CoV-2-positive 

participants in the study were symptom-free. 

 The parameter 𝑓4 is the fraction of symptomatic individuals progressing to severe 

disease. We set 𝑓4 such that our model predicts a uniform infection fatality rate (IFR) consistent 

with that determined by Perez-Saez et al. (18) from serological survey results and death 

incidence reports: 0.0064 (~0.64%). For a discussion of other IFR estimates, which tend to be 

similar, see Grewelle and De Leo (39). According to our model, IFR is given by (1 − 𝑓1)𝑓4(1 −

𝑓5). This quantity is the fraction of all infected individuals predicted to develop symptoms and 

then to progress to severe disease (and hospitalization) and finally a fatal outcome. Thus, based 



on our estimates for 𝑓1 (0.44) and 𝑓5 (0.79) and the empirical IFR (0.0064), we set 𝑓4 =

".""B:
".2B	×".0'

≈ 0.054. 

 The parameter 𝑐1 characterizes the duration of infectiousness of asymptomatic 

individuals in the immune response phase. For each of 89 asymptomatic individuals, Sakurai et 

al. (17) reported the time between the first positive PCR test for SARS-CoV-2 and the first of 

two serial negative PCR tests. The mean duration of this period was ~9.1 d. We assume that this 

period coincides with the period of infectiousness and that this period encompasses both the 

incubation period and the immune response phase. With the incubation period for both 

presymptomatic and asymptomatic individuals divided into five stages of equal mean duration 

1/𝑘), the overall mean duration of the incubation period is 5/𝑘). Based on our earlier estimate 

that 𝑘) = 0.94	d.', the mean duration of the incubation period is estimated as 5.3 d. 

Accordingly, the mean duration of the immune clearance phase for asymptomatic individuals is 

estimated as 9.1	d − 5.3	d = 3.8	d, and it follows that 𝑐1 =
'

9.E	d
≈ 0.26	d.'.  

 If 𝑓4 ≪ 1, the parameter 𝑐3 characterizes the duration of infectiousness of individuals 

who develop mild COVID-19 symptoms (i.e., symptoms not severe enough to require 

hospitalization). Wölfel et al. (20) attempted to isolate live virus from clinical throat swab and 

sputum samples collected from 9 patients at multiple time points after the onset of mild COVID-

19 symptoms. Roughly 67%, 38%, and 0% of attempts to isolate virus were successful at 6, 8, 

and 10 d after infection, respectively. Assuming that a negative culture coincides with loss of 

infectiousness, we estimate that 𝑐3 = − GH(".9E)
E	d

≈ 0.12	d.'. 

 The parameters 𝑓5 and 𝑐4 characterize the hospital stays of the severely ill. These 

parameters affect predictions of COVID-19-caused deaths and hospital resource utilization but 



do not affect the predicted transmission dynamics, because we assume that hospitalized patients 

are effectively quarantined and do not contribute significantly to disease transmission, i.e., there 

is no 𝐼4 term in 𝜙! or 𝜙$ (see Equations (18) and (19)). The parameter 𝑓5 is the fraction of 

hospitalized patients who recover, and the parameter 𝑐4 characterizes the rate at which patients 

are discharged (as either recovered or dead). Richardson et al. (19) reported that the overall 

median length of hospital stay for 2,634 discharged patients (alive or dead) was 4.1 d. Thus, we 

estimate that 𝑐4 =
GH(0)
:.'	d

≈ 0.17 d.'. Among the discharged patients, 553 (21%) died. Thus, we 

estimate that 𝑓5 = 0.79. 

Likelihood Function Used in Inference of Model Parameter Values 

 We assume that the likelihood of a set of adjustable parameter values 𝜃K given a report of 

𝛿𝐶- new cases on calendar date 𝒟-, which we will denote as ℒ-(𝜃K; 𝛿𝐶-), is given by the 

following equation: 

ℒ-(𝜃K; 𝛿𝐶-) = nbinom(𝛿𝐶-; 𝑟, 𝑝-) = '
𝛿𝐶- + 𝑟 − 1
𝛿𝐶- − 1

(𝑝-L(1 − 𝑝-)MN!  
(25) 

where 𝛿𝐶- is a non-negative integer (the number of new cases reported), 𝑖 is an integer indicating 

the date 𝒟- or the period (𝑡- , 𝑡-<'); nbinom(𝛿𝐶-; 𝑟, 𝑝-) is the probability mass function of the 

negative binomial distribution NB(𝑟, 𝑝-), which has two parameters, 𝑟 > 0 and 𝑝- ∈ [0,1]; and 

