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Abstract We demonstrate a Bayesian method for the ”real-time’” characterization
and forecasting of partially observed COVID-19 epidemic. Characterization is the
estimation of infection spread parameters using daily counts of symptomatic patients.
The method is designed to help guide medical resource allocation in the early epoch
of the outbreak. The estimation problem is posed as one of Bayesian inference and
solved using a Markov chain Monte Carlo technique. The data used in this study was
sourced before the arrival of the second wave of infection in July 2020. The proposed
modeling approach, when applied at the country level, generally provides accurate
forecasts at the regional, state and country level. The epidemiological model detected
the flattening of the curve in California, after public health measures were instituted.
The method also detected different disease dynamics when applied to specific regions
of New Mexico.

Keywords Markov Chain Monte Carlo · pseudo-marginal MCMC · Bayesian
framework · COVID-19 · infection rate · incubation model

1 Introduction

In this paper, we formulate and describe a data-driven epidemiological model to fore-
cast the short-term evolution of a partially-observed epidemic, with the aim of helping
estimate and plan the deployment of medical resources and personnel. It also allows
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us to infer the efficacy of medical countermeasures deployed to control the outbreak.
It also allows us to forecast, over a short period, the stream of patients seeking med-
ical care, and thus estimate the demand for medical resources. It is meant to be used
in the early days of the outbreak, when data and information about the pathogen and
its interaction with its host population is scarce. The model is simple and makes few
demands on our epidemiological knowledge of the pathogen. The method is cast as
one of Bayesian inference of the latent infection rate (number of people infected per
day), conditioned on a time-series of daily new (confirmed) cases of patients exhibit-
ing symptoms and seeking medical care. The model is demonstrated on the COVID-
19 pandemic that swept through the US in spring 2020. The model generalizes across
a range of host population sizes, and is demonstrated at the country-scale as well as
for a sparsely populated desert region in Northwestern New Mexico, USA.

Developing a forecasting method that is applicable in the early epoch of a partially-
observed outbreak poses some peculiar difficulties. The evolution of an outbreak de-
pends on the characteristics of the pathogen and its interaction with patterns of life
(i.e., population mixing) of the host population, both of which are ill-defined during
the early epoch. These difficulties are further amplified if the pathogen is novel, and
its myriad presentations in a human population is not fully known. In such a case, the
various stages of the disease (e.g., prodrome, symptomatic etc.), and the residence
times in each, are unknown. Further, the patterns of life are expected to change over
time as the virulence of the pathogen becomes known and medical countermeasures
are put in place. In addition, to be useful, the model must provide its forecasts and
results in a timely fashion, despite imperfect knowledge about the efficacy of the
countermeasures and the degree of adherence of the population to them. These re-
quirements point towards a simple model that does not require much information or
knowledge of the pathogen and its behavior to produce its outputs. In addition, it also
strongly suggest an inferential approach conditioned on an easily obtained/observed
marker of the progression of the outbreak (e.g., the time-series of daily new cases),
even though the quality of the observations may leave much to be desired.

In keeping with these insights into the peculiarities of forecasting during the early
epoch, we pose our method as one of Bayesian inference of a parametric model of the
latent infection rate (which varies over time). This infection rate curve is convolved
with the PDF (Probability Density Function) of the incubation period of the disease
to produce an expression for the time-series of newly symptomatic cases, an observ-
able that is widely reported as “daily new cases” by various data sources [2,5,6]. A
Markov chain Monte Carlo (MCMC) method is used to construct a distribution for
the parameters of the infection rate curve, even under an imperfect knowledge of the
incubation period’s PDF. This uncertain infection rate curve, which reflects the lack
of data and the imperfections of the epidemiological model, can be used to provide
stochastic, short-term forecasts of the outbreak’s evolution. The reliance on the daily
new cases, rather than the time-series of fatalities (which, arguably, has fewer uncer-
tainties in it) is deliberate. Fatalities are delayed and thus are not a timely source of
information. In addition, in order to model fatalities, the presentation and progress of
the disease in an individual must be completely known, a luxury not available for a
novel pathogen. Our approach is heavily influenced by a similar effort undertaken in
the late 1980s to analyze and forecast the progress of AIDS in San Francisco [12],
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with its reliance on simplicity and inference, though the formulation of our model is
original, as is the statistical method used in the inference.

There have been many attempts at modeling the behavior of COVID-19, most of
which have forecasting as their primary aim. Our ignorance of its behavior in the hu-
man population is evident in the choice of modeling techniques used for the purpose.
Time-series methods such as ARIMA [9,39] and logistic regression for cumulative
time-series [28] have been used extensively, as have machine-learning methods using
Long Short-Term Memory models [16,17] and autoencoders [18]. These approaches
do not require any disease models and focus solely on fitting the data, daily or cu-
mulative, of new cases as reported. Ref. [45] contains a comprehensive summary of
various machine-learning methods used to “curve-fit” COVID-19 data and produce
forecasts. Approaches that attempt to embed disease dynamical models into their
forecasting process have also be explored, usually via compartmental SEIR models
or their extensions. Compartmental models represent the progress of the disease in
an individual via a set of stages with exponentially distributed residence times, and
predict the size of the population in each of the stages. These mechanistic models are
fitted to data to infer the means of the exponential distributions, using MCMC [11]
and Ensemble Kalman Filters (or modifications) [19,20,38]. Less common disease
modeling techniques, such as agent-based simulations [26], modeling of infection and
epidemiological processes as statistical ones [3] and the propagation of epidemics on
a social network [43] have also been explored, as have been methods that include
proxies of population mixing (e.g., using Google mobility data [15]). There is also a
group of 20 modeling teams that submit their epidemiological forecasts regarding the
COVID-19 pandemic to the CDC; their details can be found at their weibsite [7].

Apart from forecasting and assisting in resource allocation, data-driven methods
have also been used to assess whether countermeasures have been successful e.g.,
by replacing a time-series of daily new cases with a piecewise linear approximation,
the author in Ref. [14] showed that the lockdown in India did not have a significant
effect on “flattening the curve”. We perform a similar analysis later, for the shelter-
in-place orders implemented in California in mid-March, 2020. Efforts to develop
metrics, derived from observed time-series of cases, that could be used to monitor
countermeasures’ efficacy and trigger decisions [13], too exist. There have also been
studies to estimate the unrecorded cases of COVID-19 by computing excess cases of
Influenza-Like-Illness versus previous years’ numbers [32]. Estimates of resurgence
of the disease as nations come out of self-quarantine have also been developed [47].

