
SANDIA REPORT
SAND2020-10538
Printed September, 2020

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

A Multi-Instance Learning Framework
for Seismic Detectors
Jaideep Ray, Fulton Wang and Christopher J. Young



Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2



ABSTRACT

In this report, we construct and test a framework for fusing the predictions of a ensemble of seismic
wave detectors. The framework is drawn from multi-instance learning and is meant to improve
the predictive skill of the ensemble beyond that of the individual detectors. We show how the
framework allows the use of multiple features derived from the seismogram to detect seismic
wave arrivals, as well as how it allows only the most informative features to be retained in the
ensemble. The computational cost of the “ensembling” method is linear in the size of the ensemble,
allowing a scalable method for monitoring multiple features/transformations of a seismogram.
The framework is tested on teleseismic and regional p−wave arrivals at the IMS (International
Monitoring System) station in Warramunga, NT, Australia and the PNSU station in University of
Utah’s monitoring network.
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1. INTRODUCTION

The aim of this investigation is to develop a scalable “ensembling” of fusion framework to chain
together a collection of seismic signal detectors to improve efficiency beyond what can be achieved
with any single detector. It is meant to be used with 3-component data from a single seismic sta-
tion and hence is not applicable to array processing. A seismic signal detector is defined as an
algorithm that examines a section (or a time window) of a seismogram and predicts whether it
contains the arrival of a seismic wave i.e., a signal. A fusion framework should, of course, be
able to accommodate various types of detectors and fusion algorithms. It should also be compu-
tationally efficient so that a multitude of detectors can be “ensembled”. We leverage the tenets of
multi-instance learning (MIL) to construct such a detector-fusion framework and demonstrate it
on 3-component data from the IMS (International Monitoring System) station at Warramunga, NT,
Australia (WB2, [1]) and the PNSU (Preston Nutter Ranch, Sunnyside, UT) seismic station in the
University of Utah Seismic Stations (UUSS) network. Empirical evidence of the improvement of
detection efficiencies beyond that achieved by the individual detectors is presented as proof of its
efficacy of our MIL ensembling method.

The arrival of a seismic wave at a location is detected by examining the seismogram recorded
there. The signature of the arrival is sometimes faint and obscured by the background seismic
noise. Consequently the seismogram is often processed to make the arrival more evident. There
are number of ways to do this, but the most common is by applying a bandpass filter. However,
the optimal passband for the filter cannot be predicted a priori. In practice, for automated monitor-
ing, multiple overlapping passbands are used, and detection of a seismic wave arrival in adjacent
frequency bands is usually taken as a strong sign of a successful detection.

In addition to bandpass filtering, the seismogram is often further enhanced by a characteristic
function algorithm like STA/LTA (short-term average / long-term average; see Chapter 9 in [11];
also Ref. [4]). The STA/LTA algorithm accentuates the seismogram by taking the ratio of the mean
absolute seismogram amplitude computed over a short time duration (say, τS ∼ O(1seconds)) to
one computed over a longer-duration window (say, τL ∼O(1minute)) sliding over the seismogram.
The longer-duration window precedes the shorter-one, and is disjoint from it (usually by about 5
seconds), thus making the two time-averaged estimates of the amplitude independent. The average
over τS captures the seismogram amplitude during the arrival whereas the average over τL provides
a long-term estimate of the seismogram amplitude, reflective of the background noise. The ratio
peaks when a seismic arrival is detected, showing a material difference between the short-term
and long-term characteristics of the seismogram. STA/LTA transformations can be applied to
displacements measured by a seismogram as well as to features derived from it e.g., polarization
metrics such as rectilinearity or vertical-to-horizontal ratio (see Chapter 9 in [11]). There is no
way of predicting which particular feature will successfully detect an arrival, and consequently,
in automated monitoring, it is tempting to monitor a multitude of features, provided they can be
quickly computed from the seismogram.

The incorporation of multiple feature streams into a detection ensemble has to be performed judi-
ciously. Each new feature should contribute a substantial amount of new/independent information
to the detection problem, because their incorporation will always adds their confounding noise,
leading to a tendency to increase false positives (false detections) while suppressing/hiding faint
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arrivals (i.e., missed detections or false negatives). In addition, the computational constraints of
real-time monitoring also impose limits on the number and type of features that can be assim-
ilated by an ensemble of detectors. Thus a fusion framework should accommodate data-driven
approaches for isolating and removing features and detectors that provide superfluous informa-
tion while also providing the flexibility to exploit phenomenology when fusing the outputs of the
ensemble of detectors.

