
SANDIA REPORT
SAND2020-10958
Printed September, 2020

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Predictive Skill of Deep Learning
Models Trained on Limited Sequence
Data
Kookjin Lee, Jaideep Ray, and Cosmin Safta

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

ABSTRACT

In this report we investigate the utility of one-dimensional convolutional neural network (CNN)
models in epidemiological forecasting. Deep learning models, especially variants of recurrent
neural networks (RNNs) have been studied for influenza forecasting, and have achieved higher
forecasting skill compared to conventional models such as ARIMA models. In this study, we
adapt two neural networks that employ one-dimensional temporal convolutional layers as a
primary building block – temporal convolutional networks and simple neural attentive
meta-learner – for epidemiological forecasting and test them with influenza data from the US
collected over 2010-2019. We find that epidemiological forecasting with CNNs is feasible, and
their forecasting skill is comparable to, and at times, superior to, RNNs. Thus CNNs and RNNs
bring the power of nonlinear transformations to purely data-driven epidemiological models, a
capability that heretofore has been limited to more elaborate mechanistic/compartmental disease
models.

3

ACKNOWLEDGMENT

This report describes objective technical results and analysis. Any subjective views or opinions
that might be expressed in the paper do not necessarily represent the views of the U.S. Department
of Energy or the United States Government. Sandia National Laboratories is a multimission
laboratory managed and operated by National Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-NA0003525.

4

CONTENTS

1. Introduction 9

2. Methods and materials 11
2.1. Recurrent Neural Networks (RNN) . 11

2.1.1. Long Short-Term Memory (LSTM) . 12
2.1.2. Gated Recurrent Unit (GRU) . 13

2.2. Sequence-to-Sequence (Seq2Seq) Model . 13
2.3. Convolutional Networks . 14

2.3.1. Temporal Convolutional Networks (TCNs) . 14
2.3.2. Simple Neural Attentive Meta-Learner (SNAIL) . 14

2.4. Materials . 15
2.4.1. Preprocessing . 16

3. Results and discussion 17
3.1. Training neural networks . 17
3.2. Performance metrics . 17
3.3. One-week-ahead predictions results . 18

3.3.1. LSTM and GRU. 18
3.3.2. Seq2Seq . 20
3.3.3. TCN . 21
3.3.4. SNAIL. 23
3.3.5. Performance comparisons between Seq2Seq, TCN, and SNAIL 23

3.4. N-weeks-ahead predictions . 26
3.5. Discussion . 28

4. Conclusion 33

References 34

5

LIST OF FIGURES

Fig 2-1. An example RNN architecture with two hidden layers: a folded representation
(left) and an unfolded representation (right). 12

Fig 2-2. An example Seq2Seq architecture with one hidden layer in the encoder and the
decoder. The context vector is depicted in the middle. 13

Fig 2-3. A temporal convolutional network with layers corresponding to exponentially in-
creasing dilation factors d = 1,2,4. 14

Fig 2-4. A schematic view of SNAIL with one TCBLOCK and two ATTENTIONBLOCKs. . 15
Fig 2-5. An example illustration for applying a sliding window to a %ILI curve corre-

sponding to California, from the 2013-2014 season to the 2014-2015 season. 16

Fig 3-1. Four performance indicators for one-week-ahead predictions obtained with RNN-
LSTM and RNN-GRU. Smaller values are preferable for RMSE, MAPE, L2E,
and larger values are better for PCORR. 19

Fig 3-2. Four performance metrics for one-week-ahead predictions obtained by using RNN-
LSTM and RNN-GRU for varying number of layers nhhh = {2,3,4,5}. 20

Fig 3-3. Four performance indicators for one week-ahead predictions obtained with RNN-
GRU and the Seq2Seq model for varying number of layers nhhh = {2,3,4,5}. Only
the best performing values of whist are presented. 21

Fig 3-4. Four performance indicators for one week-ahead predictions obtained with TCNs
with varying numbers of residual blocks nR = {5,6,7,8} and kernel size k = 4. . . . 22

Fig 3-5. Four performance metrics for one-week-ahead predictions obtained by using the
SNAILs for varying number of TC layers nTC = {6,7,8} with the kernel size
nkey = {16,32}. 24

Fig 3-6. The best performances achieved by Seq2Seq, TCN, and SNAIL. Four perfor-
mance indicators, RMSE, MAPE, L2E, and PCORR, are measured for each state.
On the horizontal axis, the states are in a decreasing order w.r.t. the relative per-
formance of SNAIL against Seq2Seq. 25

Fig 3-7. The boxplots of all four performance metrics measured by using Seq2Seq, TCN,
and SNAIL. The boxplots summarize statistics of the data shown in Fig 3-6. The
middle black and yellow lines indicate medians and means, respectively, and the
boxes indicates the interquartile ranges. Top half: the entire range of the boxplots.
Bottom half: the IQR of the boxplots excerpted. 27

Fig 3-8. The proportion of the states where the former network outperforms the later net-
work in 0, 1, 2, 3, or all 4 error indicators (RMSE, MAPE, L2E, and PCORR). The
numbers are shown in this figure are collected from the results shown in Fig. 3-6. 28

6

Fig 3-9. Example plots of %ILI and predictions made by Seq2Seq and SNAIL for two sea-
sons 2017-2018 (validation) and 2018-2019 (test). The original %ILI is depicted
in solid black lines and the prediction results of Seq2Seq and SNAIL are depicted
in solid red lines and dashed green lines. 29

Fig 3-10. Example plots of %ILI and predictions made by Seq2Seq and SNAIL for two sea-
sons 2017-2018 (validation) and 2018-2019 (test). The original %ILI is depicted
in solid black lines and the prediction results of Seq2Seq and SNAIL are depicted
in solid red lines and dashed green lines. 30

Fig 3-11. Example plots of %ILI and predictions made by Seq2Seq and SNAIL for two sea-
sons 2017-2018 (validation) and 2018-2019 (test). The original %ILI is depicted
in solid black lines and the prediction results of Seq2Seq and SNAIL are depicted
in solid red lines and dashed green lines. 31

Fig 4-1. LSTM cell diagram. 39
Fig 4-2. GRU cell diagram. 40
Fig 4-3. TCN residual block. The residual block consists of two layers of dilated con-

volutional layers, each of which followed by weight normalization, ReLU, and
Dropout. Then the resulting quantity of the dilated convolutions and the input are
summed element-wise. If the input and the output sizes do not match, an optional
1×1 convolution can be used. 42

Fig 4-4. SNAIL DENSEBLOCK. DENSEBLOCK consists of two parallel dilated causal
convolutions. The outputs of the convolutional layers are multiplied element-wise
and then the resulting quantity is concatenated with the input. 43

Fig 4-5. SNAIL DENSEBLOCK. DENSEBLOCK consists of two parallel dilated causal
convolutions. The outputs of the convolutional layers are multiplied element-wise
and then the resulting quantity is concatenated with the input. 43

7

LIST OF TABLES

Table 3-1. Neural network configurations: the number of GRU layers nhhh, the number of
RESBLOCKs nR, the number of TCBLOCKs nTC, the kernel size k, the number
of kernel filters nk, and the size of key nkey in SNAIL. For TCN and SNAIL, the
value of whist is omitted as setting whist = 128 yields the best results. For TCN,
nk = 4. 23

Table 3-2. The best performances achieved by Seq2Seq, TCN, and SNAIL. The perfor-
mance metrics are averaged over 49 states. The symbols ↓ and ↑ indicate that the
lower and higher values correspond to the better performance. 26

Table 3-3. The performance metrics measured by Seq2Seq, TCN, and SNAIL for varying
prediction horizons {1,2,3,4}. The same sets of network hyperparameters for
each model are used for varying horizons. The downward/upward arrows in
parentheses indicate smaller/larger values are preferred. 31

8

1. INTRODUCTION

Seasonal influenza results in 9–45 million illnesses, between 140k–180k hospitalizations, and
between 12k–61k deaths annually since 2010. It is the subject of intensive and continuous
surveillance by the US Center for Disease Control [34]. Forecasting influenza outbreaks is
important as it allows us to plan for medical resource demands [16]. To address this problem,
CDC has been making efforts on Flu Forecasting [9], of which the goal is to predict the disease
dynamics, e.g. predicting the timing, peak, and intensity of flu season, so that its impact can be
reduced. Since a competition, “Predict the Influenza Season Challenge” (see [10]), hosted by
CDC in 2013, CDC has encouraged researchers to develop models to make accurate predictions
of influenza activities for a number of weeks ahead. Along with traditional mechanistic modeling
approaches, there have been many studies on developing statistical forecast models using
historical flu activity data: auto-regressive modeling [8], Google Flu Trend [17], Google search
data [54, 53]), and refined models using structural spatiotemporal synchronicities [15, 32], to
name a few.

More recently, with the advancements in deep learning and the availability of
high-spatial-resolution data, i.e., ten US HHS-regions-level data (regions defined by the United
States Department of Health & Human Services) and state-level data for all US states, there are
many studies on applying deep learning techniques for flu forecasting. Among several artificial
neural network architectures, for handling time series, there are largely two types of architectures
that have been extensively studied: recurrent neural networks (RNNs), which consist of shared
and recurring units, and convolutional neural networks (CNNs), which consist of layers of
convolutional operations. RNNs are defined as a family of neural networks for processing
“sequential data” [21] and have shown a significant impact in applications such as language
modeling [42, 22], machine translation [3], and polyphonic music modeling [13]. RNNs and their
variants also have been actively explored in flu (%ILI) prediction
studies [47, 56, 52, 46, 49, 31, 51].