Some modeling and forecasting efforts have played an important role in guid-
ing policy makers when responding to the pandemic. The first COVID-19 forecasts,
which led to serious considerations of imposing restrictions on the mixing of peo-
ple in the United Kingdom and the USA, were generated by a team from Imperial
College, London [21]. Influential COVID-19 forecasts for USA were generated by
a team from the University of Washington, Seattle [36] and were used to estimate
the demand for medical resources [35]. These forecasts have also been compared to
actual data, once they became available [34], an assessment that we also perform in
this paper. Adaptations of the University of Washington model, that include mobility
data to assess changes in population mixing, have also been developed [46], show-
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ing enduring interest in using models and data to understand, predict and control the
pandemic.

Fig. 1 shows a schematic of the overall workflow developed in this paper. The epi-
demiological model is formulated in §2, with postulated forms for the infection rate
curve and the derivation of the prediction for daily new cases; we also discuss a filter-
ing approach that is applied to the data before using it to infer model parameters. In
§3 we describe the “error model” and the statistical approach used to infer the latent
infection rate curve, and to account for the uncertainties in the incubation period dis-
tribution. Results, including push-forward posteriors and posterior predictive checks,

Model
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Error
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Error
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MCMC {Θi, i=1...M} { y rep 
i=1...D+F}
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Fig. 1: Epidemiological model inference and forecast workflow. The “Model” circle
encompasses the convolution between the infection rate and the incubation model
described in §2 and the “Error Model” circle illustrates the choices for the discrepancy
between the model and the data presented in §3.1.

are presented in §4 and we conclude in §5. The appendix includes a presentation of
data sources used in this paper.

2 Modeling Approach

We present here an epidemiological model to characterize and forecast the rate at
which people turn symptomatic from disease over time. For the purpose of this work,
we assume that once people develop symptoms, they have ready access to medical
services and can be diagnosed readily. From this perspective, these forecasts repre-
sent a lower bound on the actual number of people that are infected with COVID-19
as the people currently infected, but still incubating, are not accounted for. A fraction
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of the population infected might also exhibit minor or no symptoms at all and might
not seek medical advice. Therefore, these cases will not be part of patient counts
released by health officials. The epidemiological model consists of two main com-
ponents: an infection rate model, presented in §2.1 and an incubation rate model,
described in §2.2. These models are combined, through a convolution presented in
§2.3, into a forecast of number of cases that turn symptomatic daily. These forecasts
are compared to data presented in §2.4 and the Appendix.

2.1 Infection Rate Model

The infection rate represents the probability of an individual, that eventually will get
affected during an epidemic, to get infected at a specific time following the start of
the epidemic [30]. We approximate the rate of infection with a gamma distribution
with unknown shape parameter k and scale parameter θ . Depending on the choice for
the pair (k,θ) this distribution can display a sharp increase in the number of people
infected followed by a long tail, a dynamic that could lead to significant pressure
on the medical resources. Alternatively, the model can also capture weaker gradients
(“flattening the curve”) equivalent to public health efforts to temporarily increase
social separation and thus reducing the pressure on available medical resources.

Fig. 2: Infection rate models with fixed scale parameters θ = 10 (left frame) and fixed
shape parameter k = 3 (right frame).

The infection rate model is given by

fΓ (t;k,θ) = θ
−ktk−1 exp(−t/θ)

/
Γ (k) (1)

where fΓ (t;k,θ) it the probability density function (pdf) of the gamma distribution,
with k and θ strictly positive. Fig. 2 shows example infection rate models for several
shape and scale parameter values. The time in this figure is referenced with respect
to start of the epidemic, t0. Larger k and θ values lead to mild gradients but extend
the duration of the infection rate curves.
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Table 1: Nominal and 95% Confidence Interval (CI) values (from Reference [29]) for
the parameters of the incubation model (in Eq. (2)).

Parameter Nominal 95% CI

µ 1.621 (1.504,1.755)
σ 0.418 (0.271,0.542)

2.2 Incubation Model

Most of the results presented in this paper employ a lognormal incubation distribution
for COVID-19 [29]. The nominal and 95% Confidence Interval values for the mean,
µ , and standard deviation σ of the natural logarithm of the incubation model are
provided in Table 1.

The PDF, fLN , and cumulative distribution function (CDF), FLN , of the lognormal
distribution are given by

fLN(t; µ,σ) =
1

tσ
√

2
exp
(
− (log t−µ)2

2σ2

)
, FLN(t; µ,σ) =

1
2

erfc
(
− log t−µ

σ
√

2

)
(2)

To ascertain the impact of limited sample size on the uncertainty of µ and σ , we
analyze their theoretical distributions and compare with the data in Table 1. Let µ̂

and σ̂ be the mean and standard deviation computed from a set of n samples of the
natural logarithm of the incubation rate random variable. It follows that

µ̂−µ

σ/
√

n

has a Student’s t-distribution with n-degrees of freedom. To model the uncertainty in
σ̂ we assume that

(n−1)σ̂2

σ2

has a χ2 distribution with (n−1) degrees of freedom. While the data in [29] is based
on n = 181 confirmed cases, we found the corresponding 95% CIs for µ and σ com-
puted based on the Student’s t and chi-square distributions assumed above to be nar-
rower than the ranges provided in Table 1. Instead, to construct uncertain models for
these statistics, we employed a number of degrees of freedom n∗ = 36 that provided
the closest agreement, in a L2-sense, to the 95% CI in the reference. The resulting
95% CIs for µ and σ based on this fit are [1.48,1.76] and [0.320,0.515], respectively.

The left frame in Fig. 3 shows the family of PDFs with µ and σ drawn from Stu-
dent’s t and χ2 distributions, respectively. The nominal incubation PDF is shown in
black in this frame. The impact of the uncertainty in the incubation model parameters
is displayed in the right frame of this figure. For example, 7 days after infection, there
is a large variability (60%-90%) in the fraction of infected people that completed the
incubation phase and started displaying symptoms. This variability decreases at later
times, e.g. after 10 days more then 85% of case completed the incubation process.
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Fig. 3: Probability density functions for the incubation model (left frame) and fraction
of people for which incubation ran its course after 7, 10, and 14 days respectively
(right frame).