In this investigation, we develop a framework for fusing an ensemble of detectors. The framework
builds on multi-instance learning (MIL; [45, 33, 41]) as applied to classifiers. A classifier is
a model that, given inputs, provides a categorical prediction. It is synonymous with a seismic
detector since, given a window from a seismogram, it provides a binary prediction of whether (or
not) it contains a seismic wave arrival. MIL provides for a bi-level structure for fusing seismic
detectors involving a collection of instance classifiers and a bag classifier. Instance classifiers act
on the seismogram (or features thereof), perhaps in separate passbands, and identify whether the
particular feature stream contains a seismic arrival. A collection (or bag) of instance classifiers
provide their predictions to a bag classifier that fuses their predictions to provide the overall or
ensemble prediction. Certain (rather relaxed) preconditions [15] must be met for one to adopt a
MIL framework. In our construction, instance classifiers fuse multiple features computed from a
seismogram filtered with a passband, whereas the bag classifier fuses across passbands. We show
how simplification i.e., removal of superfluous frequency bands and features can be performed
for both types of classifiers using information-theoretic criteria, as well as how one may compare
and select between competing types of classifiers that are used in the fusion framework. We will
demonstrate our framework (henceforth, ensembling classifier or EC) generalizes by detecting the
arrival of p−waves at two locations.

This research, and the structure of our particular framework is motivated by a desire to improve the
accuracy of existing real-time monitoring systems, which in turn places requirements on (1) com-
putational speed, (2) structural flexibility and (3) ease of interpretability of the EC’s predictions.
Real-time monitoring emphasizes computational speed preferably without the need for specialized
hardware, which favors a concurrent or parallelizable design. An ensemble of instance classifiers
fits well within this design, though they individually also have to be simple and their inputs should
be readily available from the seismogram. Thus we will lean towards simple, thresholding-based
and characteristic-function-based methods. Secondly, being able to retrofit an EC on an existing
collection of tuned, real-time monitoring methods requires a flexible architecture to accommodat-
ing complexity and we do so with our two-level structure. Instance classifiers can draw from the
rich geophysical literature on seismic detectors whereas bag classifiers can leverage phenomenol-
ogy, statistical behaviors found in data or design decisions (e.g., overlapping passbands) to enhance
detector/classifier accuracy. This allows a geophysics-based chain-of-reasoning for the EC’s pre-
dictions, making it fully interpretable, thus satisfying the third requirement.

Note that there exist modern, deep neural network-based phase-detectors that have achieved stun-
ning levels of accuracy (see review in Sec. 2). However, retrofitting them within an existing mon-
itoring infrastructure is difficult, they require huge sets of labelled training data, their training is
computationally expensive (often requiring specialized hardware in the form of general-purpose
graphical processing units) and they are black-box methods with non-interpretable predictions.
Unlike these new developments, ours is not a black-box method.
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The report is structured as follows. In Sec. 2 we review literature on seismic detectors/classifiers
(features and characteristic functions) that could serve as components of the EC. In Sec. 3 we
formulate the EC within a MIL structure, describe how it is trained and tested using a corpus of
seismograms and describe the preprocessing required of the training dataset. In Sec. 4 we present
our results and we present our conclusions in Sec. 5.

2. LITERATURE REVIEW

2.1. Detecting Seismic Wave Arrivals

We review literature on simple (and fast, if approximate) methods for detecting seismic wave
arrivals i.e., those methods that could form the kernel of instance classifiers. We also review fusion
algorithms that perform much the same function as bag classifiers. Finally we review detection
algorithms which have achieved stunning levels of accuracy [14, 30, 31, 43] without the need for
“ensembling”.

Tiggering algorithms: Fast techniques for detecting seismic wave arrivals, which are also called
triggering algorithms and which could serve as instance classifiers, tend to have a common struc-
ture. Let {xt ,yt ,dt} be the East, North and vertical displacements at time t in a 3-component
seismogram. The first step consists of a transformation T1 on ξt = {xt ,yt ,dt} i.e., ηt = T1(ξt)
within a sliding window. This stage generally includes some kind of filtering to remove noise or
the computation of features e.g., polarization variables such as rectilinearity, from the seismogram.
The second step consists of sharpening ηt via some nonlinear amplifier or by exploiting the non-
Gaussian nature of a seismic-wave arrival i.e. ζt = T2(ηt). ζt generally shows a simple behavior
at the time of seismic arrival e.g., it attains a maximum, or its slope does, and the arrival is detected
by setting a judicious threshold.

