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Previous efforts determined a set of calibrated model parameters for Reynolds-
Averaged Navier Stokes (RANS) simulations of a compressible jet in crossflow (JIC)
using a k-ε turbulence model. These coefficients were derived from Particle Image
Velocimetry (PIV) data of a complementary experiment using a limited set of flow
conditions. Here, k-ε models using conventional (nominal) and calibrated parame-
ters are rigorously validated against PIV data acquired under a much wider vari-
ety of JIC cases, including a flight configuration. The results from the simulations
using the calibrated model parameters showed considerable improvements over
those using the nominal values, even for cases that were not used in defining the
calibrated parameters. This improvement is demonstrated using quality metrics
defined specifically to test the spatial alignment of the jet core as well as the magni-
tudes of flow variables on the PIV planes. These results suggest that the calibrated
parameters have applicability well outside the specific flow case used in defining
them and that with the right model parameters, RANS results can be improved
significantly over the nominal.

I. Introduction
The jet-in-crossflow (JIC) problem has been studied via a large number of both experimental

and numerical studies (e.g., [1, 2]), which have provided considerable understanding of the flow
topology and statistics [3, 4]. The flowfield is typified by a counter-rotating vortex pair (CVP)
oriented in the streamwise direction in the jet core and a horseshoe vortex (HSV) near the wall
which wraps around the jet column. The interaction of the CVP and HSV with downstream control
surfaces like fins has been shown to alter the effective forces generated by those surfaces by altering
their effective angle of attack [5, 6, 7].

For the purposes of vehicle design, accurate modeling of the complex flow features at down-
stream control surfaces is a primary goal [8]. Unfortunately, most numerical approaches are so

*Technical Staff, Aerosciences Department, nmille1@sandia.gov
†Technical Staff, Aerosciences Department, AIAA Associate Fellow, sjberes@sandia.gov
‡Technical Staff, Extreme-scale Data Science & Analytics, jairay@sandia.gov
§This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United

States. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

1 of 16

American Institute of Aeronautics and Astronautics



computationally prohibitive that Reynolds-Averaged Navier Stokes (RANS) continues to be the
most efficient investigative technique. Arunajatesan [9] tested multiple two-equation RANS mod-
els for simulating a supersonic jet in a transonic, compressible crossflow and concluded that most
of their predictive capabilities were “marginal at best.” Although the RANS results were quali-
tatively similar to the experimental data used for comparison, inaccuracies in the turbulent stress
predictions resulted in the incorrect location and strength of the CVP and an overpredicted velocity
deficit in the jet core. These shortcomings will, in turn, lead to poor estimations of the effective
forces on downstream control surfaces.

The RANS data used by Arunajatesan [9] were produced using nominal model parameters
(Cnom). This led Ray et al. [10] to investigate the usefulness of rigorously tuning the parameters of
the k-ε model in hopes of producing the best possible results. Short of making structural changes
to the turbulent stress model within RANS, the best results that can be accomplished come by
calibrating the model’s existing parameters to the specific flow case of interest. Ray et al. [10] pro-
posed a Bayesian inverse problem and a Markov chain Monte Carlo method utilizing PIV data of
the streamwise vorticity to determine an optimum, calibrated combination of the three model pa-
rameters (Copt) for a single case of the jet-in-crossflow problem. Ray et al. [11] continued this work
by calibrating the parameters for a wider set of flow cases and showed improvement for modeled
vorticity in each case. The calibration process that led to the determination of Copt was performed
by matching to a single streamwise vorticity core on a y-z flow-normal crossplane. Although the
model fit to that variable was much improved under those narrow conditions, little validation of the
use of Copt under different flow conditions or on other variables or in other regions of the flow has
been done. This work is an effort to take Copt as determined by matching the streamwise vorticity
at a single location, then validate its usefulness in improving RANS predictions of multiple flow
variables throughout the domain under a variety of flow characteristics.

To that end, a large set of PIV data collected over many years at Sandia National Laboratories
(SNL) was tapped to provide the experimental data needed for the validation of RANS simulations
(Sect. II). Variables of interest were taken from the converged RANS results and comparisons
were made to the PIV data using three quality metrics, each specifically chosen to give a different
measure of the quality of the simulation results (Sect. III). Side-by-side comparisons of the RANS
results and PIV data, along with the values of the quality metrics for each variable on each plane
for each case being investigated, show that the use of Copt produces superior simulation results,
even for flow cases that differ considerably from the case used for the parameter calibration (Sect.
IV).