CNNs are often considered to be a specialized neural networks for processing images, exploiting
the spatial local correlations. CNNs, however, also have been applied to sequence modeling in
many applications including speech recognition [48] and natural language
processing [14, 26, 28, 57, 25]. More recently, variants of CNNs that are specially designed for
sequence modeling using operations, “temporal” convolutions, have demonstrated an improved
performance in audio synthesis [36], machine translations [19, 26], and various other sequence
modeling [4] compared to earlier NN models. In particular, the extensive experiments in [4]
demonstrated that relative simple temporal convolution architectures could exhibit substantially
longer memory than RNNs. Despite these successes, temporal convolutions have rarely been
explored in modeling infectious disease models.

9

In this study, we model flu forecasting as a sequence modeling task, explore different NN
architectures, essentially variants of RNNs and CNNs, and then compare performances of all
models with extensive experiments. Following [17, 54, 32], we utilize the CDC data on the
percentage of the number of influenza-like illness (ILI) patients over the total number of
outpatient visits, which is denoted by %ILI; this information can be used as a proxy of the flu
activity in the population and help hospital officials allocate appropriate resources in preparation
for increased patient visits to hospital facilities. This study considers only the state-level %ILI
from CDC without any external data (e.g., external factors that might affect the flu activity or
additional internet data that can be utilized to forecast).

Both statistical time-series models [18] e.g., ARIMA, and mechanistic/compartmental
models [27] are used in forecasting epidemics. Compartmental models require one to model
population mixing and disease phenomenology (e.g., incubation, prodrome, existence and role of
asymptomatic individuals etc.) which can be difficult in case of novel diseases. However, modern
information technology allows the (very) quick and comprehensive collection of basic
epidemiological data e.g., detected or diagnosed cases, at the country-, regional- and often,
city-scale, as evidenced during the ongoing COVID-19 pandemic [2, 1], and purely data-driven
methods could be used for forecasting and practical resource planning scenarios even without
fully understanding the disease dynamics. This raises the question whether more complex
data-driven models, such as CNNs and RNNs, can be trained on the big data to provide better
forecasts than linear ARIMA models. RNNs, in fact, have been used for forecasting
COVID-19 [30], and comparisons of RNN-based forecasting for influenza have shown that neural
networks perform far better than ARIMA models [51]. In this paper we investigate whether
CNNs, one-dimensional temporal convolutions, in particular, could be used for the same
purpose.

An outline of this report is as follows. In Chapter 2 we review neural networks models with and
without temporal convolutions. Next, we describe datasets in detail and training strategies for
neural networks in Section 3.1. We present results of experiments of one-week ahead predictions
and multi-week ahead predictions in Sections 3.3 and 3.4. We conclude with a discussion in
Section 3.5.

10

2. METHODS AND MATERIALS

Assume that we have a sequence of input data {x1, . . . ,xt} with the time index t, which can be
obtained for example from measurements, and we wish to predict future sequence,
{xt+1,xt+2, . . .} via a sequence modeling. In a general form, sequence modeling consists of
learning a function f (·;Θ) such that

{o1, . . . ,onout}= f (x1, . . . ,xnin;Θ),

where Θ is a set of parameters to be learned, and {o1, . . . ,onout} is a sequence of outputs. Here, nin
and nout are not necessarily to be the same. In a supervised learning setting, there are target (or
reference) variables {y1, . . . ,ynout}, on which the model f (·;Θ) can be trained to produce outputs
{o1, . . . ,onout} to match target variables {y1, . . . ,ynout}. In a forecasting scenario, where we attempt
to predict future data, the target variables can be set as, for example, y1 = xt+1, y2 = xt+2 for
2-weeks ahead prediction. Given input data and target variables, an optimal set of parameters can
be learned by minimizing a certain loss function L(y1, . . . ,ynout ,o1, . . . ,onout), which measures the
discrepancy between the output {o1, . . . ,onout} and the target {y1, . . . ,ynout} in a certain measure.

The parameterized function f (·;Θ) can take various forms such as ones based on statistical
models or deep-learning-based models. In this study, we are particularly interested in
deep-learning-based models such as recurrent neural networks (RNNs), sequence-to-sequence (or
encoder-decoder type) RNN variants, and neural networks based on temporal-causal
convolutions. Our goal in this study is to perform a comprehensive empirical evaluation on
performances of various types of neural networks for near-term forecast of influenza-like illness.
In the following, we briefly review each of considered deep-learning-based models.

2.1. Recurrent Neural Networks (RNN)

A recurrent neural network (RNN) [40] is a type of neural networks specially modeled to process
a sequence of values and, thus, has a good fit for predicting time-sequences. At time index τ ,
RNNs typically operate on a sequence of data xτ , update hidden states hhh(1)τ ,hhh(2)τ , . . ., and produce
an output oτ by applying the same function parameterized by a set of neural network weights:

oτ ,hhh
(1)
τ ,hhh(2)τ , . . .= RNN(xτ ,hhh

(1)
τ−1,hhh

(2)
τ−1, . . . ;Θ), (2.1.1)

where hhh(`) denotes the `-th hidden layer. Fig 2-1 depicts an example RNN architecture with two
hidden layers and Eq. (2.1.1) describes a folded representation of RNN, shown in the left frame of
Fig 2-1.

11

(a) RNN (folded) (b) RNN (unfolded)

Fig 2-1. An example RNN architecture with two hidden layers: a folded repre-
sentation (left) and an unfolded representation (right).

Hidden layers and outputs of RNNs are computed in sequence. Assume an RNN architecture with
one hidden layer. Then, starting from a given initial hidden state hhh(1)0 , the forward pass of the
RNN computes subsequent hidden layers by applying an affine transformation to a current input
and the previous hidden states followed by a nonlinear activation, e.g.,
hhh(1)τ = σ(Wxhxτ +Whhhhh(1)

τ−1 +bbb), where Wxh, Whh, and bbb are the learnable parameters and σ is a
nonlinear activation function.

Standard RNNs typically suffer from vanishing/exploding gradient problems [5, 24, 37]. To cope
with this difficulty, architectures using gating mechanisms including long short-term memory
(LSTM) [24] and gated recurrent unit (GRU) [12] have been proposed and extensively used in
several applications. The core idea is to create paths whose gradients do not vanish or explode as
RNN cells become far apart.

2.1.1. Long Short-Term Memory (LSTM)

In LSTM recurrent networks, the above issue is resolved by adding LSTM cells, which have an
internal recurrence to update cell states, generating paths where the gradient can flow over longer
durations [24], as opposed to standard RNNs that only have recurrence over the hidden states. In
addition, by introducing gating mechanisms which typically consists of input, output, and forget
gates, the flow of information can be effectively controlled [24, 20]. As the name indicates, the
input and the output gates control the amount of information that gets transferred from input to
output, respectively, and the forget gate controls the extent to which internal cell state remains
unchanged. When the sigmoid function is used, each gate produces a value between [0, 1], where
0 and 1 are two extreme values indicating that no or all information will be passed, respectively.

12

2.1.2. Gated Recurrent Unit (GRU)

GRU is another gating mechanism without internal cell states and with a smaller number of gates;
GRU consists of reset and update gates [12]. The reset gate controls information flow, choosing
which parts of the previous state to pass to generate a new target state. Then the update gate
controls the extent to which the previous state remains and the new target state replaces the
previous state to generate a new state.

Compared to LSTM, GRU has a simpler architecture: it does not have a cell state and it operates
only on two gates (as opposed to three gates in LSTM). In general, LSTM is known to be strictly
more expressive and it has been demonstrated that LSTM outperforms GRU on many different
applications [7, 50]. In certain tasks, however, GRU performs similar to LSTM [39], or performs
even better on small datasets [13]. We refer readers to the Appendix for details on LSTM, GRU,
and their comparisons.

2.2. Sequence-to-Sequence (Seq2Seq) Model

The next model we consider is a sequence-to-sequence (Seq2Seq) model (or, often called
encoder-decoder model): Seq2Seq architecture is designed to train a mapping from an input
sequence to an output sequence, where the input and the output sequences do not necessarily have
the same length [12, 43]. For handling variable-length sequences, the Seq2Seq architecture
consists of an encoder and a decoder, which are typically RNN-type architectures (with LSTM
cells or GRUs). Because the input and the output of ILI forecasting can be two variable-length
sequences, the Seq2Seq architecture is a naturally good fit. The encoder processes an input
sequence to produce a single vector called a context vector, which is typically a function of the
last hidden state of the encoder. Then the decoder generates an output sequence conditioned on
the single context vector. Fig. 2-2 depicts an example Seq2Seq architecture. We leave more
details to the Appendix.

Fig 2-2. An example Seq2Seq architecture with one hidden layer in the en-
coder and the decoder. The context vector is depicted in the middle.