Ref. [7] describes a simple example of T1 where ηt , which they call a characteristic function
is obtained by (a variant of) raising the seismogram, element-wise, to the fourth power. The
enhancement T2 was performed using conventional STA/LTA [4] and the detection was accom-
plished by thresholding. Ref. [46] reviews a number of ways of executing T1 viz. time-domain,
frequency-domain and particle-motion (or polarization) techniques, identical to Sec. A in the Ap-
pendix. The sharpening is performed using STA/LTA. The detection of a wave-arrival is done using
a waveform-correlation technique which is useful for characterizing seismic events in regions of
repeated seismicity.

One of the most common ways of sharpening ηt , apart from STA/LTA, is by computing its kur-
tosis [44, 8] in a sliding window. Background noise, which is approximately Gaussian, has low
kurtosis and a sudden departure to large values indicates the arrival of a seismic wave. In Ref. [44],
T1 was computed by how well the PDF of a seismogram in a sliding window resembled noise or an
arrival and outputting ηt as the match. In contrast, Ref. [8] simply used the rectilinearity as ηt . A
third common method for sharpening ηt is the autoregressive-AIC (Akaike Information Criterion)
technique or AR-AIC [28, 42]. In this case, it is assumed that ηt contains both noise and a seismic
wave, with the arrival occurring at η∗t . Autoregressive time-series models are fitted on either side
of η∗t and AIC is used to simplify (i.e., find the order of) the two autoregressive models. η∗t is
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varied till the simplest models are obtained on both sides of η∗t , thus finding the arrival time. T1
could simply be used to filter ξt and select the vertical component to yield ηt .

The arrival of a seismic wave creates a non-stationary change in the seismogram, a phenomenon
that has been exploited via wavelet analysis. In Ref. [5], T1 consisted of performing discrete
wavelet transforms of the three seismograph components separately and computing the rectilin-
earity in a moving window in each scale. Sharpening, i.e., T2 was performed by multiplying the
rectilinearities across the scales to yield ζt which was then thresholded to detect the seismic wave
arrival. Ref. [51] followed much the same approach but used an AR-AIC method to serve as T2.
In Ref. [29, 17], the wavelet detail coefficients were subjected to STA/LTA sharpening to yield ηt ,
which was then “picked” automatically by computing the kurtosis. Continuous wavelet transforms
on a user-defined set of scales has also been used as T1 to decompose a seismogram into its con-
stituent time-scales. The wavelet detail coefficients are sharpened using envelope functions [25],
range filters [9] or rectilinearity [39] (i.e., various forms of T2). Again, thresholding was used to
detect the actual arrival times.

Fusion: The idea of fusing multiple variables computed from a seismogram to aid detection of
seismic wave arrival has been pursued in the past [49, 40]. In Ref. [49], the instance classifiers
computed a time-series of energy, change in instantaneous frequency etc., by sliding a window
along the seismogram. The time-series were then sharpened using STA/LTA and, based on a
threshold, converted into a binary time-series. The binary time-series were supplied to the bag
classifier, which then added the binary time-series to produce one. Seismic wave arrival was de-
tected based on a threshold placed on the combined version of the (multiple) binary time-series.
Note that while the structure of the EC described in Ref. [49] fits quite easily within the structure
of MIL, the terminology employed to describe these classifiers was quite different. In Ref [40] the
instance classifiers consisted of 10 separate STA/LTA configurations processing the vertical com-
ponent of a seismogram, followed by replacing the output time-series by their quantiles (called
“pseudo-probabilities”). The bag classifier simply multiplied the “pseudo-probabilities” and de-
tected the arrival by setting a threshold to be exceeded. Thus, while the idea of an EC classifier
has existed, there has not been much work in formalizing the structure or embedding the statistical
sophistication required for accuracy, flexibility and exploiting large seismogram corpus to ensure
robustness. These are the motivations behind our study.