In the results section we will compare results obtained with the lognormal incu-
bation model with results based on other probability distributions. Again, we turn to
[29] which provides parameter values corresponding to gamma, Weibull, and Erlang
distributions.

2.3 Daily Symptomatic Cases

With these assumptions the number of people infected and with completed incubation
period at time ti can be written as a convolution between the infection rate and the
cumulative distribution function for the incubation distribution [12,42,44]

Ni = N
∫ ti

t0
fΓ (τ− t0;k,θ)FLN(ti− τ; µ,σ)d τ (3)

where N is the total number of people that will be infected throughout the epidemic
and t0 is the start time of the epidemic. This formulation assumes independence be-
tween the calendar date of the infection and the incubation distribution.

Using Eq. (3), the number of people developing symptoms between times ti−1
and ti is computed as

ni = Ni−Ni−1 = N
∫ ti

t0
fΓ (τ− t0;k,θ)(F∗LN(ti− τ; µ,σ)−F∗LN(ti−1− τ; µ,σ))d τ

(4)
where

F∗LN(t; µ,σ) =

{
0 if t < 0
FLN(t; µ,σ) if t ≥ 0

(5)

In Eq. (4), the second term under the integral, F∗LN(ti − τ; µ,σ)− F∗LN(ti−1 −
τ; µ,σ) can be approximated using the lognormal pdf as

F∗LN(ti− τ; µ,σ)−F∗LN(ti−1− τ; µ,σ)≈ (ti− ti−1) fLN(ti− τ; µ,σ) (6)
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leading to

ni ≈ N(ti− ti−1)
∫ ti

t0
fΓ (τ− t0;k,θ) fLN(ti− τ; µ,σ)d τ (7)

where fLN is the lognormal pdf. The results presented in §4 compute the number of
people that turn symptomatic daily, i.e. ti− ti−1 = 1 [day].

2.4 Data

The number of people developing symptoms daily ni, computed through Eqs. (4)
or (7), are compared to data obtained from several sources at the national, state, or
regional levels. We present the data sources in the Appendix.

We found that, for some states or regions, the reported daily counts exhibited a
significant amount of noise. This is caused by variation in testing capabilities and
sometimes by how data is aggregated from region to region and the time of the
day when it is made available. Sometimes previously undiagnosed cases are cate-
gorized as COVID-19 and reported on the current day instead of being allocated to
the original date. We employ a set of finite difference filters [25,41] that preserve low
wavenumber information, i.e. weekly or monthly trends, and reduces high wavenum-
ber noise, e.g. large day to day variability such as all cases for successive days being
reported at the end of the time range

ŷ = Fy, F = I+(−1)n+12−2nD (8)

Here y is the original data, ŷ is the filtered data. Matrix I is the identity matrix
and D is a band-diagonal matrix, e.g. triadiagonal for a n=2, i.e. a 2-nd order filter
and pentadiagonal for a n=4, i.e. a 4-th order filter. We have compared 2-nd and 4-
th order filters, and did not observe any significant difference between the filtered
results. Reference [41] provides D matrices for filters up to 12-th order.

Time series of y and ŷ for several regions are presented in the Appendix. For
the remainder of this paper we will only use filtered data to infer epidemiological
parameters. For notational convenience, we will drop the hat and refer to the filtered
data as y.

Note that all the data used in this study predate June 1, 2020 (in fact, most of the
studies use data gathered before May 15, 2020) when COVID-19 tests were admin-
istered primarily to symptomatic patients. Thus the results and inferences presented
in this paper apply only to the symptomatic cohort who seek medical care, and thus
pose the demand for medical resources. The data is also bereft of any information
about the ”second wave” of infections that affected Southern and Western USA in
late June, 2020 [8].

3 Statistical Methodology

Given data, y, in the form of time-series of daily counts, as shown in §2.4, and the
model predictions ni for the number of new symptomatic counts daily, presented in
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§2, we will employ a Bayesian framework to calibrate the epidemiological model
parameters. The discrepancy between the data and the model is written as

y = n(Θ)+ ε (9)

where y and n are arrays containing the data and model predictions

y = {y(t1),y(t2), . . . ,y(td)}, n= {n1(Θ),n2(Θ), . . . ,nd(Θ)}.

Here, d is the number of data points, the model parameters are grouped as Θ =
{t0,N,k,θ} and ε represents the error model and encapsulates, in this context, both
errors in the observations as well as errors due to imperfect modeling choices. The
observation errors include variations due to testing capabilities as well as errors when
tests are interpreted. Values for the vector of parameters Θ can be estimated in the
form of a multivariate PDF via Bayes theorem

p(Θ |y) ∝ p(y|Θ)p(Θ) (10)

where p(Θ |y) is the posterior distribution we are seeking after observing the data
y, p(y|Θ) is the likelihood of observing the data y for a particular value of Θ ,
and p(Θ) encapsulates any prior information available for the model parameters.
Bayesian methods are well-suited for dealing with heterogeneous sources of uncer-
tainty, in this case from our modeling assumptions, i.e. model and parametric un-
certainties, as well as the communicated daily counts of COVID-19 new cases, i.e.
experimental errors.

3.1 Likelihood Construction

In this work we explore both deterministic and stochastic formulations for the incu-
bation model. In the former case the mean and standard deviation of the incubation
model are fixed at their nominal values and the model prediction ni for day ti is
a scalar value that depends on Θ only. In the latter case, the incubation model is
stochastic with mean and standard deviation of its natural logarithm treated as Stu-
dent’s t and χ2 random variables, respectively, as discussed in §2.2. Let us denote
the underlying independent random variables by ξ = {ξµ ,ξσ ,}. The model predic-
tion ni(ξ) is now a random variable induced by ξ plugged in Eq. (4), and n(ξ) is a
random vector.