𝜃K is a model-dependent ordered set of feasible (i.e., allowable) values for the adjustable model 

parameters (e.g., 𝑁, 𝑡", 𝑘, and 𝜃 in the case of the curve-fitting model) augmented with a feasible 

value for 𝑟. Recall that 𝑡- ≡ 𝑡" + 𝑖	d, where 𝑡" > 0 is 0000 hours of 𝒟", the start date of the local 

epidemic. We take the dispersion parameter 𝑟 of NB(𝑟, 𝑝-) to be date/time-independent (i.e., 



applicable to all surveillance days) and infer the value of 𝑟 jointly with the values of the model 

parameters.  

Recall the following modeling assumptions. We take surveillance testing to be a 

stochastic process, i.e., we assume that the fraction of cases detected varies stochastically from 

day to day. Furthermore, we take the deterministic compartmental model parameterized for a 

given region to reproduce the mean daily outcomes of testing in that region. We also assume that 

the randomness in the number of new cases detected on a given date 𝑡- is captured by a negative 

binomial distribution NB(𝑟, 𝑝-), where 𝑟 is a testing date-independent (i.e., 𝑡--independent) 

parameter and 𝑝- is a testing date-dependent (i.e., 𝑡--dependent) parameter. The above 

assumptions mean that, for each date 𝑡-, we are taking 𝐼(𝑡- , 𝑡-<'), the predicted number of new 

cases, to correspond to 𝔼[NB(𝑟, 𝑝-)], which equals 𝑟(1 − 𝑝-)/𝑝-. For this relationship to hold 

true, each distributional parameter 𝑝- must satisfy the following constraint:  

𝑝- =
𝑟

𝑟 + 𝐼(𝑡- , 𝑡-<')
. (26) 

We use this constraint to determine the value of 𝑝- for all 𝑡-. Recall that the value of 𝑟 is jointly 

inferred with the values of the adjustable compartmental model parameters. 

If 𝑚 + 1 daily case reports are available, from date 𝒟" to date 𝒟O, we assume that each 

likelihood ℒ-(𝜃K; 𝛿𝐶-) given by Equations (25) and (26) is independent. Thus, we have 

ℒ(𝜃K; {𝛿𝐶-}-P"O ) =|logℒ-(𝜃K ; 𝛿𝐶-)
O

-P"

 
(27) 

where ℒ(𝜃K; {𝛿𝐶-}-P"O ) is the likelihood of 𝜃K given all available case reports {𝛿𝐶-}-P"O . Recall 

that 𝛿𝐶- is the number of new cases reported on date 𝒟- and 𝐼(𝑡- , 𝑡-<') is the model prediction of 



𝛿𝐶-. Furthermore, recall that 𝜃K is defined as a model-dependent ordered set of feasible 

adjustable model parameter values augmented with a feasible value for the likelihood function 

parameter 𝑟. The identity of 𝜃K depends on whether we are using Equation (27) to make 

inferences conditioned on the curve-fitting model or the compartmental model (i.e., we use 

Equation (27) in both cases but the identity of 𝜃K depends on the model being considered). The 

ordering of parameter values within the set 𝜃K is arbitrary but should be consistent.  

When Equations (25)–(27) are used with the compartmental model having structure 

defined by 𝑛 = 0, the elements of 𝜃K are 𝑡", 𝜎, 𝑝", 𝜆", 𝛽, 𝑓?, and 𝑟, and 𝐼(𝑡- , 𝑡-<') is obtained 

from Equation (24). When Equations (25)–(27) are used with the curve-fitting model (see 

below), the elements of 𝜃K are 𝑁, 𝑡", 𝑘, 𝜃, and 𝑟, and 𝐼(𝑡- , 𝑡-<') is obtained from Equation (31) 

(see below). 

Bayesian Inference and Online Learning 

We chose the Bayesian inference framework to parametrize the models with uncertainty 

quantification. In Bayesian inference, given a set of data 𝐷, the probability of each set of the 

parameters, denoted in 𝜃K is constrained by the Bayes formula 

ℙ{𝜃K|𝐷} =
ℙ{𝐷|𝜃K}	ℙ{𝜃K}

∫ ℙ{𝜃K′|𝐷}	ℙ{𝜃K′}	d𝜃K′Q
	. 