13

2.3. Convolutional Networks

As a next set of sequence modeling approaches, we present two neural networks: temporal
convolutional networks and simple neural attentive meta-learners, of which the main component
is a temporal convolution (TC) layer. The TC layer refers to an one-dimensional causal
convolution layer; an input to this layer is 1D time-sequenced data, which may consists of multi
channels, same as in an input to a regular 1D convolutional layers, and as the term, “causal”,
indicates, an output of the TC layer at time t, ot , is produced by applying convolution kernel
filters to the input data at time t and earlier times, i.e. {. . . ,xt−1,xt}. To utilize a longer history
from the input data without making the depth of neural network too deep, a sequence of dilated
convolutions with increasing dilation factors can be used as in Refs. [36, 55]. In a typical setting,
the dilation factor starts with d = 1 and increases exponentially, i.e., d = O(2`) at level ` of the
network. Thus, the receptive field of the network can be controlled by the kernel size k and the
dilation factor d. As for RNNs, TC layers can handle arbitrary-length input sequence. Fig 2-3
illustrates an example of TC layers with several dilation factors.

Fig 2-3. A temporal convolutional network with layers corresponding to ex-
ponentially increasing dilation factors d = 1,2,4.

2.3.1. Temporal Convolutional Networks (TCNs)

Among several neural network models based on the temporal convolutions, we explore the
temporal convolution networks (TCNs) [4] in this study since TCNs provide a relatively simple,
but flexible architecture. In addition to the convolution layers, TCNs typically employ residual
blocks [23], which we denote by RESBLOCK, to stabilize the computation. Each RESBLOCK

consists of (1) two layers of dilated causal convolution, where each layer is followed by weight
normalization, ReLU [35], and dropout, and (2) the identity mapping from the input to the block
(optionally, an 1×1 convolutional layers can be employed to match the input and the output
shapes so that the element-wise summation can be performed). We refer readers to Appendix for
details of RESBLOCK.

2.3.2. Simple Neural Attentive Meta-Learner (SNAIL)

As described above, TCNs handle long sequences by employing exponentially increasing dilation
factors. This may lead to coarser access to inputs and, consequently, bounded network capacity.

14

To resolve this issue, a simple neural attentive meta-learner (SNAIL) [33] proposed to combine
temporal (causal) convolutions with a soft attention mechanism that is similar to Ref. [45].
SNAIL interleaves TC layers with attention layers so that the model can learn to (1) extract
features from the current and previous input features/data via the TC layers and (2) identify more
important input features/data over other elements in long sequences via the attention layers.

These two main ingredients of SNAIL can be summarized by two separate functions, TCBLOCK

and ATTENTIONBLOCK. In TCBLOCK, a series of TC layers with exponentially increasing
dilation factors is used; at each TC layer, an output is computed using the gated activation
function [36, 44] (as opposed to the simple TCNs) and then is concatenated with an input. In
ATTENTIONBLOCK, a causal attention mechanism is employed to point out the data points in the
input sequence that should be more emphasized. The term “causal” indicates that the attention
mechanism only looks at the current time input data and its previous time input data. Fig 2-4
depicts a schematic view of SNAIL with one TCBLOCK and two ATTENTIONBLOCKs. We refer
readers to the Appendix for details of TCBLOCK and ATTENTIONBLOCK.

Fig 2-4. A schematic view of SNAIL with one TCBLOCK and two ATTENTION-
BLOCKs.

2.4. Materials

The Influenza Division at the Center for Disease Control (CDC) reports a weekly U.S. influenza
surveillance data (FluView); in particular, we are interested in information on outpatient visits to
health care providers for influenza-like illness (ILI), which is collected through the U.S.
Outpatient Influenza-like Illness Surveillance Network (ILINet). ILINet consists of outpatient
healthcare provider in all 50 states and records the total number of patient visits and the number
of those patients with ILI symptoms, which are defined as combinations of fever (temperature
over 100◦F), a cough, and/or a sore throat without a known cause other than influenza.

Our particular interest lies on the percentage of the number of ILI patients over the total number
of outpatient visits, which is denoted by %ILI (% unweighted ILI). This information is available
per state each week and can be downloaded from the application, FluView Interactive [11].

15

2.4.1. Preprocessing

We downloaded state-level %ILI from week 40 of 2010 to week 39 of 2019 (9 seasons), and
preprocessed to keep %ILI only during the influenza season (i.e., week 40 of a given year to week
20 of a subsequent year). Consequently, each influenza season consists of 33 weeks, except for
2014-2015 season, which has 34 weeks due to the 53rd week in 2014. Among the 50 states,
Florida is excluded from the study because there is no data reported. We rescale the data to have
values in range [0,1] using min-max scaling. Note that predictions made by each neural network
are then scaled back to the original range by applying the inverse of the min-max scaling operator
in a post-processing step and the resuling quantities are used to compute performance metrics,
which will be introduced in the next section. Moreover, we generate a binary mask, which has the
same length as the % ILI data, to indicate missing, unreported, or a weekly report with zero
values.

Following the preprocessing step shown in Ref. [51], we concatenate 9 seasons of %ILI per each
state and use a fixed-length sliding window to generate subsequences for supervised-learning
settings (see Fig. 2-5). The window consists of two subwindows of length whist and wpred (in
weeks), respectively, and sequence models are expected to make predictions on wpred weeks of
%ILI given whist weeks of historical observations on %ILI.

Fig 2-5. An example illustration for applying a sliding window to a %ILI curve
corresponding to California, from the 2013-2014 season to the 2014-2015 sea-
son.

We then split the data into training/validation/test sets. The training set, the validation set, and the
test set consist of subsequences obtained from 2010 to 2017 (7 seasons), from the 2017-2018
season, from the 2018-2019 season, respectively. For wpred-weeks-ahead predictions, the
validation set and the testing set are designed to include subsequences of which the last data point
belongs to the 2017-2018 season and the 2018-2019 season, respectively.

16

3. RESULTS AND DISCUSSION

We now assess the performance for %ILI forecasting for the neural networks described in the
previous section. We construct all neural network architectures using PYTORCH 1.12 [38].
Before presenting the results, we describe neural network training strategies employed in this
work and performance metrics used to evaluate the trained neural networks on the test dataset.

3.1. Training neural networks

For training neural networks, we consider the Gaussian negative log-likelihood as the loss
function, and attempt to minimize it via a gradient-based optimization method [6]. In particular,
we employ a variant of stochastic gradient descent method called Adamax [29] with an initial
learning rate of 10−2 and a mini-batch size to 50. The maximum number of epochs is set to 50.
At each epoch, the validation loss is computed on the validation set, and the best performing
network weights on the validation set are chosen to try the model on the test data. Moreover, we
use an early-stopping strategy; the training stops if there is a certain number of epochs where the
optimizer fails to find improvements in validation loss. From our empirical findings, in general,
the early-stopping strategy does not help to generalize the performance of the RNN variants
within the pre-specified maximum number of epochs, whereas this approach helps to generalize
the performance of the TC variants. Thus, we use the early-stopping strategy only for TCNs and
SNAILs, and set the number of consecutive epochs to 3 for the early-stopping criterion.

We also employ a grid search for optimal hyperparameter values. Although there are more
advanced hyperparameter search algorithms such as Bayesian hyperparameter optimization [41],
here we use grid search to put more emphasis on the impact of these hyperparameters on the
performance of each models and attempt to draw interpretations on the impact of these changes
on model improvements.

3.2. Performance metrics

We consider four different metrics to measure the discrepancy between the predicted sequence
and the target sequence and assess the performance of each neural network models

• root mean-square error (RMSE) (
1
N

N

∑
i=1

(xi− x̃i)
2

)1/2

17

• mean absolute percentage error (MAPE)

1
N

N

∑
i=1

| xi− x̃i |
xi +1

×100

• relative error measured in the Euclidean norm (L2E)

(∑N
i=1(xi− x̃i)

2)1/2

(∑N
i=1 x2

i)
1/2

• Pearson correlation coefficient (PCORR)

∑
N
i=1(xi−mx)(x̃i−mx̃)√

∑
N
i=1(xi−mx)2 ∑

N
i=1(x̃i−mx̃)2)

RMSE and L2E computes the averaged and the relative sum of squared errors, respectively.
MAPE computes the errors in L1-norm and then report the error in a percentage. Following [49],
the denominator is smoothed by adding 1 to avoid zero values. Lastly, PCORR measures how
correlated two sequences are and the resulting quantity lie between [-1,1]. The closer PCORR is
to 1, the more correlated two sequences are. Note that L2E and MAPE are relative measures,
whereas RMSE is not: RMSE measures the squared differences of xi’s where xi < 16 in test
sets.

3.3. One-week-ahead predictions results

For this experiment, we use varying lengths of historical observations, whist = {16,32,64,128}, to
make one-week-ahead predictions, i.e., wpred = 1. We will explore performances of models
discussed above with the error indicators presented in the previous section. Unless otherwise
specified, we compute errors for 49 states separately and then average over 49 states. We begin by
comparing RNN-LSTM and RNN-GRU models.

3.3.1. LSTM and GRU

For both RNN-LSTM and RNN-GRU, we consider the same supervised learning setting. As
described in the preprocessing section, we consider the subsequences of length whist +wpred. We
denote the i-th input data sequence by x(i)1 , . . . ,x(i)whist , where x(i)τ is used as the input to the τ-th step
of the RNNs. At the τ-th RNN step, the network produces output o(i)τ , which attempts to match
y(i)τ = x(i)

τ+1 so that, in the last RNN step, the quantity that the network tries to predict is produced.
We train both RNN-LSTM and RNN-GRU by minimizing the negative log-likelihood function.