We explore two formulations for the statistical discrepancy ε betweenn and y. In
the first approach we assume ε has a zero-mean Multivariate Normal (MVN) distri-
bution. Under this assumption the likelihood p(y|Θ) for the deterministic incubation
model can be written as

p(y|Θ) = πn(Θ)(y) = (2π)−D/2|Cn|−1/2 exp
(
−1

2
(y−n(Θ))TC−1

n (y−n(Θ))

)
(11)
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The covariance matrix Cn can in principle be parameterized, e.g. square exponential
or Matern models, and the corresponding parameters inferred jointly with Θ . How-
ever, given the sparsity of data, we neglect correlations across time and presume a
diagonal covariance matrix with diagonal entries computed as

Cn,ii = σ
2
i = (σa +σm ni(Θ))2 (12)

The additive, σa, and multiplicative, σm, components will be inferred jointly with the
model parameters Θ

Θ = {t0,N,k,θ}→Θ = {t0,N,k,θ , logσa, logσm}

Here, we infer the logarithm of these parameters to ensure they remain positive. Un-
der these assumptions, the MVN likelihood in Eq. (11) is written as a product of
independent Gaussian densities

p(y|Θ) =
D

∏
i=1

πni(Θ)(yi) = (2π)−D/2
D

∏
i=1

σ
−1
i exp

(
− (yi−ni)

2

2σ2
i

)
(13)

where σi is given by Eq. (12). In §4.3 we will compare results obtained using only the
additive part σa, i.e. fixing σm = 0), of Eq. (12) with results using both the additive
and multiplicative components.

The second approach assumes a negative-binomial distribution for the discrep-
ancy between data and model predictions. The negative-binomial distribution is used
commonly in epidemiology to model overly dispersed data, e.g. in case where the
standard deviation exceeds the mean [31]. This is observed for most regions explored
in this report, in particular for the second half of April and the first half of May.
For this modeling choice, the likelihood of observing the data given a choice for the
model parameters is given by

p(y|Θ) =
D

∏
i=1

πni(Θ)(yi) =
D

∏
i=1

(
yi +α−1

α−1

)(
α

α +ni(Θ)

)α ( ni(Θ)

α +ni(Θ)

)yi

(14)

where α > 0 is the dispersion parameter, and(
yi +α−1

α−1

)
=

Γ (yi +α)

Γ (α)Γ (yi +1)
(15)

is the binomial coefficient. For simulations employing a negative binomial distri-
bution of discrepancies, the logarithm of the dispersion parameter α (to ensure it
remains positive) will be inferred jointly with the other model parameters, Θ =
{t0,N,k,θ , logα}.

For the stochastic incubation model the likelihood reads as

p(y|Θ) = πn(Θ),ξ(y), (16)

which we simplify by assuming independence of the discrepancies between different
days, arriving at

πn(Θ),ξ(y) =
D

∏
i=1

πni(Θ),ξ(yi). (17)
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Unlike the deterministic incubation model, the likelihood elements for each day πni(Θ),ξ(yi)
are not analytically tractable anymore since they now incorporate contributions from
ξ, i.e. from the variability of the parameters of the incubation model. One can evalu-
ate the likelihood via kernel density estimation by sampling ξ for each sample of Θ ,
and combining these samples with samples of the assumed discrepancy ε , in order to
arrive at an estimate of πni(Θ),ξ(yi). In fact, by sampling a single value of ξ for each
sample of Θ , one achieves an unbiased estimate of the likelihood πni(Θ),ξ(yi), and
given the independent-component assumption, it also leads to an unbiased estimate
of the full likelihood πn(Θ),ξ(y).

3.2 Posterior Sampling

A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the pos-
terior density p(Θ |y). MCMC is a class of techniques that allows sampling from a
posterior distribution by constructing a Markov Chain that has the posterior as its
stationary distribution. In particular, we use a delayed-rejection adaptive Metropo-
lis (DRAM) algorithm [23]. We have also explored additional algorithms, including
transitional MCMC (TMCMC) [27,37] as well as ensemble samplers [22] that al-
low model evaluations to run in parallel as well as sampling multi-modal posterior
distributions. As we revised the model implementation, the computational expense
reduced by approximately two orders of magnitude, and all results presented in this
report are based on posterior sampling via DRAM.

A key step in MCMC is the accept-reject mechanism via Metropolis-Hastings
algorithm. Each sample of Θ , drawn from a proposal q(·|Θi) is accepted with proba-
bility

α(Θi+1,Θi) = min
(

1,
p(Θi+1|y)q(Θi|Θi+1)

p(Θi|y)q(Θi+1|Θi)

)
where p(Θi|y) and p(Θi+1|y) are the values of the posterior pdf’s evaluated at sam-
ples Θi and Θi+1, respectively. In this work we employ symmetrical proposals, q(Θi|Θi+1)=
q(Θi+1|Θi). This is a straightforward application of MCMC for the deterministic in-
cubation model. In stochastic incubation model, we employ the unbiased estimate of
the approximate likelihood as described in the previous section. This is the essence of
the pseudo-marginal MCMC algorithm [10] guaranteeing that the accepted MCMC
samples correspond to the posterior distribution. In other words, at each MCMC step
we draw a random sample ξ from its distribution, and then we estimate the likelihood
in a way similar to the deterministic incubation model, in Eqs. (13) or (14).

Fig. 4 shows samples corresponding to a typical MCMC simulation to sample
the posterior distribution of Θ . We used the Raftery-Lewis diagnostic [40] to deter-
mine the number of MCMC samples required for converged statistics corresponding
to stationary posterior distributions for Θ . The required number of samples is of the
order o(105−106) depending on the geographical region employed in the inference.
The resulting Effective Sample Size [24] varies between 8,000 and 15,000 samples
depending on each parameter which is sufficient to estimate joint distributions for the
model parameters. Fig. 4 displays 1D and 2D joint marginal distributions based on the
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Fig. 4: MCMC samples for a simulation using US data up to May 1, 2020. The
chain employed 106 samples; we skipped the 1st half and the remaining samples
were thinned out to 104 samples. The t0 samples are relative to March 1, 2020.

chain samples shown in the previous figure. These results indicate strong dependen-
cies between some of the model parameters, e.g. between the start of the epidemic t0
and the the scale parameter k of the infection rate model. This was somewhat expected
based on the evolution of the daily counts of symptomatic cases and the functional
form that couples the infection rate and incubation models. The number of samples
in the MCMC simulations is tailored to capture these dependencies.