(28) 

Here, the ℙ{𝜃K} is the prior parameter distribution, which represents our belief of how the model 

parameters should distribute in the parameter space Ω, and ℙ{𝐷|𝜃K} is the likelihood of the 

parameter set 𝜃K given the dataset 𝐷, that is, ℒ(𝜃K; {𝛿𝐶-}-P"O ) in Equation (27). In general, 

evaluating the posterior parameter distribution ℙ{𝜃K|𝐷} is a difficult computation, mainly 

because of the high-dimensional integration of the term ∫ ℙ{𝜃K′|𝐷}	ℙ{𝜃K′}	d𝜃K′Q , a term often 



referred to as the evidence. Thus, for high-dimensional models, one relies on Markov chain 

Monte Carlo (MCMC) techniques to sample the posterior parameter distribution ℙ{𝜃K|𝐷}.  

 In contrast of many modeling analyses which focus on identifying the parameter 

distributions, we are interested in projections of the models, whose parameters are inferred by 

past data, into the future. To this end, we evaluate the model with a probabilistic parameter set 

distributed by the obtained posterior distribution ℙ{𝜃K|𝐷}. Formally, we denote the prediction of 

the confirmed cases between future day 𝑡- and 𝑡-<' by our deterministic model with a set of 

parameters 𝜃K by 𝐼(𝑡- , 𝑡-<'; 𝜃K). Recall that this deterministic prediction represents the mean of 

the fundamentally random new confirmed cases reported in a future interval (𝑡- , 𝑡-<'). If there 

was only parametric uncertainty which propagates through the deterministic model, the 

confirmed cases reported in a future interval (𝑡- , 𝑡-<') would be distributed according to 

∫ 𝐼(𝑡- , 𝑡-<'; 𝜃K)	ℙ{𝜃K|𝐷}	d𝜃KQ 	. However, there is also observation noise, which we model by a 

negative binomial distribution. The observation noise also needs to be injected into the prediction 

to quantify the full uncertainty. The full prediction accounting for parametric uncertainty is a 

random variable distributed according to 

� nbiom'𝑖; 𝑟,
𝑟

𝑟 + 𝐼(𝑡- , 𝑡-<'; 𝜃K)
( 	ℙ{𝜃K|𝐷}	d𝜃K

Q
. (29) 

In practice, the above random variable is resampled from the posterior chain derived from the 

MCMC sampling. We denote the MCMC posterior chain by V𝜃K
('), 𝜃K

(0)…𝜃K
(R)	�. We sample the 

posterior chain and denote the resampled parameter set by 𝜃KS and the deterministic prediction of 

that resampled parameter in interval (𝑡- , 𝑡-<') by 𝐼(𝑡- , 𝑡-<'; 𝜃KS). Then, we generate a negative 

binomial random number with the first parameter of the negative binomial distribution set as 



𝑟S/(𝑟S + 𝐼(𝑡-<', 𝑡-; 𝜃KS)) where 𝑟S is the resampled 𝑟 which is also a free parameter in 𝜃KS	and is 

inferred in the MCMC. We repeat the resampling procedures and use the generated samples to 

compute the percentile of the past history and future prediction. 

 Our aim is to perform the Bayesian inference daily as soon as a new regional confirmed 

case number is reported. Although the Bayesian framework allows a sequential analysis, that the 

previous derived posterior distribution is used as a prior and the new inference problem involves 

only one new data point, in practice, such an analysis is difficult if the posterior distribution 

cannot be emulated or interpolated from the discrete posterior chain. Our analysis shows that in 

some regions, the posterior is far from Gaussian, making accurate interpolation or emulation 

difficult. Thus, we are not adopting this workflow, and instead, we perform the inference with all 

the data points collected up to the time of inference. Nevertheless, we warm-start the MCMC 

chain from the maximum a posteriori estimator estimated from the previous derived chain, and 

we also use the previously derived chain for estimating the optimal covariance matrix for the 

proposal of the normal symmetric random-walk Metropolis sampler. This approach allows an 

online learning of the optimal proposal which significantly reduces the mixing time.  

Technical Details of Approach and Numerical Methods Used in Bayesian Inference 

Because the variability of the data due to the regional and temporal differences, it is 

difficult to identify a universal sampling strategy (the proposal kernel). Thus, we adopted an 

adaptive Metropolis algorithm, specifically Algorithm 4 in Andrieu and Thoms (21) to 

accommodate the regional and temporal differences.  