In the first experiment, we consider RNN-LSTM and RNN-GRU with two hidden layers. For
both RNNs, the first layer consists of 32-dimensional hidden units (and a 32-dimensional cell

18

state in LSTM) and the second layer consists of 16-dimensional hidden units (and a
16-dimensional cell state in LSTM). Then the output of the last layer is connected to a dense
network with one hidden layer, which consists of 100 units, followed by a ReLU activation. We
have tested these two RNNs on the datasets obtained by varying the lengths of historical
observations whist = {16,32,64,128}. Fig 3-1 reports the four performance indicators measured
on the testing set and, in most cases, RNN-GRU results are better.

16 32 64 128
whist

0.40

0.45

0.50

0.55

0.60

0.65

R
M

S
E

GRU

LSTM

(a) RMSE

16 32 64 128
whist

10.0

10.5

11.0

11.5

12.0

12.5

13.0

M
A

P
E

GRU

LSTM

(b) MAPE

16 32 64 128
whist

0.16

0.18

0.20

0.22

L
2E

GRU

LSTM

(c) L2E

16 32 64 128
whist

0.800

0.825

0.850

0.875

0.900

0.925

0.950

P
C

O
R

R

GRU

LSTM

(d) PCORR

Fig 3-1. Four performance indicators for one-week-ahead predictions ob-
tained with RNN-LSTM and RNN-GRU. Smaller values are preferable for
RMSE, MAPE, L2E, and larger values are better for PCORR.

Next we consider RNNs with varying number of LSTM layers and GRU layers as
nhhh = {2,3,4,5}. We fixed the size of hidden units in the last layer to be 16 and those of other
layers to be 32. We have tested the new architectures with varying lengths of historical
observations whist = {16,32,64,128} as described above. From these experiments, we observe
that RNN-LSTM performs best with whist = 64 and RNN-GRU performs best with whist = 32.
Fig. 3-2 reports the performance metrics measured for the LSTM and the GRU with their
corresponding best settings. For both RNNs, we can observe that all four indicators improve,
except for MAPE of LSTM, as nhhh increases. Although other results are not reported, we also have
observed that increasing whist to 128 significantly decreases the performance of both LSTM and
GRU suggesting that now the models are overfit. Overall, RNN-GRU outperforms RNN-LSTM
in all error metrics and, thus, we consider only GRU for the remainder of this report.

19

2 3 4 5
nh

0.40

0.45

0.50

0.55

0.60

0.65

R
M

S
E

GRU

LSTM

(a) RMSE

2 3 4 5
nh

10.0

10.5

11.0

11.5

12.0

12.5

13.0

M
A

P
E

GRU

LSTM

(b) MAPE

2 3 4 5
nh

0.16

0.18

0.20

0.22

L
2E

GRU

LSTM

(c) L2E

2 3 4 5
nh

0.800

0.825

0.850

0.875

0.900

0.925

0.950

P
C

O
R

R

GRU

LSTM

(d) PCORR

Fig 3-2. Four performance metrics for one-week-ahead predictions obtained
by using RNN-LSTM and RNN-GRU for varying number of layers nhhh =
{2,3,4,5}.

3.3.2. Seq2Seq

Seq2Seq-type networks consists of an encoder and a decoder and both of them are modeled as
RNN-GRU in this study. As for the previous settings used in the comparisons of RNN-LSTM and
RNN-GRU, the i-th input sequence is denoted by x(i)1 , . . . ,x(i)whist and the encoder RNN network
operates on this input sequence to produce the context vector. The decoder receives the last
element in the input sequence (i.e., x(i)whist) as its input as well as the context vector to produce the
output o(i)1 , which is used to attempt y(i)1 = x(i)whist+1.

The encoder and the decoder are designed to have a symmetric architecture in terms of the number
of hidden layers. For instance, if the encoder consists of two hidden layers of unit sizes 32 and 16,
respectively, the decoder consists of two hidden layers of unit sizes 16 and 32. As in the previous
experiments with LSTM and GRU, we have tested the Seq2Seq architecture with a varying
number of GRU layers by setting nhhh = {2,3,4,5}; the last hidden layer of the encoder and the
first hidden layer of the decoder are of dimension 16, and the other hidden layers are of dimension
32. We again consider varying lengths of historical observations whist = {16,32,64,128}.

In Fig. 3-3, we present results obtained with the Seq2Seq architectures with the two best
performing values of whist = {64,128}, and compare those results with the best results with

20

RNN-GRU models (whist = 32) presented in Fig. 3-2. The experiments show that Seq2Seq
performs better with longer sequences (i.e., whist = {64,128}) and, as shown in the experiments
with RNN-GRU, performs better with the larger networks (i.e., nhhh ≥ 3), in general; we note that
there is a single exception nhhh = 4 and whist = 128. By comparing the Seq2Seq results with GRU
results in Fig. 3-2, we observe that the Seq2Seq architectures outperform the standard RNN-GRU
in several cases, and that the Seq2Seq architectures with nhhh = 3 and whist = 64 produce the best
results.

2 3 4 5
nh

0.50

0.55

0.60

0.65

R
M

S
E

GRU whist=32

Seq2Seq whist=64

Seq2Seq whist=128

(a) RMSE

2 3 4 5
nh

10.5

11.0

11.5

12.0

12.5

13.0

M
A

P
E

GRU whist=32

Seq2Seq whist=64

Seq2Seq whist=128

(b) MAPE

2 3 4 5
nh

0.18

0.19

0.20

0.21

0.22

0.23

L
2E

GRU whist=32

Seq2Seq whist=64

Seq2Seq whist=128

(c) L2E

2 3 4 5
nh

0.86

0.88

0.90

0.92

0.94

P
C

O
R

R

GRU whist=32

Seq2Seq whist=64

Seq2Seq whist=128

(d) PCORR

Fig 3-3. Four performance indicators for one week-ahead predictions ob-
tained with RNN-GRU and the Seq2Seq model for varying number of layers
nhhh = {2,3,4,5}. Only the best performing values of whist are presented.

3.3.3. TCN

Next we discuss results obtained with TCN models. In this experiment, we consider the same
supervised learning settings for the input and the target data, i.e., the i-th input data sequence is
{x(i)τ }whist

τ=1 and the i-th target data sequence is {y(i)τ }whist
τ=1 , where yτ = xτ+1 and consider the same

loss function, the negative log-likelihood.

For TCN, there are three hyperparameters that we can tune for TC layers: the number of
RESBLOCK nR, the number of kernel filters nk, and the size of kernels k. In the following

21

experiments, we vary these hyperparameters as nR = {3,4,5,6,7,8}, nk = {4}, and k = {2,4,8}.
Note that we employ the same number of kernel filters for all RESBLOCKs (e.g., if nk = 4, all TC
layers in all RESBLOCKs have 4 kernel filters) because we observe that changing this parameter
has a negligible impact to the performances in the near-term %ILI prediction. Lastly, as in the
previous experiments, we vary lengths of historical observations whist = {16,32,64,128}.

For the choices of the number of residual blocks nR = {3,4}, there seem to have no clear trend or
differences between the performances of TCNs for all considered hyperparameters, k = {2,4,8}
and whist = {16,32,64,128}. For nR = {5,6,7,8}, the TCNs perform better with longer
subsequences whist = {64,128}. We believe this is caused by the fact that increasing number of
RESBLOCKs results in larger dilation factors d and, consequently, larger receptive fields, which
does not have a significant impact on shorter subsequences (i.e., whist = {16,32}), but have a
significant impact on longer subsequences (i.e., whist = {64,128}).

Fig. 3-4 shows the results obtained by using the TCNs for several residual block counts,
nR = {5,6,7,8} with the kernel size k = 4. The figures essentially show that RMSE, MAPE, and
L2E tend to decrease and PCORR tend to increase as whist increases. From the experiments with
different kernel sizes, k = {2,8}, and nR = {5,6,7,8}, we observe the same trend (i.e., improved
performances with longer whist) in most cases.

16 32 64 128
whist

0.56

0.58

0.60

0.62

0.64

0.66

R
M

S
E

TCN nR = 5

TCN nR = 6

TCN nR = 7

TCN nR = 8

(a) RMSE

16 32 64 128
whist

10.5

11.0

11.5

12.0

12.5

13.0

M
A

P
E

TCN nR = 5

TCN nR = 6

TCN nR = 7

TCN nR = 8

(b) MAPE

16 32 64 128
whist

0.19

0.20

0.21

0.22

0.23

L
2E

TCN nR = 5

TCN nR = 6

TCN nR = 7

TCN nR = 8

(c) L2E

16 32 64 128
whist

0.88

0.89

0.90

0.91

0.92

P
C

O
R

R

TCN nR = 5

TCN nR = 6

TCN nR = 7

TCN nR = 8

(d) PCORR

Fig 3-4. Four performance indicators for one week-ahead predictions ob-
tained with TCNs with varying numbers of residual blocks nR = {5,6,7,8} and
kernel size k = 4.

22

3.3.4. SNAIL

Next, we present results obtained with SNAIL. Again, we consider the same supervised learning
setting for the input and the target data, i.e., the i-th input data sequence is {x(i)τ }whist

τ=1 and the i-th

target data sequence is {y(i)τ }whist
τ=1 , where yτ = xτ+1.