3.3 Predictive Assessment

We will employ both pushed-forward distributions and Bayesian posterior-predictive
distributions [33] to assess the predictive skill of the proposed statistical model of
the COVID-19 disease spread. The schematic in Eq. (18) illustrates the process to
generate push-forward posterior estimates

p(Θ |y)→{Θ (1), . . . ,Θ (m)︸ ︷︷ ︸
Posterior Samples

} n(Θ)−−−→ {y(pf,1), . . . ,y(pf,m)}→ ppf(y
(pf)|y). (18)

Here, y(pf) denotes hypothetical data y and ppf(y
(pf)|y) denotes the push-forward

probability density of the hypothetical data y(pf) conditioned on the observed data
y. We start with samples from the posterior distribution p(Θ |y). These samples are
readily available from the MCMC exploration of the parameter space, i.e. similar to
results shown in Fig. 4. Typically we subsample the MCMC chain to about 10-15K
samples that will be used to generate push-forward statistics. Using these samples, we



Bayesian Characterization of COVID-19 13

Fig. 5: 1D and 2D joint marginal distributions the components of Θ =
{t0,N,k,θ , logσa, logσm}.

evaluate the epidemiological model and collect the resulting y(pf) = n(Θ) samples
that correspond to the push-forward posterior distribution ppf(y

(pf)|y).
The pushed-forward posterior does not account for the discrepancy between the

data y and the model predictions n, subsumed into the definition of the error model
ε presented in Eqs. (13) and (14). The Bayesian posterior-predictive distribution,
defined in Eq. (19) is computed by marginalization of the likelihood over the posterior
distribution of model parameters Θ :

ppp

(
y(pp)|y

)
=
∫
Θ

p(y(pp)|Θ)p(Θ |y)dΘ . (19)

In practice, we estimate ppp

(
y(pp)|y

)
through sampling, because analytical esti-

mates are not usually available. The sampling workflow is similar to the one shown
in Eq. (18). After the model evaluations y = n(Θ) are completed, we add random
noise consistent with the likelihood model settings presented in §3.1. The resulting
samples are used to compute summary statistics ppp

(
y(pp)|y

)
.

The push-forward and posterior-predictive distribution workflows can be used
in hindcast mode, to check how well the model follows the data, and for short-term
forecasts for the spread dynamics of this disease. In the hindcast regime, the infection
rate is convolved with the incubation rate model to generate statistics for y(pp) (or
y(pf)) that will be compared against y, the data used to infer the model parameters.
The same functional form can be used to generate statistics for y(pp) (or y(pf)) beyond
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the set of dates for which data was available. We limit these forecasts to 7–10 days
as our infection rate model does not count for changes in social dynamics that can
significantly impact the epidemic over a longer time range.

4 Results

The statistical models described above are calibrated using data available at the coun-
try, state, and regional levels, and the calibrated model is used to gauge the agreement
between the model and the data and to generate short-term forecasts, typically 7-10
days ahead.

First, we will assess the predictive capabilities of these models for several mod-
eling choices:

– §4.2: Comparison of Incubation Models
– §4.3: Additive Error (AE) vs Additive+Multiplicative Error (A+ME) Models
– §4.4: Gaussian vs Negative Binomial Likelihood Models

We will then present results exploring the epidemiological dynamics at several geo-
graphical scales in §4.5.

4.1 Figure Annotations

The push-forward and posterior-predictive figures presented in this section show data
used to calibrate the epidemiological model with filled black circles. The shaded
color region illustrates either the pushed-forward posterior or the posterior-predictive
distribution with darker colors near the median and lighter colors near the low and
high quantile values. The blue colors correspond to the hindcast dates and red colors
to forecasts. The inter-quartile range is marked with green lines and the 95% confi-
dence interval with dashed lines. Some of the plots also show data collected at a later
time, with open circles, to check the agreement between the forecast and the observed
number of cases after the model has been calibrated.

4.2 Comparison of Incubation Models

We start the analysis with an assessment of the impact of the choice family of distri-
butions on the model prediction. The left frame of Fig. 6 shows median (with red lines
and symbols) and 95% CI with blue/magenta lines for the new daily cases based on
lognormal, gamma, Weibull, and Erlang distributions for the incubation model. The
mean and standard deviation of the natural logarithm of the associated lognormal
random variable, and the shape and scale parameters for the other distributions are
available in Appendix Table 2 from Reference [29]. The results for all four incuba-
tion models are visually very close. This observation holds for other simulations at
national/state/regional levels (results not shown). The results presented in the remain-
der of this paper are based on lognormal incubation models. The right frame in Fig. 6
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presents the corresponding infection rate curve that resulted from the model calibra-
tion. This represents a lower bound on the true number of infected people, as our
model will not capture the asymptomatic cases or the population that displays minor
symptoms and did not seek medical care.
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Fig. 6: (Left frame) Comparison of hindcasts/forecasts using several incubation mod-
els: the median is shown in red for lognormal (solid line) gamma (circle symbols),
Weibull (square symbols), and Erlang (diamond symbols) distributions, respectively.
The 95% CI is shown with blue lines for all lognormal and magenta for the other
distributions; (Right frame) infection rate curve with calibrated shape and scale pa-
rameters shown in Fig. 5.

Next, we analyze the impact of the choice of deterministic vs stochastic incuba-
tion models on the model prediction. First we ran our model using the lognormal
incubation model with mean and standard deviation fixed at their nominal values in
Table 1. We then used the same dataset to calibrate the epidemiological model which
employs an incubation rate with uncertain mean and standard deviation as described
in §2.2. These results are labeled “Deterministic” and “Stochastic”, respectively, in
Fig. 7. This figure shows results based on data corresponding to the United States.
The choice of deterministic vs stochastic incubation models produce very similar
outputs.

The results shown in the right frame of Fig. 3 indicate a relatively wide spread,
between 0.64 and 0.95 with a nominal around 0.8, of the fraction of people that
complete the incubation and start exhibiting symptoms 7 days after infection. Never-
theless, this variability does not have a significant impact on the model inference and
subsequent forecasts. The noise induced by the stochastic incubation model is much
smaller than the statistical noise introduced by the discrepancy between the data and
the model. This observation holds for other datasets inspected for this work.
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(a) Deterministic Incubation Rate
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(b) Stochastic Incubation Rate

Fig. 7: Posterior-predictive forecast models using (a) nominal and (b) stochastic incu-
bation rates. Epidemiological model inference employs aggregated data for the entire
United States. Symbols and colors annotations are described in §4.1.