2.2. Multiple-Instance Learning

In Multiple Instance Learning (MIL) scenario, the data consists of instances, grouped into bags.
Bags have binary bag labels, and instances also have instance labels, but the instance labels are
not given in the training data. Instead, the training data consists of positive bags and negative bags.
The learning task is to train a classifier that given a new bag, predicts its binary bag label. As
alluded to earlier, in our application, a bag corresponds to a window from a seismogram, and an
instance corresponds to a passband. MIL was first developed by [13] in the context of drug activity
prediction, where the goal is to predict whether a molecule will bind to a given receptor. However,
a drug molecule can take on several conformations, so that a molecule is best represented as a
collection of conformations, and experiments for generating training data cannot reveal which of
the molecule’s conformations binds to the receptor. Thus, the molecule binding prediction problem
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is cast as a MIL problem, where a molecule is a bag, and each conformation of the molecule is an
instance in the bag. Because each conformation either does or does not bind, and a molecule binds
if at least one of its conformations binds, they adopt the “standard” MIL assumption: that instance
labels are binary, and the bag label is positive if and only if at least one of the instance labels within
the bag is positive. Their work develops a classifier (axis-parallel boxes) without an analogue in
the standard learning scenario, as does another early work [32] based on finding prototypes of
the positive class that are defined to be close to the intersection of positive bags, and far from
the union of negative bags. Subsequent work adopting the standard MIL assumption has adapted
learning approaches for the standard learning scenario to the MIL scenario, including maximum-
margin methods that either do [6] or do not [18] explicitly model instance labels, and maximum-
likelihood probabilistic methods, which use various instance probability models, including logistic
regression [37], ensembles of trees fit via boosting [50] or bagging [27], and deep neural networks
[24]. Probabilistic methods vary in the assumptions they make regarding the relation between bag
and instance labels. While some explicitly model instance labels and follow the “standard” MIL
assumption [34], other models have assumed alternate relations between bag and instance labels,
due to the increased accuracy they give. One line of work still explicitly models instance labels,
but instead assumes the bag label depends on the total count of positive instance labels within a
bag [20, 21]. A separate line models the probability that each instance is positive, and aggregates
those probabilities to form the probability that the bag label is positive. This aggregation can be
done via the softmax function [36], an unweighted mean [47], or a weighted combination where
the weights are fit to data [16, 45]; Our work falls into the last category. Probabilistic models
have been extended to account for instance label dependencies via hidden markov models [19] and
conditional random fields [35]. Bag label dependencies have also been modelled [12]. Finally, to
account for the plentiful uncertainty in the MIL scenario, Bayesian probabilistic methods including
linear models[38], text models [48], and Gaussian Processes [26, 23] have been developed.

The application of Multiple Instance Learning to seismic data is, to the best of our knowledge,
yet unexplored. The closest related work is by [10], who use instance learning to resolve the
frequency ambiguity in bird sound classification data; the labeller can specify the time during
which a particular bird was heard, but not the frequency range in which the bird sound was located.

3. FORMULATION

3.1. Featurizing the Seismic Data

A seismogram consists of measurements {xt ,yt ,dt} of the displacements caused by the passing
of a seismic wave. Consider too that each seismogram has one seismic wave arrival and it has
been manually detected and marked (i.e., “picked”) at t∗. The arrival may not be observable in the
raw measurements, and consequently they are bandpass-filtered in passbands B(n),n∈ {1, . . .N} to
yield the filtered seismogram

{
x(n)t ,y(n)t ,d(n)

t

}
. Let a passband n be defined as B(n) =

[
f (n)l , f (n)h

)
where fl, fh are the bounds of the passband. Further, let the passbands be overlapping i.e.,

f (n+1)
l < f (n)h < f (n+1)

h and f (n−1)
l < f (n)l < f (n−1)

h .
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Figure 3-1 A raw seismogram with its vertical component (top left), and
STA/LTA-enhanced versions of the same, after being filtered in various pass-
bands. The vertical line denotes the arrival as manually “picked” by a geo-
physicist.

Fig. 3-1 shows the vertical displacement component from a seismogram; it does not reveal the
existence of a p−wave arrival. It is then bandpass filtered into three passbands viz., (0.5, 1.5) Hz,
(1.5, 3.0) Hz and (2.0, 4.0) Hz, and the resulting filtered time-series are enhanced by a STA/LTA
algorithm. The figure shows that the arrival is clearly visible as a spike after enhancement. A
similar filtering-and-enhancement process can be applied to any seismic feature computed from
the seismogram. However, there is no guarantee that the enhancement will be successful in all
passbands, unlike the results plotted in the figure.