We follow the same network architecture considered in the original paper [33]; there are three
ATTENTIONBLOCKs interleaved with two TCBLOCKs followed by a 1×1 convolutional layers.
For each TCBLOCK, there are three hyperparameters for TC layers, the number of TC layers nTC,
the number of kernel filters nk, and the size of kernels k; we consider the same choices of the
hyperparameters for the two TCBLOCKs. From the empirical experience with the previous TCN
experiments, we choose the values of the hyperparameters as follows: nTC = {6,7,8},
nk = {4,8}, and k = {2,4,8}. For each ATTENTIONBLOCK, there are two hyperparameters, the
size of the attention keys nkey and the size of the attention values nvalue. We vary the value of the
first parameter as nkey = {16,32} and fix the value of the second parameter to nvalue = 32.

As shown in the experimental results of TCNs, the SNAIL architectures tend to perform better
with longer subsequences (i.e., whist = {64,128}). Fig. 3-5 depicts the results obtained by using
the SNAIL architectures with the kernel size k = 4 for varying nTC and nkey, and shows that the
best performance is achieved with whist = 128 in most cases (with the exception depicted in the
yellow curve). We also observe that the SNAIL architectures with k = {2,8} and nk = 8, of which
experimental results are not shown, perform the best with whist = 128 in most cases.

3.3.5. Performance comparisons between Seq2Seq, TCN, and SNAIL

We now compare the three sequence models discussed above: Seq2Seq architecture with GRU
cells, TCN, and SNAIL. For each performance metric, we pick the best performing neural
network configurations (i.e., network architectures and their hyperparameters). Table 3-1 lists the
neural network configurations of each considered neural networks that perform the best for each
performance metric. Note that for RMSE and L2E, the same neural network configurations are
used to achieve the best performances.

Table 3-1. Neural network configurations: the number of GRU layers nhhh, the
number of RESBLOCKs nR, the number of TCBLOCKs nTC, the kernel size k,
the number of kernel filters nk, and the size of key nkey in SNAIL. For TCN
and SNAIL, the value of whist is omitted as setting whist = 128 yields the best
results. For TCN, nk = 4.

Seq2Seq TCN SNAIL

RMSE (nhhh,whist) = (3,128) (nR,k) = (8,4) (nTC,k,nk,nkey) = (7,4,4,32)
MAPE (nhhh,whist) = (4, 64) (nR,k) = (8,2) (nTC,k,nk,nkey) = (6,2,8,32)

L2E (nhhh,whist) = (3,128) (nR,k) = (8,4) (nTC,k,nk,nkey) = (7,4,4,32)
PCORR (nhhh,whist) = (5,128) (nR,k) = (7,4) (nTC,k,nk,nkey) = (7,4,4,32)

23

nTC = 6, nkey = 32

nTC = 7, nkey = 32

nTC = 8, nkey = 32

nTC = 6, nkey = 16

nTC = 7, nkey = 16

nTC = 8, nkey = 16

16 32 64 128
whist

0.56

0.58

0.60

0.62

0.64

R
M

S
E

(a) RMSE

16 32 64 128
whist

11

12

13

14

M
A

P
E

(b) MAPE

16 32 64 128
whist

0.19

0.20

0.21

0.22

0.23

L
2E

(c) L2E

16 32 64 128
whist

0.89

0.90

0.91

0.92

P
C

O
R

R

(d) PCORR

Fig 3-5. Four performance metrics for one-week-ahead predictions obtained
by using the SNAILs for varying number of TC layers nTC = {6,7,8} with the
kernel size nkey = {16,32}.

Fig 3-6 reports the four performance metrics measured in each state using Seq2Seq, TCN, and
SNAIL. The states in Figs 3-6a–3-6d are presented in a decreasing order w.r.t. the relative
performance of SNAIL against Seq2Seq (i.e., Performance of SNAIL

Performance of Seq2Seq). Thus, the relative performance
of SNAIL against Seq2Seq decreases going from left to right.

Table 3-2 and Figs. 3-7 to 3-8 provide more information on the bar plots. First, Table 3-2 shows
the four performance metrics measured by using the best performing neural network
configurations (Table 3-1). Each performance metric is measured for each state and then averaged
over 49 states. For all four performance metrics, both TCN and SNAIL outperform Seq2Seq;
SNAIL performs slightly better than TCN. Recall that MAPE and L2E are relative measures and
MAPE is a percentage. RMSE is an absolute measure, where the input data in the test set lies in
[0,16].

Figure 3-7 depicts the boxplots of all four performance indicators corresponding to Seq2Seq,
TCN, and SNAIL. These boxplots display statistical quantities from the results shown in Fig. 3-6:
means, medians, and interquartiles ranges. Fig. 3-8 reports the proportions of the states where

24

Seq2Seq TCN SNAIL

DE NC VA MA AZ OK SC AR IL RI CA ME AL NV MD NJ IN MI CT TX ND MS PA MN GA HI WY ID OH CO NE TN KY SD VT NM IA MO WA KS AK NH UT NY LA WI WV OR MT

state

0.2

0.4

0.6

0.8

1.0

R
M

S
E

(a) RMSE

DE NY WY NC VA LA KS CO OK MO ME MA CA AL AR TX AZ RI MD IN CT IA IL KY NE PA SC MI AK MT GA UT NM SD OH MS NV WA ND WV NH MN ID NJ HI VT TN OR WI

state

5

10

15

20

M
A

P
E

(b) MAPE

DE NC VA MA AZ OK SC AR IL RI CA ME AL NV MD NJ IN MI CT TX ND MS PA MN GA HI WY ID OH CO NE TN KY SD VT NM IA MO WA KS AK NH UT NY LA WI WV OR MT

state

0.1

0.2

0.3

0.4

0.5

L
2E

(c) L2E

DE IN IL MD MN MI NV CO MO NY ND AR OK AZ PA SC MA SD VA CA KS NJ GA HI TX NC AL ME OH CT MS RI WY ID UT NM KY VT LA TN IA WA NE WV OR AK MT WI NH

state

0.7

0.8

0.9

1.0

P
C

O
R

R

(d) PCORR

Fig 3-6. The best performances achieved by Seq2Seq, TCN, and SNAIL. Four
performance indicators, RMSE, MAPE, L2E, and PCORR, are measured for
each state. On the horizontal axis, the states are in a decreasing order w.r.t.
the relative performance of SNAIL against Seq2Seq.

TCN and SNAIL outperform Seq2Seq, respectively, and SNAIL outperforms TCN in 0, 1, 2, 3, or
all 4 error indicators (RMSE, MAPE, L2E, and PCORR). Both TCN and SNAIL outperform
Seq2Seq in 29 and 30 states for at least three (out of four) performance indicators. SNAIL
performs only slightly better than TCN. These observations agree with the statistics reported in
Table 3-2 and Fig. 3-7.

Finally, Figs. 3-9–3-11 illustrate the original %ILI and the predictions made by Seq2Seq and
SNAIL for two seasons: 2017–2018 (validation) and 2018–2019 (test). To increase the legibility
of the plots, %ILI predictions made by TCN are not reported. We note that the %ILI curves of

25

Table 3-2. The best performances achieved by Seq2Seq, TCN, and SNAIL.
The performance metrics are averaged over 49 states. The symbols ↓ and
↑ indicate that the lower and higher values correspond to the better perfor-
mance.

Seq2Seq TCN SNAIL

RMSE (↓) 0.5756 0.5543 0.5541
MAPE (↓) 11.14 10.98 10.86

L2E (↓) 0.2012 0.1955 0.1937
PCORR (↑) 0.9104 0.9157 0.9161

TCN are very similar to the ones of SNAIL.

3.4. N-weeks-ahead predictions

Lastly, we perform experiments with varying prediction horizons wpred. We again consider
Seq2Seq, TCN, and SNAIL models. For training Seq2Seq model, as in the previous Seq2Seq
setting, the i-th input sequence is denoted by x(i)1 , . . . ,x(i)whist . The encoder RNN network operates
on this input sequence to produce a context vector, then the decoder receives the last element in
the input sequence (i.e., x(i)whist) and the context vector to produce output {o(i)1 , . . . ,o(i)wpred}, which

attempts to match {y(i)1 , . . . ,y(i)whist}= {x
(i)
whist+1, . . . ,x

(i)
whist+wpred

}. For TCN and SNAIL, i-th input

data sequence is {x(i)τ }whist
τ=1 and the i-th target data sequence is {(y(i)τ , . . . ,y(i)

τ+wpred−1)}
whist
τ=1 , where

yτ = xτ+1.

We conduct experiments for varying prediction horizons {1,2,3,4} because the weekly %ILI
report often takes one to four weeks to be processed and present the results in Table 3-3. For
Seq2Seq, TCN, and SNAIL models, we pick a single configuration of hyperparameters for each
model:

for Seq2Seq, (nhhh,whist) = (3,128),
for TCN, (nR,k,nk,whist) = (8,4,4,128),
for SNAIL, (nTC,k,nk,nkey,nvalue,whist) = (7,8,4,32,16,128),

and measure all four performance indicators with the three network models.

In most cases, both TCN and SNAIL outperform Seq2Seq in all error metrics for
wpred = {1,2,3}. For wpred = 4, SNAIL outperforms Seq2Seq in three error metrics and TCN for
all error metrics and Seq2Seq outperforms TCN in all four error metrics. The prediction accuracy
measured via using TCN and SNAIL in all four metrics are degraded as wpred increases from 3 to
4. Interestingly, as opposed such degradation, there is virtually no degradation in the prediction
accuracy measured via using Seq2Seq as wpred from 3 to 4.