4.3 Additive vs Additive-Multiplicative Error Models

Next, we explore results based on either AE or A+ME formulations for the statistical
discrepancy between the epidemiological model and the data. This choice impacts the
construction of the covariance matrix for the Gaussian likelihood model, in Eq. (12).
For AE we only infer σa while for A+ME we infer both σa and σm. The AE re-
sults in Fig. 8a are based on the same dataset as the A+ME results in Fig. 8b. Both

20
20

-03
-14

20
20

-03
-28

20
20

-04
-11

20
20

-04
-25

20
20

-05
-09

Date

0

5000

10000

15000

20000

25000

30000

35000

40000

Re
po

rte
d 

Ne
w 

Ca
se

s o
n 

Da
te

(a) AE Posterior-Predictive
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(b) A+ME Posterior Predictive
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(c) A+EM Push Forward

Fig. 8: Posterior-predictive and push-forward forecasts using data aggregated for all
of the United States. The middle frame is the same as the right frame in Fig. 7 and is
repeated here to facilitate the comparison of different modeling and forecast choices.
Symbols and colors annotations are described in §4.1.

formulations present advantages and disadvantages when attempting to model daily
symptomatic cases that span several orders of magnitude. The AE model, in Fig. 8a,
presents a posterior-predictive range around the peak region that is consistent with
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the spread in the data. However, the constant σ = σa over the entire date range re-
sults in much wider uncertainties predicted by the model at the onset of the epidemic.
The A+ME model handles the discrepancy better overall as the multiplicative error
term allows it to adjust the uncertainty bound with the data. Nevertheless, this model
results in a wider uncertainty band than warranted by the data near the peak region.
These results indicate that a formulation for an error model that is time dependent
can improve the discrepancy between the COVID-19 data and the epidemiological
model.

We briefly explore the difference between pushed-forward posterior, in Fig. 8c,
and the posterior-predictive data, in Fig. 7b. These results show that uncertainties in
the model parameters alone are not sufficient to capture the spread in the data. This
observation suggests more work is needed on augmenting the epidemiological model
with embedded components that can explain the spread in the data without the need
for external error terms.

4.4 Gaussian vs Negative Binomial Error Models

The negative binomial distribution is used commonly in epidemiology to model overly
dispersed data, e.g. in cases where the variance exceeds the mean [31]. We also ob-
serve similar trends in some of the COVID-19 datasets. Fig. 9 shows results based on
data for Alaska. The results based on the two error models are very similar, with the
negative binomial results (on the top row) offering a slightly wider uncertainty band
to better cover the data dispersion. Nevertheless, results are very similar, as they are
for other regions that exhibit a similar number of daily cases, typically less than a
few hundred. For regions with a larger number of daily cases, the likelihood evalua-
tion was fraught with errors due to the evaluation of the negative binomial pdf. We
therefore shifted our attention to the Gaussian formulation which offers a more robust
evaluation for this problem.

4.5 Forecasts for Countries/States/Regions

In this section we examine forecasts based on data aggregated at country, state, and
regional levels, and highlight similarities and differences in the epidemic dynamics
resulted from these datasets.

4.5.1 Curve “flattening” in CA

The data in Fig. 10 illustrates the built-in delay in the disease dynamics due to the
incubation process. A stay-at-home order was issued on March 19. Given the incu-
bation rate distribution, it takes about 10 days for 90-95% of the people infected to
start showing symptoms. After the stay at home order was issued, the number of daily
case continued to rise because of infections that occurred before March 19. The data
begins to flatten out in the first week of April and the model captures this trend a
few days later, April 3-5. The data corresponding to April 9-11 show an increased
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(c) April 19, 2020
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(e) April 17, 2020

20
20

-03
-11

20
20

-03
-18

20
20

-03
-25

20
20

-04
-01

20
20

-04
-08

20
20

-04
-15

20
20

-04
-22

20
20

-04
-29

Date

0

5

10

15

20

Re
po

rte
d 

Ne
w 

Ca
se

s o
n 

Da
te

(f) April 19, 2020

Fig. 9: Posterior-predictive forecasts for Alaska, using negative binomial likelihood
(top row) and additive/multiplicative Gaussian likelihood (bottom row). Symbols and
colors annotations are described in §4.1.

dispersion. To capture this increased noise, we switched from an AE model to A+ME
model, with results shown in Fig. 11.

4.5.2 Example of Dynamics at Regional Scale: New Mexico

Figs. 12 and 13 present results showing the different dynamics of timing and scale of
infections for the central (NM-C) and north-west (NM-NW) regions of New Mexico.
These regions are also highlighted on the map in Fig. 20b. The data for the central
region, shows a smaller daily count compared to the NW region. The epidemiological
model captures the relatively large dispersion in the data for both regions. For the
NM-C the first cases are recorded around March 10 and the model suggests the peak
has been reached around mid-April, while NM-NW starts about a week later, around
March 18, but records approximately twice more daily cases when it reaches the peak
in the first half of May. Both regions display declining cases as of late May.

Comparing the Californian and New Mexican results, it is clear that the degree of
scatter in the New Mexico data is much larger and adversely affects the inference, the
model fit and the forecast accuracy. The reason for this scatter is unknown, but the
daily numbers for New Mexico are much smaller that California’s and are affected
by individual evens e.g., detection of transmission in a nursing home or a community.
This is further accentuated by the fact that New Mexico is a sparsely populated re-
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(a) April 1, 2020
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(b) April 3, 2020
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(c) April 5, 2020
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(d) April 7, 2020
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(e) April 9, 2020
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(f) April 11, 2020

Fig. 10: Posterior-predictive forecasts for California, based on additive error models
using data available on (a) April 1, 2020 through (f) April 11. Symbols and colors
annotations are described in §4.1.
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(a) April 21, 2020
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(b) May 1, 2020
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(c) May 11, 2020
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(d) May 21, 2020

Fig. 11: Posterior-predictive forecasts for California, based on additive/multiplicative
error models using data available on (a) April 21, 2020 through (d) May 21, 2020.
Symbols and colors annotations are described in §4.1.

gion where sustained transmission, resulting in smooth curves, is largely impossible
outside its few urban communities.

4.5.3 Moving target for US

This section discusses an analysis of the aggregate data from all US states. The
posterior-predictive results shown in Fig. 14a—14d suggest the peak in the number
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(b) April 21, 2020
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(c) May 7, 2020
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(d) May 28, 2020

Fig. 12: Posterior-predictive forecasts for New Mexico central region, corresponding
to counties highlighted with blue in Fig. 20b. Symbols and colors annotations are
described in §4.1.
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(a) April 15, 2020
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(b) May 1, 2020
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(c) May 13, 2020
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(d) May 28, 2020

Fig. 13: Posterior-predictive forecasts for New Mexico north-west region, corre-
sponding to counties highlighted with red in Fig. 20b. Symbols and colors annota-
tions are described in §4.1.

of daily cases was reached around mid-April. Nevertheless the model had to adjust
the downward slope as the number of daily cases has been declining at a slower pace
compared to the time window that immediately followed the peak. As a result, the
prediction for the total number of people, N, that would be infected in US during this
first wave of infections has been steadily increasing as results show in Fig. 14e.