For all the model parameters, we assume their priors are uniformly distributed. Denote 

the 0:00 of the calendar date of the first confirmed case in a specific region by 𝑡T>UVW and the total 



population of that region by 𝑆". For the curve-fitting model, we assume the parameters are 

bounded by 𝑁 ∈ (0, 𝑆"), 𝑡" ∈ (𝑡T>UV, − 21, 𝑡T>UV,), 𝜇 ∈ (0,10B), 𝑘 ∈ (0,10B), 𝜃 ∈ (0,10B). For the 

compartmental model with 𝑛 = 0, we assume that the parameters are bounded by 𝑡" ∈ (0, 𝑡⋆), 

𝜎 ∈ (𝑡", 𝑡⋆ − 𝑡"), 𝛽 ∈ (0,10B), 𝜆" ∈ (0,10), 𝑝" ∈ (0,1), and 𝑓? ∈ (0,1), where 𝑡⋆ is the time at 

which inference is performed. We assume 𝑟 ∈ (0,10B) for both models. The limits on parameter 

values reflect feasibility constraints or bounds determined by trial-and-error so as to ensure that 

the posterior mass is contained within the hypercube defined by the limits. We adopted rejection-

based sampling to assure the parameter values are sampled in the hypercube.  

We start inference with an isotropic proposal kernel, that randomly perturbs the 

parameter values by independent Gaussian proposals whose standard deviations are set to be 5% 

of the parameter values. We carry out the standard Metropolis–Hastings algorithm for 5 × 10: 

iterations first to identify local minimum. Then, we turned on the adaptive Metropolis algorithm 

to calculate the covariance matrix on-the-fly, for another 5 × 10: iteration, when we turned on 

an on-the-fly learning for optimal proposed increment, i.e., 𝜆 in Algorithm 4 of Andrieu and 

Thoms (21). Because the weight for learning the proposed increment decays 1/iteration (21), 

the proposed increment stabilizes after about 109 more iterations. We began to collect the 

statistics from 1.5 × 102 iteration, until the simulation finishes at 6 × 102 iterations.  

Except for the first time of the procedure (i.e., online learning and day-to-day operation), 

we warm start the simulation from the previously obtained best-fit (maximum a posteriori 

(MAP) estimator) and with the previously obtained covariance matrix and proposed increment. 

We carry out standard Metropolis–Hastings algorithms for 2.5 × 10: iterations first to identify a 

local minimum, noting that it is often not far away from the previously identified MAP. We then 



turn on the adaptive MCMC algorithm to calculate the covariance matrix on-the-fly, again for 

another 5 × 10: iteration. We then use another 2.5 × 10: iterations to calculate the optimal 

proposed increment. We start to collect statistic from 102 iteration to 4 × 102 iteration when the 

simulation finishes.  

Model Selection 

A heuristic model-selection procedure is used to select the most parsimonious value of n, 

which determines the structure of the compartmental model (i.e., the number of social distancing 

periods considered) and the number of adjustable parameters describing social distancing (three 

for each social-distancing period). The procedure for deciding between 𝑛 = 0 and 𝑛 = 1 is as 

follows. We calculate Aikake information criterion (AIC) (40) values for the 𝑛 = 0 and 𝑛 = 1 

versions of the compartmental model. Similarly, we calculate Bayesian information criterion 

(BIC) (40) values for the two versions of the model. We define ΔAIC as AIC;P" − AIC;P' and 

ΔBIC as BIC;P" − BIC;P', where AIC;P" (AIC;P') is the AIC value calculated for the 𝑛 = 0 

(𝑛 = 1) version of the compartmental model and, similarly, BIC;P" (BIC;P') is the BIC value 

calculated for the 𝑛 = 0 (𝑛 = 1) version of the compartmental model. The recommendations of 

Burnham and Anderson (40) indicate that we can interpret ΔAIC>10 to mean that the evidence 

strongly supports the 𝑛 = 1 version of the model. In other words, we are justified in using 𝑛 =

1	(the more complex version of the model) instead of 𝑛 = 0 when ΔAIC>10. However, we take 

a more conservative approach. We adopt 𝑛 = 1	over 𝑛 = 0 only when both ΔAIC>10 and 

ΔBIC>10. We are using the same approach described above to decide between 𝑛 = 1 and 𝑛 = 2. 