26

Seq2Seq TCN SNAIL

Seq2Seq TCN SNAIL

0.2

0.4

0.6

0.8

1.0

(a) RMSE

Seq2Seq TCN SNAIL

5

10

15

20

(b) MAPE

Seq2Seq TCN SNAIL

0.1

0.2

0.3

0.4

(c) L2E

Seq2Seq TCN SNAIL

0.80

0.85

0.90

0.95

(d) PCORR

Seq2Seq TCN SNAIL

0.4

0.5

0.6

0.7

(e) RMSE - IQR

Seq2Seq TCN SNAIL

9

10

11

12

(f) MAPE - IQR

Seq2Seq TCN SNAIL

0.16

0.18

0.20

0.22

(g) L2E - IQR

Seq2Seq TCN SNAIL

0.88

0.90

0.92

0.94

0.96

(h) PCORR - IQR

Fig 3-7. The boxplots of all four performance metrics measured by using
Seq2Seq, TCN, and SNAIL. The boxplots summarize statistics of the data
shown in Fig 3-6. The middle black and yellow lines indicate medians and
means, respectively, and the boxes indicates the interquartile ranges. Top
half: the entire range of the boxplots. Bottom half: the IQR of the boxplots
excerpted.

27

4/4 3/4 2/4 1/4 0/4

23

6

4
6

10

(a) TCN v. Seq2Seq

22

8

6 6

7

(b) SNAIL v. Seq2Seq

11
11

12

11

4

(c) SNAIL v. TCN

Fig 3-8. The proportion of the states where the former network outperforms
the later network in 0, 1, 2, 3, or all 4 error indicators (RMSE, MAPE, L2E, and
PCORR). The numbers are shown in this figure are collected from the results
shown in Fig. 3-6.

3.5. Discussion

The series of experiments above show the effect of the simple, uni-modal, if noisy, influenza
curves. Fig. 3-2 shows that adding multiple layers to the RNNs (irrespective of whether LSTM or
GRU cells are used) only marginally improve predictive skill and training the model on a longer
sequence of data (Fig. 3-1) does not results in any improvement. That is, the RNN models achieve
their predictive skill with modest data and modest architectural complexity, and training a higher
capacity model results in only a marginally better one week-ahead forecast. Fig. 3-3 shows the
impact of different architectural choices (i.e., encoder-decoder type network with RNN-GRU
decoder) and training data size for the Seq2Seq model, and we see that the improvement in
predictive skill is modest: the Seq2Seq model performs only slightly better than the RNN models,
implying that the complications of the Seq2Seq model is largely lost on predictive skill. We

28

%ILI Seq2Seq SNAIL

2017-2018 2018-2019

0

5

10

AK

2017-2018 2018-2019

1

7

14

AL

2017-2018 2018-2019

0

6

12

AR

2017-2018 2018-2019

1

4

9

AZ

2017-2018 2018-2019

1

3

7

CA

2017-2018 2018-2019

0

4

8

CO

2017-2018 2018-2019

1

4

8

CT

2017-2018 2018-2019

0

3

7

DE

2017-2018 2018-2019

1

8

16

GA

2017-2018 2018-2019

1

4

9

HI

2017-2018 2018-2019

0

2

5

IA

2017-2018 2018-2019

0

3

6

ID

2017-2018 2018-2019

0

3

7

IL

2017-2018 2018-2019

0

4

9

IN

2017-2018 2018-2019

0

6

12

KS

2017-2018 2018-2019

0

6

13

KY

2017-2018 2018-2019

1

6

12

LA

2017-2018 2018-2019

0

3

6

MA

2017-2018 2018-2019

0

3

6

MD

2017-2018 2018-2019

0

2

4

ME

2017-2018 2018-2019

0

3

6

MI

2017-2018 2018-2019

1

3

7

MN

2017-2018 2018-2019

0

6

12

MO

2017-2018 2018-2019

1

7

14

MS

Fig 3-9. Example plots of %ILI and predictions made by Seq2Seq and SNAIL
for two seasons 2017-2018 (validation) and 2018-2019 (test). The original
%ILI is depicted in solid black lines and the prediction results of Seq2Seq
and SNAIL are depicted in solid red lines and dashed green lines.

believe that introducing more advanced deep learning techniques such as attention mechanism to
Seq2Seq architecture is a key to make improvements in prediction accuracy as shown in
Refs. [31, 51].

29

%ILI Seq2Seq SNAIL

2017-2018 2018-2019

0

2

4

MT

2017-2018 2018-2019

0

5

11

NC

2017-2018 2018-2019

0

2

5

ND

2017-2018 2018-2019

1

4

9

NE

2017-2018 2018-2019

0

3

7

NH

2017-2018 2018-2019

1

6

12

NJ

2017-2018 2018-2019

0

5

11

NC

2017-2018 2018-2019

0

2

5

ND

2017-2018 2018-2019

1

4

9

NE

2017-2018 2018-2019

0

3

7

NH

2017-2018 2018-2019

1

6

12

NJ

2017-2018 2018-2019

0

5

10

NM

2017-2018 2018-2019

0

2

4

NV

2017-2018 2018-2019

0

5

11

NY

2017-2018 2018-2019

0

3

6

OH

2017-2018 2018-2019

0

6

12

OK

2017-2018 2018-2019

0

2

5

OR

2017-2018 2018-2019

0

3

7

PA

2017-2018 2018-2019

0

4

8

RI

2017-2018 2018-2019

0

7

15

SC

2017-2018 2018-2019

0

3

6

SD

2017-2018 2018-2019

0

5

10

TN

2017-2018 2018-2019

1

7

15

TX

2017-2018 2018-2019

0

3

7

UT

Fig 3-10. Example plots of %ILI and predictions made by Seq2Seq and SNAIL
for two seasons 2017-2018 (validation) and 2018-2019 (test). The original %ILI
is depicted in solid black lines and the prediction results of Seq2Seq and
SNAIL are depicted in solid red lines and dashed green lines.

The TC-layer-based models also show better outcomes in Fig. 3-4 and 3-5 – combinations of
higher architectural complexity (i.e., nR > 6 and nTC > 7) and longer training sequence whist > 32
result in a better model. Fig. 3-6 and Table 3-2 show that, on the whole, TCN and SNAIL
outperforms Seq2Seq. Table 3-3 shows a more complex behavior where both TCN and SNAIL

30

%ILI Seq2Seq SNAIL

2017-2018 2018-2019

0

5

11

VA

2017-2018 2018-2019

0

3

6

VT

2017-2018 2018-2019

0

3

6

WA

2017-2018 2018-2019

0

2

5

WI

2017-2018 2018-2019

0

4

8

WV

2017-2018 2018-2019

0

4

8

WY

Fig 3-11. Example plots of %ILI and predictions made by Seq2Seq and SNAIL
for two seasons 2017-2018 (validation) and 2018-2019 (test). The original %ILI
is depicted in solid black lines and the prediction results of Seq2Seq and
SNAIL are depicted in solid red lines and dashed green lines.

Table 3-3. The performance metrics measured by Seq2Seq, TCN, and SNAIL
for varying prediction horizons {1,2,3,4}. The same sets of network hy-
perparameters for each model are used for varying horizons. The down-
ward/upward arrows in parentheses indicate smaller/larger values are pre-
ferred.

RMSE (↓) MAPE (↓)
horizon 1 2 3 4 1 2 3 4

Seq2Seq 0.5756 0.8453 1.037 1.052 11.28 15.55 21.73 19.55
TCN 0.5543 0.8117 0.9515 1.155 11.09 16.17 18.41 21.82

SNAIL 0.5617 0.7915 0.9696 1.048 11.16 14.52 20.27 18.75
L2E (↓) PCORR (↑)

Seq2Seq 0.2012 0.2850 0.3575 0.3511 0.9096 0.8260 0.7449 0.7463
TCN 0.1955 0.2790 0.3237 0.3851 0.9150 0.8352 0.7636 0.6927

SNAIL 0.1956 0.2667 0.3319 0.3479 0.9132 0.8435 0.7651 0.7204

perform better than Seq2Seq although Seq2Seq demonstrated less degradation of accuracy as the
prediction horizon increases from 3 to 4. Overall, we conclude that the TC-layer-based models
achieve better performance due to its larger receptive field, which allows the models to take in and
process longer training sequences easily.

Related Work

Various deep learning techniques for sequence modeling have been employed for ILI predictions.
As we described in Introduction, nearly all deep-learning-based approaches heavily rely on RNNs

31

with LSTM. We categorize these approaches into two classes: one class of approaches that
utilizes only CDC data and another class of approaches that utilizes external factors affecting flu
activity or external information that can be used as an indicator of flu activity.

CDC data only

In Ref. [52], weekly influenza activity levels at week τ were used as an input to convolutional
layers to extract features that capture spatial correlations across regions where the statistics are
collected (e.g., the U.S. states) and then the extracted features were used as an input to an RNN
with GRU to capture temporal correlations of the weekly influenza activity levels. Ref. [56]
studied four variant constructions of LSTM networks with %ILI data: one instance is a single
LSTM network, where a single application of the trained network gives multi-step ahead
predictions, and another instance is a set of multiple LSTM networks, where each LSTM is
trained to predict %ILI at specific time index of multi-step ahead predictions.