II. Experiments and Data
A. PIV
PIV data from two separate experimental campaigns, performed in different wind tunnels with
different equipment and geometries, are used here for validation. The first sets of data, against
which the nominal and calibrated RANS simulations were tested, were collected in the Trisonic
Wind Tunnel (TWT) at SNL and have been reported on and used in a number of previous studies
(e.g., [7, 8, 12, 13, 14]). The data are all from jet-in-crossflow experiments each consisting of
a wall-mounted nozzle venting a supersonic jet into a subsonic (Mach 0.8) crossflow (Figure 1).
The TWT cross section is 305×305 mm and the tunnel was operated with a freestream velocity
of 285±2 m/s. Four different jet nozzles were used for separate tests, each with a design Mach
number of 3.7 at the centerline of the nozzle exit. The first was oriented normal to the tunnel floor
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Figure 1: Schematic of the TWT and mean JIC flow topology depicted using PIV data from Beresh
et al. [12] and Beresh et al. [13] and collected on the x-y centerplane and a y-z crossplane at
x = 321.8 mm. Figure previously used in Ray et al. [10] and used with permission.

and thus vented the jet perpendicularly into the subsonic crossflow. The additional nozzles were
inclined laterally to the freestream direction at angles of α = 15°, 30°, and 45° and thus vented the
jet into the crossflow perpendicularly to the freestream but canted in the crossplane. The nozzle
with α = 0° had an exit diameter of 9.53 mm while the remaining nozzles had elliptical exits
resulting from the design which was based on a conical nozzle being scarfed by the plane of the
tunnel wall passing through the centerpoint of the exit plane of the normal conical nozzle. Further
dimensions and nozzle exit properties can be found in Beresh et al. [14].

PIV datasets were collected during multiple experiments in the TWT with nozzles of each of
the inclination angles and at five different jet-to-freestream dynamic pressure ratios (J). Across the
different experiments, data were collected on three different two-dimensional (2D) planes within
the tunnel. The first plane was the x-y centerplane which was aligned with the nozzle center
(z = 0) and extended from ≈ 226 to 350 mm downstream of the nozzle. Data were collected on the
centerplane only with the α = 0° nozzle and only for J = 8.1 and J = 10.2 [15]. The second plane
was a y-z crossplane positioned at x = 219 mm (23.0 jet diameters) and roughly centered around
z = 0. Data were collected on this crossplane during experiments with both the α = 0° and α = 30°
jet nozzles, both with J = 10.2 [7]. The final plane was also a y-z crossplane, but was positioned
at x = 321.8 mm (33.8 jet diameters). It was at this downstream location that the data used in Ray
et al. [10] were taken. The data they used were taken with the 0°-inclined nozzle operating at a
dynamic pressure ratio of J = 10.2 and had been previously reported in Beresh et al. [13]. Herein,
data that were collected on this crossplane for experiments using all four nozzles at J values of
2.8, 5.6, 8.1, 10.2, and 16.7 are used (Table 1). This is a combination of the datasets reported in
Beresh et al. [13] and Beresh et al. [14].

The PIV data taken in the TWT were all collected using conventional stereoscopic procedures
with cameras positioned on Scheimpflug mounts. For both the centerplane and the upstream cross-
plane, the two cameras (LaVision sCMOS, 5.5MP) were fitted with 200 mm lenses and data were
collected at 10 Hz. For the centerplane, the two cameras were mounted on the same side of the tun-
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Table 1: The planes of PIV data used for each combination of nozzle inclinations (α) and dynamic
pressure ratios (J).