Prediction Updates 



Daily predictions based on region-specific parameterizations of the compartmental model 

are being archived at a GitHub repository (https://github.com/lanl/COVID-19-Predictions). It 

should be noted that the model’s structural parameter n—which determines the number of 

distinct social-distancing periods considered in the model—varies from region to region and can 

change over time.  

Forecasting Accuracy 

 We performed out-of-sample testing of forecasting accuracy for inferences conditioned 

on the compartmental model with the value of 𝑛 chosen through model selection. For predictions 

1, 4, and 7 days ahead, we determined the empirical coverage, meaning the frequencies 

characterizing how often the empirical data fell below predicted quantiles. In this analysis, we 

considered surveillance data available between 14-July-2020 and 9-September-2020 (inclusive 

dates). The results obtained using the combined out-of-sample data and predictions for all 15 

MSAs of interest are shown in Appendix Figure 5. As can be seen, overall, predictions are 

(weakly) biased toward underprediction of new case detection. 

Evaluation of a Stochastic Version of the Compartmental Model 

 A compartmental model may be formulated as either a deterministic model or a 

stochastic model. Use of a deterministic model is a potential liability, because there are situations 

where the assumptions of a deterministic model break down, necessitating use of a stochastic 

model. For this reason, we performed an analysis to determine which of the two model types 

(deterministic or stochastic) is better suited for analysis of the data of interest here.  

We constructed an individual-based continuous-time Markov chain with consideration of 

the same processes as those in our deterministic compartmental model. The intrinsic stochasticity 



arises from the discreteness of populations. We followed the standard procedure to construct a 

set of stochastic differential equations (SDEs), by first formulating a master equation, then 

performing the Kramers-Moyal expansion to obtain the approximate continuum-limit Fokker-

Planck equation in the large-population limit, and formulating the corresponding SDEs. The 

procedure has been described, for example, by Lin et al. (41, 42).  

In simulations, we used the Euler-Maruyama integrator to evolve the SDEs with a time 

step of 0.05 (d). We checked to make sure the timestep was sufficiently small.  

We adopted a standard particle filter technique to identify the Maximum Likelihood 

Estimator of the parameters of the stochastic model, noting that our process is not time-

homogeneous due to different episodes of distinct social-distancing practices. We used the data 

from the New York City and Miami MSAs from 21-Jan-2020 to 29-Aug-2020 to parametrize the 

stochastic model.  

After identifying the point estimator, the predicted quantiles were calculated similarly as 

for the deterministic model. Finally, we quantified the in-sample empirical coverage, i.e., the 

empirical frequencies quantifying when training-data points fall below the predicted quantiles. 

When the noise model is correct, one would expect that such frequencies should coincide with 

the prediction.  

For the New York City MSA, we obtained the results shown in Appendix Figure 6. For 

the Miami MSA, we obtained the results shown in Appendix Figure 7. By visually inspecting the 

predictive posteriors, we can see that the stochastic models lead to higher uncertainty than the 

deterministic models for New York City and Miami. The right-most panels, the in-sample 

calibration curves, show that the SDE model in both cases is farther away from the diagonal than 



the deterministic model. These results indicate that the stochastic models assert more uncertainty 

than the data distribution. Thus, it seems more appropriate to use a deterministic version of the 

model for forecasting than a stochastic version, at least at this time.  

Evaluation of a Curve-Fitting Model 

 Various fitting functions, or curve-fitting models, have been used to reproduce COVID-

19 incidence data and to make forecasts of new cases (43–50). We decided to evaluate this 

approach using the fitting function described below, which is a discretized convolution of two 

integrals. This approach is related to an approach used to analyze acquired immunodeficiency 

syndrome (AIDS) data (51, 52). Use of a curve-fitting model has the advantage of not requiring 

insights into disease transmission mechanisms, which may be particularly advantageous during 

outbreaks of new/emerging diseases. A drawback of a curve-fitting model is that it may be 

limited in its ability to reproduce empirical epidemic curves. We considered a fitting function 

that is able to generate an asymmetric curve (Appendix Figure 8), i.e., an epidemic curve with 

two timescales, as when there is fast growth and slow decay in new daily cases. Like many such 

models used in epidemiology, the curve-fitting model considered here can only generate single-

peaked curves. Because the MSAs of interest have experienced multiple-wave disease-

transmission dynamics (i.e., >1 period of increasing disease incidence), we are no longer using 

the curve-fitting model in forecasting. We present the curve-fitting model and results obtained 

with it to illustrate how a curve-fitting model can be combined with Bayesian inference to 

generate forecasts with uncertainty quantification. 