External factors

Another approach to modeling ILI dat employs time-sequence models augmented with auxiliary
information. Ref. [47] utilized features extracted from a Twitter dataset as input features to LSTM
networks along with ILI information collected from military populations. Ref. [46] used climate
information and geo-spatial factors as input features to LSTM networks, while Ref. [49] proposed
a framework for high-resolution (e.g., county-level) ILI predictions, which generates a
high-resolution synthetic dataset via an epidemic simulator and then use the dataset for training a
neural network. The proposed neural network consists of two LSTM networks; one processes
within-season sequences and the other processes between-season sequences. In Ref. [31], a
Seq2Seq model with LSTM is trained with %ILI and Google trends data.

32

4. CONCLUSION

In this study, we have investigated the feasibility of modeling epidemiological data with variants
of temporal convolutional network models, and their performance gain over recurrent neural
network models. We investigate whether the nonlinear transformations that deep learning models
allow provide any advantage in forecasting skill over linear methods and perform extensive
experiments for comparing all considered neural network models including RNN-GRU,
Sequence-to-Sequence with RNN-GRU decoder and neural ordinary differential equation
decoder, temporal convoluation networks, and simple neural attentive meta-learner. We have
observed that RNN-LSTM, which was shown to be far better than conventional ARIMA models
as in Ref. [51], performs the worst among all considered neural network models and we find that
neural networks based on temporal convolutional layers (TCN and SNAIL) tend to outperform
RNN-LSTM/RNN-GRU and Seq2Seq models.

However, considering significant increase in neural network complexity, the performance
improvements made by TCN and SNAIL over RNN-GRU can also be seen as modest, which
suggests that modeling the simple, uni-modal, if noisy, form of influenza curves may not require a
tremendous degree of complexity in the neural network architectures. This bottleneck may be due
to an intrinsic limitation of purely data-driven approach and can be overcome by using external
data or indicators of influenza-like illness or building a model that combines a data-driven
approach with mechanistic or compartmental models. Nonetheless, we observe from our
extensive experiments that complex deep learning models can be fitted to relatively modest
epidemiological data without suffering from over-fitting thanks to a mini-batching stochastic
gradient optimizer with an early-stopping strategy, and can provide better forecasts than
conventional data-driven models.

33

REFERENCES

[1] Coronavirus Resource Center at the Johns Hopkins University.
https://coronavirus.jhu.edu. Accessed: 2020-09-18.

[2] COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at
Johns Hopkins University. https://github.com/CSSEGISandData/COVID-19.
Accessed: 2020-05-10.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[4] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. arXiv preprint
arXiv:1803.01271, 2018.

[5] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[6] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. Siam Review, 60(2):223–311, 2018.

[7] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc Le. Massive exploration of
neural machine translation architectures. arXiv preprint arXiv:1703.03906, 2017.

[8] Logan C Brooks, David C Farrow, Sangwon Hyun, Ryan J Tibshirani, and Roni Rosenfeld.
Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions.
PLoS computational biology, 14(6):e1006134, 2018.

[9] Centers for Disease Control and Prevention. About cdc’s flu forecasting efforts.
https://www.cdc.gov/flu/weekly/flusight/about-flu-forecasting.htm.

[10] Centers for Disease Control and Prevention. Cdc competition encourages use of social
media to predict flu. https://www.cdc.gov/flu/news/predict-flu-challenge.htm.

[11] Centers for Disease Control and Prevention. Fluview interactive.
https://www.cdc.gov/flu/weekly/fluviewinteractive.htm.

[12] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[13] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

34

https://coronavirus.jhu.edu
https://github.com/CSSEGISandData/COVID-19

[14] Ronan Collobert and Jason Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proceedings of the 25th international
conference on Machine learning, pages 160–167, 2008.

[15] Michael W Davidson, Dotan A Haim, and Jennifer M Radin. Using networks to combine
“big data” and traditional surveillance to improve influenza predictions. Scientific reports,
5:8154, 2015.

[16] Andrea Freyer Dugas, Yu-Hsiang Hsieh, Scott R. Levin, Jesse M. Pines, Darren P.
Mareiniss, Amir Mohareb, Charlotte A. Gaydos, Trish M. Perl, and Richard E. Rothman.
Google Flu Trends: Correlation With Emergency Department Influenza Rates and Crowding
Metrics. Clinical Infectious Diseases, 54(4):463–469, 01 2012.

[17] Andrea Freyer Dugas, Mehdi Jalalpour, Yulia Gel, Scott Levin, Fred Torcaso, Takeru Igusa,
and Richard E Rothman. Influenza forecasting with google flu trends. PloS one, 8(2), 2013.

[18] J Durbin and S. J. Koopman. Time Series Analysis by State Space Methods. Oxford
University Press, Oxford, UK, 2 edition, 2012.

[19] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
Convolutional sequence to sequence learning. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1243–1252. JMLR. org, 2017.

[20] Felix A GERS, Jürgen SCHMIDHUBER, and Fred CUMMINS. Learning to forget:
Continual prediction with lstm. Neural computation, 12(10):2451–2471, 2000.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2016.

[22] Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language models
with a continuous cache. arXiv preprint arXiv:1612.04426, 2016.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. In European conference on computer vision, pages 630–645. Springer,
2016.

[24] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[25] Rie Johnson and Tong Zhang. Deep pyramid convolutional neural networks for text
categorization. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 562–570, 2017.

[26] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network
for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

[27] M. J. Keeling and P. Rohani. Modeling infectious diseases in humans and animals.
Princeton University Press, Princeton, NJ, USA, 2007.

[28] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

35

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[30] Laszlo Robert Kolozsvari, Tamas Berczes, Andras Hajdu, Rudolf Gesztelyi, Attila TIba,
Imre Varga, Gergo Jozsef Szollosi, Szilvia Harsanyi, Szabolcs Garboczy, and Judit Zsuga.
Predicting the epidemic curve of the coronavirus (sars-cov-2) disease (covid-19) using
artificial intelligence. medRxiv, 2020.

[31] Kenjiro Kondo, Akihiko Ishikawa, and Masashi Kimura. Sequence to sequence with
attention for influenza prevalence prediction using google trends. In Proceedings of the
2019 3rd International Conference on Computational Biology and Bioinformatics, pages
1–7, 2019.

[32] Fred S Lu, Mohammad W Hattab, Cesar Leonardo Clemente, Matthew Biggerstaff, and
Mauricio Santillana. Improved state-level influenza nowcasting in the united states
leveraging internet-based data and network approaches. Nature communications,
10(1):1–10, 2019.

[33] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive
meta-learner. In ICLR 2018, 2017.

[34] Noelle-Angelique M Molinari, Ismael R Ortega-Sanchez, Mark L Messonnier, William W
Thompson, Pascale M Wortley, Eric Weintraub, and Carolyn B Bridges. The annual impact
of seasonal influenza in the us: measuring disease burden and costs. Vaccine,
25(27):5086–5096, 2007.

[35] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814, 2010.

[36] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative
model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[37] Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. How to construct
deep recurrent neural networks. arXiv preprint arXiv:1312.6026, 2013.

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[39] Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, and Yoshua Bengio. Light gated
recurrent units for speech recognition. IEEE Transactions on Emerging Topics in
Computational Intelligence, 2(2):92–102, 2018.

36

[40] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San Diego La Jolla
Inst for Cognitive Science, 1985.

[41] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of
machine learning algorithms. In Advances in neural information processing systems, pages
2951–2959, 2012.

[42] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text with recurrent
neural networks. In Proceedings of the 28th international conference on machine learning
(ICML-11), pages 1017–1024, 2011.

[43] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

[44] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al.
Conditional image generation with pixelcnn decoders. In Advances in neural information
processing systems, pages 4790–4798, 2016.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008, 2017.

[46] Siva R Venna, Amirhossein Tavanaei, Raju N Gottumukkala, Vijay V Raghavan, Anthony S
Maida, and Stephen Nichols. A novel data-driven model for real-time influenza forecasting.
IEEE Access, 7:7691–7701, 2018.

[47] Svitlana Volkova, Ellyn Ayton, Katherine Porterfield, and Courtney D Corley. Forecasting
influenza-like illness dynamics for military populations using neural networks and social
media. PloS one, 12(12), 2017.

[48] Alex Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and Kevin J Lang.
Phoneme recognition using time-delay neural networks. IEEE transactions on acoustics,
speech, and signal processing, 37(3):328–339, 1989.

[49] Lijing Wang, Jiangzhuo Chen, and Madhav Marathe. Defsi: Deep learning based epidemic
forecasting with synthetic information. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 9607–9612, 2019.

[50] Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite
precision rnns for language recognition. arXiv preprint arXiv:1805.04908, 2018.

[51] Neo Wu, Bradley Green, Xue Ben, and Shawn O’Banion. Deep transformer models for time
series forecasting: The influenza prevalence case. arXiv preprint arXiv:2001.08317, 2020.

[52] Yuexin Wu, Yiming Yang, Hiroshi Nishiura, and Masaya Saitoh. Deep learning for
epidemiological predictions. In The 41st International ACM SIGIR Conference on Research
& Development in Information Retrieval, pages 1085–1088, 2018.