J = 2.8 J = 5.6 J = 8.1 J = 10.1 J = 16.7

α = 0°
z = 0.0 mm

z = 0.0 mm
x = 321.8 mm x = 321.8 mm

x = 321.8 mm
x = 219 mm x = 321.8 mm
x = 321.8 mm

α = 15° x = 321.8 mm x = 321.8 mm x = 321.8 mm x = 321.8 mm x = 321.8 mm

α = 30° x = 321.8 mm x = 321.8 mm x = 321.8 mm
x = 219 mm

x = 321.8 mm
x = 321.8 mm

α = 45° x = 321.8 mm x = 321.8 mm x = 321.8 mm x = 321.8 mm x = 321.8 mm

nel at a half-angle of 20°, while geometric restrictions with the positioning of windows in the TWT
required that the cameras be mounted downstream of the plane with one camera on either side of
the tunnel for the upstream crossplane. This resulted in a camera half-angle of 55° in the horizontal
plane with each camera pointed at a slight upward angle of 15°. For the downstream crossplane,
the cameras (Redlake MegaPlus ES4.0/E) were fitted with 105 mm lenses (Nikon Micro-Nikkor)
and were both mounted on the same side of the tunnel. As depicted in Beresh et al. [13], the
cameras viewed the laser sheet from opposite directions with the help of mirrors rigidly mounted
inside the plenum. This resulted in an effective camera half-angle of 53°. The data were collected
for this plane at 5 Hz.

Light for the PIV system in the TWT was produced by a frequency-doubled dual-cavity Nd:YAG
laser (Spectra Physics PIV-400) at 300-400 mJ per beam for both the centerplane and the upstream
crossplane data collection. It was focused to a thickness of 1.5 mm for the centerplane and about
2 mm for the crossplane. For the downstream crossplane, a pair of frequency-doubled Nd:YAG
lasers (Coherent Infinity 40-100) which produced about 120 mJ per beam were used and were
focused to a laser-sheet thickness of 2.0 mm.

The second set of data, collected during a different experimental campaign, was previously re-
ported in Beresh et al. [8]. Those data were collected during experiments performed on a full-scale
flight vehicle model in a production-scale wind tunnel under a variety of conditions and represent
the most complex and flight-realistic data against which the calibrated RANS could be tested. The
experiments were performed in the NASA Ames Unitary Plan Wind Tunnel which, with its 3.4×3.4
m cross section, was able to hold a 3.6 m long, full-scale reproduction of an axisymmetric flight
vehicle with four aft fins. Two nozzles were mounted into the model surface at approximately
the model’s midsection and had a lateral inclination angle of 39.5° to the surface normal. The
nozzles were considerably larger than those used in the TWT, with an effective nozzle diameter
at the model surface plane of 38.2 mm. The nozzles were designed to produce a nominal Mach
number at the centerline of the nozzle exit of 3.66 by utilizing high-pressure room-temperature
air which was supplied at up to 20 MPa at 18 kg/s through the mounting sting. A variety of tests
were performed during the experimental campaign, as explained in Beresh et al. [8], with different
freestream Mach numbers, dynamic pressure ratios, and angles of attack. Only the baseline case
from that campaign is used here. That case used a jet stagnation pressure of 2.83 MPa while the
wind tunnel was operated at a freestream Mach number of 0.8 with a stagnation pressure of 33.5
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kPa, resulting in a jet-to-freestream dynamic pressure ratio of J = 16.
PIV data were collected on a set of y-z planes at a range of x locations from 414 to 820 mm

downstream of the nozzle center. The cameras (Redlake MegaPlus ES4.0), with their 85 mm
lenses, were mounted on Scheimpflug mounts in the plenum on one side of the tunnel such that
they viewed the laser sheet from opposite sides. Four Nd:YAG lasers (New Wave Gemini 120)
were used, with two sets of two each working in tandem for the initial and delayed pulses. Beams
were directed into the tunnel on the opposite side from the cameras via mirrors mounted into
the tunnel plenum. Laser sheet thicknesses were 1.5 mm and 3.0 mm for the initial and delayed
pulses respectively. The reflecting mirror and the cameras were mounted on a traverse system that
allowed for PIV planes to be collected throughout the range of x locations. Herein, data from only
the x = 820 mm plane were used for comparisons to the RANS simulation data, though future
work may include comparisons to data taken throughout the range of the traverse.