4.5.4 Sequence of Forecasts for Other Countries

We conclude our analysis of the proposed epidemiological model with available daily
symptomatic cases pertaining to Germany, Italy, and Spain, in Figs. 15—17. For Ger-
many, the uncertainty range increases while the epidemic is winding down, as the data
has a relatively large spread compared to the number of daily cases recorded around
mid-May. This reinforces an earlier point about the need to refine the error model with
a time-dependent component. For Spain, a brief initial downslope can be observed in
early April, also evident in the filtered data presented in Fig. 19b. This, however, was
followed by large variations in the number of cases in the second half of April. This
change could have been caused either by a scale-up of testing or by the occurrence of
other infection hotspots in this country. This resulted in an overly-dispersed dataset
and a wide uncertainty band for Spain. Forecasts based on daily symptomatic cases
reported for Italy, in Fig. 17, exhibit an upward shift observed around April 10-20,
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Fig. 14: (a-d) Posterior-predictive forecasts for US, based on additive/multiplicative
error models and (e) Total number of cases N. Symbols and colors annotations for
(a)-(d) are described in §4.1.
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Fig. 15: Posterior-predictive forecasts for Germany, based on additive/multiplicative
error models. Symbols and colors annotations are described in §4.1

similar to data for Spain above. The subsequent forecasts display narrower uncer-
tainty bands compared to other similar forecasts above, possibly due to the absence
of hotspots and/or regular data reporting.
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Fig. 16: Posterior-predictive forecasts for Spain, based on additive/multiplicative er-
ror models. Symbols and colors annotations are described in §4.1
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Fig. 17: Posterior-predictive forecasts for Italy, based on additive/multiplicative error
models. Symbols and colors annotations are described in §4.1

4.6 Discussion

Fig. 10, 11 and 14 show inferences and forecasts obtained using data available till
mid-May, 2020. The indicate that outbreak was dying down, with forecasts of daily
new cases trending down. In early June, public health measures to restrict population
mixing were curtailed, and by mid-July, both California and the US were experi-
encing an explosive increase in new cases of COVID-19 being detected every day,
quite at variance with the forecasts in the figures. This was due to the second wave of
infections caused by enhanced population mixing.

The model in Eq. 3 cannot capture the second wave of infections due to its re-
liance on a unimodal infection curve N fΓ (τ − t0;k,θ). This was by design, as the
model is meant to be used early in an outbreak, with public health officials focussing
on the the first wave of infections. However, it can be trivially extended with a second
infection curve to yield an augmented equation

Ni = N[1]
∫ ti

t0
f [1]
Γ

(
τ− t0;k[1],θ [1]

)
FLN (ti− τ; µ,σ) d τ +

N[2]
∫ ti

t0
f [2]
Γ

(
τ− (t0 +∆ t);k[2],θ [2]

)
FLN (ti− τ; µ,σ) d τ, (20)

with two sets of parameters for the two infection curves, which are separated in time
by ∆ t > 0. Eq. 20 is then fitted to data which is suspected to contain effects of two
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waves of infection. This process does double the number of parameters to be esti-
mated from data. However, the posterior density inferred for the parameters of the
first wave (i.e., those with [1] superscript), using data collected before the arrival of
the second wave, can be used to impose informative priors, considerably simplifying
the estimation problem. Note that the augmentation shown in Eq. 20 is very intuitive,
and can be repeated if multiple infection waves are suspected.

A second method that could, in principle, be used to infer multiple waves of in-
fection are compartmental models e.g., SIR models, or their extensions. These mod-
els represent the epidemiological evolution of a patient through a sequence of com-
partments/states, with the residence time in each compartment modeled as a random
variable. One of these compartments, “Infectious”, can then be used to model spread
of the disease to other individuals. Such compartmental models have also been par-
layed into Ordinary Differential Equation (ODE) models for an entire population,
with the population distributed among the various compartments. ODE models as-
sume that the residence time in each compartment is exponentially distributed, and
using multiple compartments, can represent incubation and symptomatic periods that
are not exponentially distributed. This does lead to an explosion of compartments.
The spread-of-infection model often involves a time-dependent reproductive number
R(t) that can be used to model the effectiveness of epidemic control measures. It de-
notes that number of individuals a single infected individual will spread the disease
to, and as public health measures are put in place (or removed), R(t) will decrease or
increase.

We did not consider SIR models, or their extensions, in our study as our model
is meant to be used early in an outbreak when data is scarce and incomplete. Since
our method is data-driven and involves fitting a model, a deterministic (ODE) com-
partmental model with few parameters would be desirable. The reasons for avoiding
ODE-based compartmental models are:

– The incubation period of COVID-19 is not exponential (it is lognormal) and there
is no way of modeling it with a single “Infectious” compartment.

– While it is possible to decompose the “Infectious” compartment into multiple
sub-compartments, it would increase the dimensionality of the inverse problem
as we would have to infer the fraction of the infected population in each of the
sub-compartments. This is not desirable when data is scarce.

– We did not consider using extensions of SIR i.e., those with more compartments
since it would require us to know the residence time in each compartment. This
information is not available with much certainty at the start of the epidemic. This
is particularly true for COVID-19 where only a small fraction of the “Infectious”
cohort progress to compartments which exhibit symptoms.

– SIR models can infer the existence of a second wave of infections but would re-
quire a very flexible parameterization of R(t) that would allow bi- or multimodal
behavior. It is unknown what sparsely parameterized functional form would be
sufficient for modeling R(t).
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5 Summary

This paper illustrates the performance of a method for producing short-term fore-
casts (with a forecasting horizon of about 7-10 days) of a partially-observed infec-
tious disease outbreak. We have applied the method to the COVID-19 pandemic of
spring, 2020. The forecasting problem is formulated as a Bayesian inverse problem,
predicated on an incubation period model. The Bayesian inverse problem is solved
using Markov chain Monte Carlo and infers parameters of the latent infection-rate
curve from an observed time-series of new case counts. The forecast is merely the
posterior-predictive simulations using realizations of the infection-rate curve and the
incubation period model. The method accommodates multiple, competing incubation
period models using a pseudo-marginal Metropolis-Hastings sampler. The variability
in the incubation rate model has little impact on the forecast uncertainty, which is
mostly due to the variability in the observed data and the discrepancy between the la-
tent infection rate model and the spread dynamics at several geographical scales. The
uncertainty in the incubation period distribution also has little impact on the inferred
latent infection rate curve.