The filtered-and-enhanced seismograms are then “featurized”. Two time-windows of width τ are
extracted from each seismogram. One window is placed symmetrically about the picked arrival at
t∗. The other is placed at random in the seismogram far ahead of the arrival so that the window
only contains the seismic background signal. Repeated over a set of K seismograms, we get equal
number of seismogram windows with and without a p−wave arrival.
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These windows are then used to construct the training data (TD) for the EC.
{

x(n)t ,y(n)t ,d(n)
t

}
are used to compute the rectilinearity r(n)t and vertical-to-horizontal ratio b(n)t using the method
described in App. A. The vertical displacement d(n)

t is extracted from the filtered seismogram, and
along with r(n)t and b(n)t are subjected to the STA/LTA characteristic function algorithm to yield{

δ
(n)
t ,ρ

(n)
t ,β

(n)
t

}
. The 95th percentile of the values observed in each window w (

{
δ
(n)
w ,ρ

(n)
w ,β

(n)
w

}
)

are then selected to represent it. We refer to them as the features of the window i.e. f (n)w ={
δ
(n)
w ,ρ

(n)
w ,β

(n)
w

}
. Each window is labeled as having an arrival or not (i.e., Zw = 0/1). A window

is thereafter fully described by
(

f (n)w ,Zw

)
and is called an example; 2K examples constitute the

TD. Half the examples contain information about p−arrivals and half do not.

3.2. Instance and Bag Classifiers

Instance classifier: We assume that the features f (n)w =
{

δ
(n)
w ,ρ

(n)
w ,β

(n)
w

}
of a window w, obtained

in passband B(n), can be used to predict the probability y(n)w that it contains a p−arrival; further,
this probability can be modeled as a logistic regression function

y(n)w = g(δ (n)
w ,ρ

(n)
w ,β

(n)
w ;α

(n)) =
1

1+ exp
(

α
(n)
0 +α

(n)
1 δ

(n)
w +α

(n)
2 ρ

(n)
w +α

(n)
3 β

(n)
w

) ,
=

1

1+ exp
(

α(n) · f (n)w

) , (3.1)

where α(n) =
{

α
(n)
0 ,α

(n)
1 ,α

(n)
2 ,α

(n)
3

}
are (yet unknown) parameters of a logistic regression classi-

fier (henceforth logreg). N instance classifiers, working on separate passbands, produce predictions{
y(n)w

}
,n ∈ {1, . . .N} which have to be fused together.

Bag classifier: The bag classifier serves to fuse the predictions of instance classifiers gathered
across multiple passbands. It too is modeled as a logistic regression function

zw = h(yw;γ) =
1

1+ exp
(

γ0 + γ1y(1)w + γ2y(1)w + . . .γNy(N)
w

)
=

1
1+ exp(γ ·yw)

, (3.2)

where γ = {γ0,γ1, . . .γN} are the parameters of the bag classifier and yw =
{

1,y(n)w

}
,n∈ {1, . . .N}.

zw is the probability that the bag of instance classifiers have detected the arrival of a p− wave in
the window.
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3.3. Training and Testing Classifiers

Training : The training of instance and bag classifiers involves estimating α(n) and γ using the
TD. Both the classifiers (Eq. 3.1 and Eq. 3.2) are of the form

pw =
1

1+ exp(c ·xw)
, (3.3)

where c= {c0,c1,c2, . . .} are parameters of the classifier, xw = {1,x1,x2, ...}w are the features input
into the classifier for the w-th example and pw is the probability that the w-th example contains a
p−arrival. Training the classifier involves obtaining the best estimate ĉ from TD, which consists of
{xw,πw},πw = 0/1 for w = 1 . . .W , where W is the total number of windows in the dataset being
used to train the classifier. Assume that approximately W/2 examples have πw = 1 i.e., our training
dataset is balanced with respect to instances of arrival of p−waves.

The process of training the logreg is fully described in Chapter 4, Ref. [22] and we present a
summary here. Eq. 3.3 can be re-written as a generalized linear model with a Bernoulli link
function

log
(

pw

1− pw

)
=−c ·xw. (3.4)

The aim is to estimate c using πw. The likelihood of observing the data, conditional on c, is

L (πw|c) = ∏
w∈W1

pw ∏
w∈W0

(1− pw), (3.5)

where W0,W1 are the sets of examples where πw = 0,1 respectively. The log-likelihood can be
written by

log(L ) = ∑
w∈W1

log(pw)+ ∑
w∈W0

log(1− pw) =
W

∑
w=1

πw log(pw)+(1−πw) log(1− pw)

=
W

∑
w=1

(1−πw)c ·xw− log [1+ exp(c ·xw)]

= `, (3.6)

where we have used the fact that πw = 0/1 to simplify the expression. The estimates ĉ are obtained
by maximizing ` i.e., by setting ∂`/∂c = 0. This optimization can be performed using maximum
likelihood or expectation-maximization.