B. RANS
The RANS data, produced with both Cnom and Copt, were generated using Sandia National Labo-
ratories’ parallel compressible gas dynamics code, SIERRA/Aero. The specifics of the k-ε model
that is utilized in SIERRA/Aero are described in So et al. [16] and Brinkman et al. [17]. The model
uses three parameters, {Cµ,Cε1,Cε2}. Cnom was defined as {0.9,1.43,1.92} for the model param-
eters, respectively, (see Brinkman et al. [17]) while Copt was defined as {0.1025,1.416,2.099} as
specified in Ray et al. [10].

For the experiments performed in the TWT, a multiblock structured mesh of ≈ 3.14 million grid
cells was defined from ≈ 32.0 jet diameters upstream to ≈ 100 jet diameters downstream of the jet
nozzle. The spanwise and wall-normal dimensions were defined to match those of the TWT and the
nozzle geometry was resolved down to the stagnation chamber. A previous grid refinement study
on a limited subset of the cases studied here demonstrated that this resolution was approximately at
the threshold of the minimum required to eliminate numerical errors. It may be possible, especially
for the cases studied here but not used in the resolution study, that some minor differences would
be found with a higher resolution grid. Investigation of the impact of this is ongoing. Simulations
were run using each of the parameter sets for each of the needed combinations of the nozzle
inclination angles and dynamic pressure ratios. After reaching convergence, data for all pertinent
variables were extracted from each simulation on the same planes upon which the PIV data were
collected.

For simulating the experiment performed on the flight vehicle model, a multiblock structured
mesh of ≈ 25.7 million hex elements was defined that included the entire flight vehicle but with
far field boundaries instead of defining the NASA Ames tunnel. The flight vehicle, including the
tail fins, was resolved within the mesh along with the two nozzles mounted into the model surface
as defined in Beresh et al. [8]. Internal convergence studies have shown that this mesh results in
converged integrated forces and moments though some residual convergence may still be possible
in the far-off-body flow. Again the appropriate planes of data were extracted from the results of
simulations run with each set of model parameters so that direct comparisons could be made to the
PIV data.

III. Methods
In order to quantitatively assess the quality of the improvement to the RANS results by switch-

ing from Cnom to Copt three metrics were used to measure the spatial and magnitude differences
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between the PIV and RANS datasets. Similar metrics have been proposed for use in environmental
fluid dynamics studies for evaluating the accuracy of plume models [18] and have been used by
others for comparing models to large experimental datasets (e.g., [19, 20]). These three metrics
each measure the accuracy of the modeled data in different ways and provide a more rigorous
comparison than tracking only a singular peak value or peak alignment.

The first metric was the mean squared error normalized by the mean squared magnitude of the
PIV data. This is defined as,

MSE = ⟨(XPIV,i,j −XRANS,i,j)2⟩
⟨X2

PIV,i,j⟩
, (1)

where XPIV and XRANS represent any given dependent variable from the PIV and RANS, respec-
tively, the ⟨⟩ represent an average taken over the 2D plane being tested, and MSE goes to zero
for a perfect model fit. The normalization of the mean squared error was done in order to allow
for direct comparisons of MSE across different flow variables which had differing mean orders of
magnitude. For example, if a traditional mean squared error were to be used, values for errors on
velocity values would be orders of magnitude different than errors on the vorticity, making com-
parisons difficult. The mean squared error has been used extensively as a quality metric but has
the flaw that it is susceptible to biases created by extreme events or outliers in experimental data,
especially when those data cross multiple orders of magnitude [18]. Specifically, a few outlying
points of large magnitude that produce even relatively small errors can bias theMSE regardless of
the quality of the fit over the remaining data in the domain. Small relative errors at large magnitude
points swamp all the large relative errors at lower magnitude points.

In an effort to reduce this bias and quantify improvements while minimizing the effects of
outliers, the second metric used was the geometric mean of the errors normalized by the geometric
mean of the magnitudes defined as,

GME = exp [⟨ln(∣XPIV,i,j −XRANS,i,j ∣)⟩]
exp [⟨ln(∣XPIV,i,j ∣)⟩]

. (2)

By not using squares and by taking the mean of the model-to-experiment difference in logarithmic
space, this metric reduces the bias toward errors at high magnitude points. In that way, the GME
does a better job than the MSE when data cover multiple orders of magnitude; it minimizes the
bias of smaller errors in large numbers swamping larger errors in smaller numbersa. GME can
therefore be seen as a measure of how well the RANS does at predicting values away from the
most extreme-valued regions of the flow while MSE is a measure of how well the RANS predicts
those peak values.