The method is applied at the country, provincial and regional/county scales. The
bulk of the study used data aggregated at the state and country level for the United
States, as well as counties in New Mexico and California. We also analyzed data
from a few European countries. The wide disparity of daily new cases motivated us
to study two formulations for the error model used in the likelihood, though the Gaus-
sian error models was found to be acceptable for all cases. The most successful error
model included a combination of multiplicative and additive errors. This was because
of the wide disparity in the daily case counts experienced over the full duration of the
outbreak. The method was found to be sufficiently robust to produce useful forecasts
at all three spatial resolutions, though high-variance noise in low-count data (poorly
reported / low-count / largely unscathed counties) posed the stiffest challenge in dis-
cerning the latent infection rate.

The method produces rough-and-ready information required to monitor the effi-
cacy of quarantining efforts. It can be used to predict the potential shift in demand of
medical resources due to the model’s inferential capabilities to detect changes in dis-
ease dynamics through short-term forecasts. It took about 10 days of data (about the
90% quantile of the incubation model distribution) to infer the flattening of the infec-
tion rate in California after curbs on population mixing were instituted. The method
also detected the anomalous dynamics of COVID-19 in northwestern New Mexico,
where the outbreak has displayed a stubborn persistence over time.

Our approach suffers from two shortcomings. The first is our reliance on the time-
series of daily new confirmed cases as the calibration data. As the pandemic has pro-
gressed and testing for COVID-19 infection has become widespread in the USA, the
daily confirmed new cases are no longer mainly of symptomatic cases who might re-
quire medical care, and forecasts developed using our method would overpredict the
demand for medical resources. However, as stated in §1, our approach, with its em-
phasis on simplicity and reliance on easily observed data, is meant to be used in the
early epoch of the outbreak for medical resource forecasting, and within those prag-
matic considerations, has worked well. The approach could perhaps be augmented
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with a time-series of COVID-19 tests administered every day to tease apart the effect
of increased testing on the observed data, but that is beyond the scope of the current
work. Undoubtedly this would result in a more complex model, which would need to
be conditioned on more plentiful data, which might not be readily available during
the early epoch of an outbreak.

The second shortcoming of our approach is that it does not model, detect or infer
a second wave of infections, caused by an increase in population mixing. This can
be accomplished by adding a second infection rate curve/model to the inference pro-
cedure. This doubles the number of parameters to be inferred from the data, but the
parameters of the first wave can be tightly constrained using informative priors. This
issue is currently being investigated by the authors.
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Appendix: Epidemiological Data

We have used several sources [1,2,4–6] to gather daily counts of symptomatic cases
at several times while we performed this work. The illustrations in this section present
both the original data with blue symbols as well as filtered data with red symbols and
lines.
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(b) California
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(c) New Mexico

20
20

-03
-02

20
20

-03
-09

20
20

-03
-16

20
20

-03
-23

20
20

-03
-30

20
20

-04
-06

20
20

-04
-13

20
20

-04
-20

20
20

-04
-27

20
20

-05
-04

Date

0

5

10

15

20

Re
po

rte
d 

Ne
w 

Ca
se

s o
n 

Da
te Data

Filtered Data

(d) Alaska
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(e) New York
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(f) Michigan

Fig. 18: Daily confirmed cases of COVID-19 aggregated the country and state level,
shown in blue symbols, and the corresponding filtered data shown with red lines and
symbols.

Fig. 18 shows data for all of the US (data extracted from [6]), and for 5 selected
states (data extracted from [2]). The filtering approach, presented in §2.4, preserves
the weekly scale variability observed for some of the datasets in this figure, and re-
moves some of the large day to day variability observed for example in Alaska, in
Fig. 18d.

Fig. 19 shows the data for several countries with a significant number of COVID-
19 cases as of May 10, 2010. Similar to US and some of the US states, a weekly
frequency trend can be observed superimposed on the overall epidemiological trend.
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These trends are observed on the downward slope mostly, e.g. for Italy and Germany.
When the epidemic is taking hold, it is possible that any higher frequency fluctuation
is hidden inside the sharply increasing counts. Possible explanations include regional
hot-spots flaring up periodically as well as expanded testing capabilities ramping-up
over time.
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(a) Italy
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(b) Spain
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(c) Germany
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(d) Mexico
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(e) Russia
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(f) China

Fig. 19: Daily confirmed cases of COVID-19 for several countries shown in blue
symbols and the corresponding filtered data shown with red lines and symbols. The
large values for February 12 (14K) and 13 (5K) in China correspond to changes in
how Chinese authorities defined “confirmed” cases. The data point for February 12
falls outside the y-axis in this figure.

We have also explored epidemiological models applied at regional scale. The left
frame in Fig. 20 shows a set of counties in the Bay Area that were the first to issue
the stay-at-home order on March 17, 2020. Two groups of counties in New Mexico
are shown with red and blue in the right frame of Fig. 20. These regions displayed
different disease dynamics, e.g. a shelter-in-place was first issued in the Bay Area on
March 16, then extended to the entire state on March 19, while the new daily counts
were much larger in the NW New Mexico compared to the central region. The daily
counts, shown in Fig. 21 for these three regions was aggregated based on county data
provided by [2].
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(a) California Bay Area and Vicinity
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(b) New Mexico

Fig. 20: Illustration of the set of counties aggregated together for the purpose of
regional forecasts. Left frame: Marin, San Francisco, San Mateo, Contra Costa,
Alameda, Santa Clara counties in the Bay Area shown in blue. Right frame: San
Juan, McKinley, and Cibola counties in the north-west New Mexico shown in red,
and Torrance, Valencia, Bernalillo, and Sandoval counties in central New Mexico
shown in blue.
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(a) Bay Area
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(b) North-West NM
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(c) Central NM

Fig. 21: Daily confirmed cases of COVID-19 shown in blue symbols and the corre-
sponding filtered data shown with red lines and symbols for the three regions outlined
in Fig. 20.