The N instance classifiers are trained by setting xw = f (n)w and πw = Zw; thus instance classifiers
are trained to perform the detection independently in B(n). The bag classifier is trained by setting
πw = Zw and xw = yw.

Simplifying a classifier: The classifier, once fitted to training data, has to be simplified i.e.,
checked whether some its features (i.e., components of xw) can be eliminated. This is performed
by computing the AIC (Akaike Information Criterion)

AIC =−2`+2‖c‖0 . (3.7)
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The term ‖c‖0 provides the number of non-zero elements in c i.e., the number of active features in
the classifier. The classifier is simplified by removing one of the features, retrained, and its AIC
computed. This is performed for all the features, and the classifier with the lowest AIC is retained.
The simplification process is is then repeated on the once-simplified classifier. The process stops
once the AIC cannot be reduced any more. Note that removing a feature often leads to a decrease
in ` but is offset by the reduction in ‖c‖0. This process is called “stepwise elimination” of a linear
model and is described in Chapter 7, Ref. [22].

Setting zcuto f f : The bag classifier provides zw which is the probability of detecting a p−wave
arrival. The data, on the other hand, consists of Zw, a binary variable. zw is converted into a
determination of a detection/no-detection based on a cutoff zcuto f f ; for zw ≥ zcuto f f , an arrival
is assumed. The value of zcuto f f determines the false positive rate (FPR) and false negative rate
(FNR), for a dataset that has an equal number of arrivals and non-arrivals. We adopt two ways of
setting zcuto f f :

• We set zcuto f f to minimize the objective function C1(zcuto f f ) = FNR2 +FPR2. This results
in the “nominal” EC.

• We set zcuto f f to minimize the objective function C2(zcuto f f ) = FNR2 + FPR2 + (FNR−
FPR)2. We call this the balanced EC, as it seeks to achieve similar values for FNR and FPR.

Cross-validation and testing: The 2K windows are separated into 3 disjoint sets WT , WI and
WB. The separation is performed randomly after shuffling the 2K windows, so that each subset has
approximately equal number of windows with and without p−arrivals (i.e., they are all balanced).
WI is used to train the instance classifiers, i.e., estimate α(n). WB is used to train the bag classifier
i.e., estimate γ and zcuto f f . Finally, WT is used to test the performance of the EC. The two metrics
of performance that we will use to test the bag classifier are:

• the fraction of p−arrivals that were not detected i.e., FNR

• the fraction of windows with background “noise” that were mistaken as p−arrivals i.e., FPR.

4. RESULTS

Description of the training data: The data used in this work consists of 1800 windows con-
taining p−arrivals and an equal number without them. These were obtained from seismograms
measured at the IMS station in Warramunga, NT, Australia [2]. The seismometer is a broad-band,
high-gain seismometer, with a sampling rate of 40 Hz. The arrivals are regional and teleseismic
p−waves. The second dataset used in this study is obtained from the PNSU (Preston Nutter Ranch
seismic station) in the UUSS network [3]. The PNSU seismograph is a high broad-band, high-gain
seismometer, sampling at 100 Hz. Our study uses 490 windows containing p−wave arrivals and
an equal number without them. These windows contain P, Pn, Pg and PKP waves. The arrivals
were labeled (“picked”) manually by an expert.

The windows are shuffled and equally divided among WI,WB and WT . The windows are 60 seconds
long (τ = 60sec), and for STA/LTA, τS = 3sec and τL = 30sec in line with [46]. The time periods
over which the short-term and long-term averages are computed are disjoint (by 5 seconds) to
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maintain independence. The long-duration window precedes the short-duration one. The window
containing the arrival is placed symmetrically so that the arrival is in its middle. Four passbands
are used during band-pass filtering (i.e., N = 4), corresponding to (0.5, 1.5), (1.0, 2.0), (1.5, 3.0)
and (2.0, 4.0) Hz. Two other passbands (3.0, 6.0) and (4.0, 8.0) Hz were also considered but were
dropped because they had obviously poor discriminative skill in detecting p−arrivals. A four-pole
Butterworth-bandpass filter is used.