The final metric was the 2D correlation coefficient defined as,

corr = ∑j∑i [(XPIV,i,j − ⟨XPIV ⟩)(XRANS,i,j − ⟨XRANS⟩)]√
∑j∑i [(XPIV,i,j − ⟨XPIV ⟩)2]∑j∑i [(XRANS,i,j − ⟨XRANS⟩)2]

. (3)

The 2D correlation can take values between -1.0 and 1.0 and represents a measure of the spatial
alignment between the two datasets. The magnitudes of the RANS-predicted values are of no
consequence to corr and an ideal value of 1.0 is still possible if the RANS values are wrong
everywhere but are high when the PIV values are high and are low when the PIV values are low. If
corr = 0 it suggests that the RANS results are no better than a random number distribution.

aThis definition of GME should not be confused with the “geometric mean bias” defined in Chang and Hanna
[18], which is undefined for a dependent variable with negative values and which has problems with positive values
less than unity.
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Figure 2: The wall-normal velocity (Vy) on the centerplane for the uncanted nozzle (α = 0°) with
J = 10.2 as collected from the PIV experiment (a), as determined by RANS using Cnom (b), and
using Copt (c).

IV. Results
Given that a total of 40 different RANS simulations were run for this work, and a total of 48

independent planes of data were taken to use for comparison to the PIV, it is infeasible to show
contour plots of even one variable from every plane. We therefore chose only four sets of contour
plots to demonstrate the general impact that the use of Copt had compared to Cnom and also restrict
ourselves to only two flow variables for comparisons across all planes.

First, the wall-normal velocity (Vy) has been used as an indicator of the location, strength, and
spacing of the counter-rotating vortex pair (CVP) that typifies the JIC interaction [12]. As such, it
was decided that Vy should be a primary variable used for quantifying the accuracy of the RANS
simulations, especially on the centerplane. For the case where α = 0° and J = 10.2, the RANS
simulation performed with Cnom significantly overestimated Vy on the centerplane, which also led
to the centerline of the jet core being farther from the wall and increasing its distance from the wall
at a faster rate with downwind distance than was observed in the PIV (Figure 2). Conversely, when
Copt was used, the magnitude of Vy was considerably reduced, but was overcorrected somewhat
resulting in the jet core being closer to the tunnel wall than was observed in the PIV.
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Table 2: Quality metrics for Vy on the centerplane as depicted in Figure 2.

corr MSE GME

Cnom 0.802 0.506 0.575
Copt 0.789 0.119 0.306

Because the RANS results predicted by using Cnom were better aligned with the PIV results at
the upstream edge of the domain and because the extents of the modeled jet were so much larger,
thus overlapping the PIV data, that simulation achieved a slightly higher corr than did the results
predicted with Copt. The modeled jet based on Copt had the jet centerline too close to the wall.
However, because the magnitudes of Vy were consistently overpredicted throughout the core in the
Cnom simulation, the MSE and GME values for that data were worse than those determined for
the Copt-derived results (Table 2).

The magnitude of the Vy values is often an indicator of the strength of the circulation in the
CVP that is drawing fluid up through the middle of the jet core. The higher Vy magnitudes observed
when Cnom was used suggested that the CVP had a stronger vorticity magnitude and/or that the
lateral separation between the counter-rotating cores was different than what was expected based
on the PIV or what was seen when Copt was used. This can be seen on the crossplanes by looking
at the streamwise vorticity (ω = (dVz/dy − dVy/dz)/2), which was the variable used by Ray et
al. [10] in obtaining Copt, and which was chosen here as the second variable for quantifying the
accuracy of the RANS results.

For the case where α = 0°, J = 10.2, and on the plane where x = 219 mm, the RANS results
from using Cnom do indeed show CVP core vorticities that are stronger than were observed in the
PIV and that the cores are farther from the wall and closer together (Figure 3). This is consistent
with the nominal results shown in both Arunajatesan [9] and Ray et al. [10]. The use of Copt
resulted in a lowering of the location and of the strength of the vorticity in the CVP cores, but as
with Vy, the correction may have been by too much as the cores moved closer to the wall than
was seen in the PIV. This again led to the Cnom-derived data having a better corr value than did
the Copt-derived data (Table 3). The correction in the strength of the vorticity in the CVP cores
by using Copt did result in a reduction in MSE, but the value of GME was actually slightly
worsened. This suggests that although the most extreme vorticity values in the CVP cores were
more accurate while using Copt, moderate vorticity values elsewhere in the crossplane may have
been made slightly worse, a result that may also be tied to the issue with the spatial alignment.