37

[53] Shihao Yang, Mauricio Santillana, John S Brownstein, Josh Gray, Stewart Richardson, and
SC Kou. Using electronic health records and internet search information for accurate
influenza forecasting. BMC infectious diseases, 17(1):332, 2017.

[54] Shihao Yang, Mauricio Santillana, and Samuel C Kou. Accurate estimation of influenza
epidemics using google search data via argo. Proceedings of the National Academy of
Sciences, 112(47):14473–14478, 2015.

[55] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. In
ICLR 2016, 2016.

[56] J Zhang and K Nawata. Multi-step prediction for influenza outbreak by an adjusted long
short-term memory. Epidemiology & Infection, 146(7):809–816, 2018.

[57] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In Advances in neural information processing systems, pages 649–657, 2015.

38

APPENDIX

Long Short-Term Memory

Fig. 4-1 illustrates the diagram of a LSTM cell. Below we describe the canonical set of operations
for this architecture.

LSTM

Forget

gate

Input

gate
MLP

Output

gate

tanh

Fig 4-1. LSTM cell diagram.

Forget gate The forget gate controls the fraction to which internal cell state is let in from the
previous step. The forget gate takes the input data xxxτ and the hidden state hhhτ−1 from the previous
cell as the input and then produces a value between [0, 1] with the element-wise sigmoid
nonlinear function σ(·) such that

f τ = σ(bbb f +U f xxxτ +W f hhhτ−1),

where bbb f representing biases and U f and W f the weights of the forget gate.

Input gate The input gate controls the extent of which the new input data xxxτ contributes to
updating the LSTM cell state. The input gate also takes the hidden state hhhτ−1 from the previous
cell as the input and then produces a value between [0, 1] with the element-wise sigmoid
nonlinear function σ(·) such that

gτ = σ(bbbg +Ugxxxτ +W ghhhτ−1),

where bbbg representing biases and Ug and W g the weights of the forget gate.

Together with the forget gate and the input gate, the new cell state sssτ

sssτ = f τ � sssτ−1 +g�σ(bbb+Uxxxτ +Whhhτ−1), (4.0.1)

39

where bbb,U , and W are biases and weights to the LSTM cell and � denotes element-wise
multiplications. The MLP block stands for the second operand of the second term on the
right-hand side (4.0.1).

Output gate The output gate controls the extent to which the information flows into the output
using a similar gating mechanism

qτ = σ(bbbq +Uqxxxτ +W qhhhτ−1),

where bbb,Uq, and W q are biases and weights of the output gate, resulting in qτ ∈ [0,1]. The hidden
state of the LSTM cell is then computed as

hhhτ = tanh(sssτ)�qτ .

Gated Recurrent Unit

GRU does not have an additional cell state as in LSTM and consists of the two gating units, the
update gate and the reset gate. Fig 4-2 illustrates the diagram of GRU.

GRU

Reset
gate

Update
gate MLP

1-

Fig 4-2. GRU cell diagram.

The output of the GRU is computed as follows:

hhhτ = uτ−1�hhhτ−1 +(1−uτ−1)σ(bbb+Uxxxτ +W (rτ−1�hhhτ−1)), (4.0.2)

where the values of the update gate and the reset gate are determined with similar expressions as
for the LSTM architecture

uτ = σ(bbbu +Uuxxxτ +W uhhhτ)

and
rτ = σ(bbbr +U rxxxτ +W rhhhτ).

Analogous to the LSTM diagram, the MLP block stands for the second operand of the second
term on the right-hand side (4.0.2). The “1-” block computes 1−uτ−1.

40

Comparison between LSTM and GRU

The GRU architecture is simpler compared to LSTM; it does not have the cell state and only two
gates. The update gate combines the role of the forget gate and the input gate, which results in
simpler recurring network architectures with less network parameters. Thus, LSTM performs
better in many applications, not just large-scale applications [7], but also in rather simple
applications [50]. This does not mean, however, that LSTM always performs better than GRU. In
certain tasks, including natural language processing, speech signal modeling, GRU performs
similar to LSTM [39], or even performs better in small datasets [13].

Temporal Convolutional Network

We describe here the sequence of operations in a TCN. Let us denote one-dimensional input
sequence by xxx ∈ Rn and the kernel filter by fff ∈ Rk.

Causal convolution The causal convolution is the operator that can only look at the current
time and previous input data, i.e. for t ≤ τ . This can be formally written as

(xxx∗ fff)(τ) =
k−1

∑
i=0

fff i · xxxτ−i,

where ∗ defines the convolution between two sequences.

Dilated causal convolution The dilated causal convolution increases the size of receptive
field by adding dilation factor d:

(xxx∗d fff)(τ) =
k−1

∑
i=0

fff i · xxxτ−d·i

The convolution operator ∗d takes every d element of the input xxx. Thus, a series of dilated causal
convolutions with increasing dilation factor d = 2` increase the receptive field exponentially.

RESBLOCK TCN employs the residual block consisting of two layers of dilated causal
convolutions, weight normalization, ReLU, and Dropout, and an identity mapping from the input.
Formally, RESBLOCK can be written as

zi+1 = zi +F (zi),

where zi and zi+1 are the input and the output of RESBLOCK, and F (·) is a function consisting of
the two layers of dilated causal convolutions.

Fig 4-3 illustrate the flow of computations performed in one residual block. In the residual block,
two dilated convolutional layers share the same hyperparameters (i.e., kernel size k, dilation factor
d, and the number of channels nk). By stacking up the residual blocks with increasing dilation
factors d, the size of the receptive field can grow exponentially.

41

Fig 4-3. TCN residual block. The residual block consists of two layers of
dilated convolutional layers, each of which followed by weight normalization,
ReLU, and Dropout. Then the resulting quantity of the dilated convolutions
and the input are summed element-wise. If the input and the output sizes do
not match, an optional 1×1 convolution can be used.

Simple Neural Attentive Meta Learner

The detailed operations of SNAIL are described below

TCBLOCK The main component of TCBLOCK is also the one-dimensional dilated causal
convolutions. TCBLOCK consists of a series of multiple DENSEBLOCKs with increasing dilation
factors. The number of DENSEBLOCKs in one TCBLOCK is determined by the length n of the
input sequence (i.e., dne). That is, TCBLOCK ensures that the size of receptive field covers the
entire input sequence. The `th DENSEBLOCK consists of dilated causal convolutions with
dilation factors 2`−1. In the original paper, the dilation factor for the `th DENSEBLOCK is 2`. The
DENSEBLOCK consists of two parallel dilated causal convolutions with the same hyperparameter
settings (i.e., kernel size k, dilation factor d, and the number of channels nk), but followed by
different nonlinear activations tanh and sigmoid. The outputs of the convolutional layers are
multiplied element-wise and then the resulting quantity is concatenated with the input. Fig 4-4
illustrates the computation flow of DENSEBLOCK.

ATTENTIONBLOCK The ATTENTIONBLOCK is designed to perform the key-value-pair-based
self-attention mechanism proposed by [45]. The self-attention mechanisms refer to a mechanism
that learns relations of elements in different positions of a single sequence. The self-attention
mechanism employed in SNAIL is a soft-attention mechanism because the relations of entire
elements in a sequence are considered. This is in contrast to a hard-attention mechanism, where
the model attends to a specific region (e.g., a small patch in an image).

42

Fig 4-4. SNAIL DENSEBLOCK. DENSEBLOCK consists of two parallel dilated
causal convolutions. The outputs of the convolutional layers are multiplied
element-wise and then the resulting quantity is concatenated with the input.

The key-value-pair-based attention mechanism consists of three quantities: key, value, and query.
When query is given, the attention mechanism first attempts to match key, which is associated
with a value that is closest to what the query is looking for. In SNAIL, all three quantities are
computed by applying a single-layer feed-forward network to the input of ATTENTIONBLOCK,
which is usually the hidden states produced by the TCBLOCK. ATTENTIONBLOCK finds how
relevant query and key are by using the scaled-dot product QKT

√nkey
; by applying causally masked

softmax to convert the resulting quantity into the probability. Here, the causal mask prevents the
τ-th query cannot have access to future key/values, i.e., P = softmax

(
M� QKT

√nkey

)
, where M is the

causal mask whose upper triangular part is zeroed out. Then multiply P with V finally gives
values that queries look for. Fig 4-5 illustrate the ATTENTIONBLOCK computation flow.

Affine, Q (query) Affine, K (key)

Affine, V (value)

matmul

Fig 4-5. SNAIL DENSEBLOCK. DENSEBLOCK consists of two parallel dilated
causal convolutions. The outputs of the convolutional layers are multiplied
element-wise and then the resulting quantity is concatenated with the input.

43

45

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Introduction
	Methods and materials
	Recurrent Neural Networks (RNN)
	Long Short-Term Memory (LSTM)
	Gated Recurrent Unit (GRU)

	Sequence-to-Sequence (Seq2Seq) Model
	Convolutional Networks
	Temporal Convolutional Networks (TCNs)
	Simple Neural Attentive Meta-Learner (SNAIL)

	Materials
	Preprocessing

	Results and discussion
	Training neural networks
	Performance metrics
	One-week-ahead predictions results
	LSTM and GRU
	Seq2Seq
	TCN
	SNAIL
	Performance comparisons between Seq2Seq, TCN, and SNAIL

	N-weeks-ahead predictions
	Discussion

	Conclusion
	References