In Fig. 4-1, we plot the distribution of δ
(n)
w ,ρ

(n)
w ,β

(n)
w collected from windows with and without

arrivals (for Warramunga). We see that their distributions in the four passbands considered here
are distinct revealing that the arrivals cause a change in the values assumed by these features. This
distinction was not observed in the two passbands that were dropped. Further, the passbands (1.0,
2.0), (1.5, 3.0) and (2.0, 4.0) seem most informative (especially with δ

(n)
w ), but they seem to be

rather similar i.e., it is unclear if they bring any independent information. One of the uses of the
framework will be to decide which features and passbands to retain in the EC.

The processing of seismic waveforms, their filtering, computation of seismic features and appli-
cation of STA/LTA transformations are performed using the Python package Obspy. Machine
learning using logistic regressors and random forests were performed in R using the packages
randomForest and InformationValue (for computing zcuto f f ).

Classifier performance (Warramunga) : The performance of the instance classifiers working in
their respective passbands, along with EC, are plotted in Fig. 4-2. We see performance obtained by
the nominal EC (obtained by optimizing C1(zcuto f f );z∗cuto f f = 0.52) and the balanced EC (obtained
by optimizing C2(zcuto f f );z∗cuto f f = 0.383). We see that the FPR is rather small, implying that
background noise is rarely mistaken for a seismic wave, but the FNR is moderate i.e., many faint
arrivals are mistaken for background noise. Lowering zcuto f f , in this case, could render FNR and
FPR more equitable and this is achieved in the balanced EC. The procedure to simplify the instance
classifier failed, in the sense that none of the features δ

(n)
w ,ρ

(n)
w ,β

(n)
w were removed. On the other

hand, the bag classifier was greatly simplified as all passbands, except for (2.0, 4.0) Hz were
removed. The fact that this particular passband proved to be most discriminative is not surprising
(see Chapter 2 in Ref. [11]) but data from Warramunga validates geophysical insight.

Generalization to PNSU: Next we check whether the multi-instance learning formulation can be
applied to data from a different site, PNSU in this case. The performance results are plotted in
Fig. 4-3. We see the same general trends observed in Fig. 4-2 - combining the instance classifiers
improves performance, and the instance classifiers themselves cannot be further simplified. Also,
the EC chooses the (2.0, 4.0) Hz band to retain. FPR are far lower than FNR. Further, we see that
the EC performs better at PNSU than at Warramunga. The balanced EC, as designed, trades off
the FPR to achieve a lower FNR.

4.1. Discussion

Figs. 4-2 and 4-3 show that regardless of the dataset, instance classifiers generally detect back-
ground seismic activity quite well using displacement, rectilinearity and vertical-to-horizontal ratio
as the input features. None of these features can be eliminated without impairing the performance
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Figure 4-1 Distributions of δ
(n)
w (top), β

(n)
w (middle) and ρ

(n)
w (bottom) for the

passbands under consideration, in windows with and without p−arrivals. We
see that the distributions are different i.e., the seismic wave changes these
features. Results are plotted for Warramunga.
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Figure 4-2 FPR and FNR for the instance classifiers for Warramunga working
in the passbands used in this study, along with the performance of the nom-
inal and balanced EC. We see that FPRs are low and fusing these instances
results in a better EC. The label “RF” stands for a bag classifier constructed
using a random forest.
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Figure 4-3 FPR and FNR for the instance classifiers for PNSU working in the
passbands used in this study, along with the performance of the nominal and
balanced EC. We see that FPRs are low and fusing these instances results in
a better EC.
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Figure 4-4 Comparison of the distribution of signal-to-noise (SNR) ratios of
the seismograms for PNSU and Warramunga. PNSU has a larger fraction of
its data at higher SNRs. The bulk of the Warramunga data exhibits SNRs
smaller than 10.

of the instance classifiers. The fusion of the instance classifiers by the bag classifier results in a bet-
ter overall performance by the EC, though this is actually achieved by the selection of the instance
classifier working in the (2.0, 4.0) passband. The same passband is chosen for both Warramunga
and PNSU.

The performance of EC is better for PNSU than for Warramunga. This could be due to better
quality labeling at PNSU (though Warramunga and PNSU were picked by the same person). More
probably, it is due to the distance between the seismic source and the detection location. The ar-
rivals at Warramunga are regional or teleseismic, and thus are attenuated (i.e., poor SNR), whereas
the arrivals at PNSU are mostly local and thus might be expected to have better SNR. In Fig. 4-4
we plot the PDF of the SNR of all the seismograms from Warramunga and PNSU. It is clear that
PNSU registers higher SNR than Warramunga, which, in turn, has the bulk of its seismograms
at SNRs lower than 10. Thus the PNSU dataset has cleaner arrivals that likely rendered the task
of learning the instance classifiers easier, despite the fact that it was about a third of the size as
Warramunga’s.