For each metropolitan statistical area (MSA) of interest, we assume that there is an 

infection curve 𝑄(𝑡) describing the number of individuals who become infected at time 𝑡 with 



SARS-CoV-2 and who will later be detected in local COVID-19 surveillance efforts. 

Furthermore, we assume that this curve has a shape that can be generated/reproduced by 

𝜌Y(𝑡, 𝑘, 𝜃), the probability density function (PDF) of a gamma distribution Γ(𝑘, 𝜃). In other 

words, we assume that 𝑄(𝑡) = 𝑁𝜌Y(𝑡, 𝑘, 𝜃), where 𝑁 is a scaling factor that we can identify as 

the number of individuals who will be detected over the entire course of the local epidemic. The 

shape of a gamma distribution is flexible and determined by the values of its two parameters: 𝑘, 

which is called the shape parameter, and 𝜃, which is called the scale parameter. The functional 

form that we assume for 𝑄(𝑡) allows the curve-fitting model to reproduce the shape of an 

epidemic curve having two timescales. Early in the pandemic, many empirical COVID-19 

epidemic curves appeared to have two timescales: an initial period during which new case 

reports increase relatively quickly from day to day followed by a period during which new case 

reports decrease relatively slowly from day to day.  

We do not take the infection curve 𝑄(𝑡) to correspond directly to the number of new 

COVID-19 cases reported on the date encompassing time 𝑡, because only symptomatic 

individuals are likely to be detected in COVID-19 surveillance testing (to a first approximation). 

This situation complicates our model as there is known to be a potentially lengthy, variable delay 

in the onset of symptoms after infection (12). We assume that the waiting time 𝜏 − 𝑡 for the 

onset of COVID-19 symptoms after SARS-CoV-2 infection at time 𝑡 is distributed according to 

a log-normal distribution. Let us use 𝜌)R(𝜏 − 𝑡; 𝜇)R , 𝜎)R) to denote the PDF of the waiting-time 

distribution modeled by a log-normal distribution with parameters 𝜇)R and 𝜎)R set to the values 

estimated by Lauer et al. (12). Let us use 𝐼(𝑡- , 𝑡-<') to denote the predicted number of new 

COVID-19 cases reported within a period beginning at time 𝑡- ≡ 𝑡" + 𝑖	d and ending at time 

𝑡-<', where 𝑡" > 0 is the start time of the local epidemic. We assume that surveillance testing for 



SARS-CoV-2 infection starts prior to time 𝑡", and we take time 𝑡 = 0 to correspond to 0000 

hours on 21-January-2020, the date on which detection of the first US COVID-19 case was 

widely reported (3). Under the aforementioned assumptions, 𝐼(𝑡- , 𝑡-<') is given by a convolution 

of integral functions. Namely, 𝐼(𝑡- , 𝑡-<') is given by the following expression: 

𝐼(𝑡- , 𝑡-<') = 𝑁� � 𝜌)R(𝜏 − 𝑠; 𝜇)R , 𝜎)R)	𝜌Y(	𝑠 − 𝑡"; 𝑘, 𝜃)	d𝑠	d𝜏
&

,)

,!*+

,!
 

(30) 

It should be noted that 𝑠 in this expression is a dummy variable of integration. Equation (30) is a 

special case of the general model proposed by Brookmeyer and Gail (51) for predicting future 

AIDS cases. 

Equation (30) can be evaluated through numerical quadrature, but this procedure is 

computationally expensive. To overcome this limitation, we replace the double integral in 

Equation (30) with a sum, and we calculate 𝐼(𝑡- , 𝑡-<') using the following expression instead of 

Equation (30): 

𝐼(𝑡- , 𝑡-<') = 𝐾"𝑄- + 𝐾'𝑄-.' +⋯+ 𝐾-.'𝑄' + 𝐾-𝑄" =�𝐾-.Z𝑄Z

-

ZP"

 
(31) 

where 

𝐾-.Z = � 𝜌)R(𝑡; 𝜇)R , 𝜎)R)𝑑𝑡
,!,-*+

,!,-
= 𝐹)R@	𝑡-.Z<'; 𝜇)R , 𝜎)RA − 𝐹)R(	𝑡-.Z; 𝜇)R , 𝜎)R) 