We also consider the question whether the current formulation can accommodate more complex
classifiers e.g., whether zw could be a nonlinear function more complicated than a logistic function
(see Eq. 3.2). The Warramunga dataset is sufficiently large to explore complex function of four
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variables (y(n)w ,n ∈ {1, . . .N}) and therefore we explore the possibility of using a random forest
(see Chapter 15 in Ref. [22]) instead of a logistic regressor in Eq. 3.2. The performance of the
random forest bag classifier is plotted in Fig. 4-2. Comparing it to that of the nominal logistic
regression classifier, we see that it is hardly different, indicating that a better bag classifier cannot
be constructed/discovered in a purely data-driven way - rather, one would have to exploit one’s
knowledge of phenomenology (e.g., detections would likely occur in adjacent passbands simulta-
neously) to do so. Random field models are an obvious choice to explore, but we leave that for
future work.

5. CONCLUSIONS

In this study we have shown how the tenets of multi-instance learning (MIL) can be used to con-
struct an ensemble of detectors for the arrival of seismic waves, p−waves for the purposes of this
study. MIL allows a formulation that accommodates a clear separation of tasks. At the lower level
lie the instance classifiers (conventional detectors) that use geophysical knowledge viz., features
computed from a bandpass-filtered seismogram, to detect the arrival of a seismic wave. At the
upper level, a bag classifier fuses the predictions of the ensemble of instance classifiers. This level
allows for the exploitation of phenomenology and design decisions to enhance the performance of
the ensemble beyond that of the individual instance classifiers. Such a construction also makes it
interpretable i.e., its predictions admit a geophysical-chain-of-reasoning.

The formulation is flexible and versatile. It allows one to hypothesize a multitude of seismic fea-
tures that might be informative in detecting arrivals, and thereafter, in a purely data-driven manner,
eliminate the ones that do provide independent information. We demonstrated this capability with
both seismic features and passbands to include in the ensemble of detectors. We found evidence
to retain all the seismic features we considered, as well as evidence to retain only one of the four
passbands that we started our study with. This shows the efficacy of our MIL-based ensembling
technique. We also demonstrated the use of two different classifier models for the bag classifier
and selected between the two.

Our MIL-based ensembling technique is also generalizable. It was successfully applied to two
datasets, Warramunga and PNSU. It performed better for PNSU, which was explained by the
better SNR of the (largely) local p−arrivals recorded in PNSU. Our explanation of the different
performance at the two stations was was considerably eased by the interpretable nature of the
ensemble of detectors, which allowed us to track the performance of the EC each step of the
way viz., the performance of the instance classifiers under different SNR, followed by the errors
incurred in the bag classifier. It also allowed us to test a random forest as a model for the bag
classifier, driven by the hypothesis that a nonlinear combination of the instance classifiers could
yield better results (the hypothesis was shown to be false). Such a modular approach to deconstruct
and analyze the EC would have been impossible in black-box detectors/classifiers yielded by any
modern machine-learning approaches.
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APPENDIX A. COMPUTATION OF RECTILINEARITY AND
VERTICAL-TO-HORIZONTAL RATIO

Consider a seismogram {x(n)t ,y(n)t ,d(n)
t } filtered into passband n. We seek to compute rectilinearity

ρ
(n)
t and vertical-to-horizontal ratio β

(n)
t in the same passband. These features are a subset of

variables called “polarization” metrics.

Consider a (sliding) time-window τ ′ = 1sec within which polarization metric are to be computed.
Let X = [x(n)t ,y(n)t ,d(n)

t ] be a matrix defined over τ ′ containing the displacements in the East, North
and vertical directions as its 3 columns. We compute the covariance matrix for the window as

S(n)t =

 see sen sez
sne snn snz
sze szn szz

=
XXT

M
,

where M is the number of time-steps in τ ′. We perform an eigenanalysis of S to obtain the eigen-
values λ = {λ (n)

1 ,λ
(n)
2 ,λ

(n)
3 } and the eigenvectors {u(n)

1 ,u(n)
2 ,u(n)

3 }.

ρ
(n)
t and β

(n)
t within the window and passband are defined as

ρ
(n)
t = 1−

λ
(n)
2 +λ

(n)
3

2λ
(n)
1

β
(n)
t =

2szz

see + snn
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