(32) 

and 



𝑄Z = 	𝑁� 𝜌Y(𝑡 − 𝑡"; 𝑘, 𝜃)𝑑𝑡
,-*+

,-
= 𝑁[𝐹Y@𝑡Z<' − 𝑡"; 𝑘, 𝜃A − 𝐹Y@𝑡Z − 𝑡"; 𝑘, 𝜃A] 

(33) 

In Equation (31), the 𝐾-.Z terms are weighting functions (i.e., kernels) that account for the 

variable duration of the incubation period, and the 𝑄Z terms represent cumulative numbers of 

new detectable infections occurring over discrete 1-d periods. In Equation (32), each	𝐹)R term 

denotes a cumulative distribution function (CDF) of a log-normal distribution, and in Equation 

(33), each 𝐹Y term denotes a CDF of a gamma distribution. In other words, 𝑄Z is the cumulative 

number of individuals infected in the period (𝑡Z , 𝑡Z<') who will eventually be detected, and 𝐾-.Z 

is the probability that one of these individuals becomes symptomatic and is detected in the period 

(𝑡- , 𝑡-<'), where 𝑡- ≥ 𝑡Z.  

The functional form of our curve-fitting model is defined by Equations (31)–(33), which 

are derived from Equation (30). As can be seen by inspecting Equation (30), the curve-fitting 

model has six parameters: 𝑁, 𝑡" (which is hidden in the definition of 𝑡-), 𝑘, 𝜃, 𝜇)R, and 𝜎)R. As 

noted earlier, estimates are available for 𝜇)R and 𝜎)R from Lauer et al. (12). These parameters 

characterize the variable duration of the incubation period, which starts at infection and ends at 

the onset of symptoms. Thus, we take 𝜇)R and 𝜎)R to have fixed region-independent values. We 

take the remaining parameters—𝑁 (a population size/scaling factor), 𝑡" (the start time of the 

local epidemic), and 𝑘 and 𝜃 (the parameters that determine the shape of the infection curve 

𝑄(𝑡))—to have adjustable region-specific values. In our daily inferences, we consider one 

additional region-specific adjustable parameter, the dispersal parameter of the likelihood 

function (see Equation (27) above). The value of this parameter, 𝑟, is inferred jointly with the 

values of  𝑁, 𝑡", 𝑘, and 𝜃. 



For the period from January to June, 2020, for each of the 15 MSAs of interest, we 

parameterized on a daily basis a curve-fitting model for consistency with all daily reports of new 

confirmed cases available at the time. The methodology used was the same as that used for 

inferences conditioned on the compartmental model unless otherwise noted. For each MSA, the 

curve-fitting model was taken to have four adjustable parameters (Appendix Table 2): 𝑁, the 

total number of infected individuals who will be detected over the entire course of the local 

epidemic;	𝑡", the start time of the local epidemic; and 𝑘 and 𝜃, the shape and scale parameters of 

a gamma (Γ) distribution. Inference of adjustable parameter values is based on a negative 

binomial likelihood function, which is given by Equation (27). The dispersal parameter 𝑟 of the 

likelihood was taken to be adjustable; its value was jointly inferred with those of 𝑁, 𝑡", 𝑘, and 𝜃. 

Inferences are conditioned on fixed parameter estimates for 𝜇)R and 𝜎)R (Appendix Table 2). 

These parameters, the mean and standard deviation of a log-normal distribution, characterize the 

incubation period (i.e., the waiting time from infection to onset of symptoms) (12). For any given 

(1-day) surveillance period and specified settings for parameter values, a prediction of the curve-

fitting model for expected new cases detected was generated by evaluating the sum in Equation 

(31). A prediction of the actual number of new cases detected was obtained by entering the 

predicted expected number of new cases (according to either the curve-fitting or compartmental 

model) into Equation (29). 

Predictive inferences conditioned on the curve-fitting model for all 15 MSAs of interest 

conditioned are shown in Appendix Figure 9. These results demonstrate that, for the timeframe 

of interest, the curve-fitting model was capable of reproducing many but not all of the MSA-

specific empirical epidemic curves. The limitations of curve fitting can be seen by examining 

predictions for the Atlanta MSA, where there is high variability in the daily number of new cases 



detected. Although there is no clear downward trend in the data, the curve-fitting model 

nevertheless predicts a peak in late-April/early-May and a downward trend thereafter. This 

prediction is obtained because the model, by design, is only capable of generating single-peaked 

epidemic curves that rise and then fall. 
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