This is also particularly interesting because Ray et al. [10] used this exact variable from this
exact case for determining Copt, but the data used there were from the plane at x = 321.8 mm.
When the quality metrics for that plane are investigated, all three did indeed improve with Copt.
This may suggest that in correcting the location and magnitude of the vorticity at x = 321.8 mm,
the calibration overcorrected the location and intensity at x = 219 mm. This would in turn suggest
that there is some other issue causing the trajectory of the jet core to be incorrect, such that it
overshoots the right location at x = 321.8 mm when it is correct at 219 mm or undershoots the
correct location at x = 219 mm when correct at 321.8 mm. Surprisingly, this is the worst result that
was seen among all of the sets of quality metrics calculated (can be seen as the black circles on the
wrong side of the lines in Figures 6(b) and (c) later).

A much more noticeable improvement in the RANS results based on Copt was seen for the
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Figure 3: The streamwise vorticity on the crossplane at x = 219 mm for the α = 0° nozzle with
J = 10.2 as collected from the PIV (a), as determined by RANS using the nominal parameter
values (b), and using Copt (c).

case when α = 30° and the data were taken at x = 219mm (Figure 4). These data were not
used in determining Copt, were taken from a somewhat more complicated flow, were taken at a
different downstream location than were the data used for determining Copt, and are more closely
representative of a flight application of interest [8]. Both the locations of the vorticity cores and
the magnitudes of the vorticity within those cores were improved with the use of Copt. When the
improvements seen by using Copt were quantified using the quality metrics, all three reflected the
qualitative observations by showing the Copt-derived results to be a significant improvement over
the Cnom-derived results (Table 4). The alignment of the inclined CVP was better, the magnitudes
of the vorticity within the cores were better, and the mean errors were reduced throughout the
crossplane.

One of the most rigorous tests of the calibrated k-ε parameters was when comparisons were
made to the data taken in the vicinity of the full-scale flight vehicle. Given the cylindrical co-
ordinate system of the vehicle and the clocking position of the jet nozzles on the vehicle body,
velocities and gradients were defined based on the orientation of the vehicle in the wind tunnel and
are therefore not specifically aligned with the nozzle exit normal as they were in the TWT. Direct
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Table 3: Quality metrics for the streamwise vorticity on the crossplane as depicted in Figure 3.

corr MSE GME

Cnom 0.841 0.756 1.05
Copt 0.718 0.552 1.14

comparisons were then made for both Vy and ω between the RANS and PIV data. Contours for ω
showed that the k-ε model with both sets of parameters was able to generate the correct general
flow topology (Figure 5). Use of Cnom resulted in vortex cores with higher vorticity magnitudes
and produced a second negatively oriented vortex core near the top of the PIV domain. The use
of Copt resulted in lower vorticity magnitudes than both the PIV and the Cnom-derived results, but
also produced a better spatial alignment to the PIV data than did the use of Cnom. MSE, GME,
and corr were all improved for both Vy and ω when Copt was used (Table 5).

Figure 4: The streamwise vorticity on the crossplane at x = 219 mm for the α = 30° nozzle with
J = 10.2 as collected from the PIV (a), as determined by RANS using Cnom (b), and using Copt
(c).
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Table 4: Quality metrics for the streamwise vorticity on the crossplane as depicted in Figure 4.

corr MSE GME

Cnom 0.853 0.987 1.00
Copt 0.895 0.210 0.778

For the sake of brevity, no additional sets of contour plots are shown, but the three quality
metrics were compared across all of the datasets for which the PIV could be compared to the
RANS results. There were 24 planes of data on which comparisons were made between data taken
in the TWT and the RANS results using each Cnom and Copt. There was one additional plane on
which comparisons were made to the PIV data taken in the vicinity of the full-scale flight vehicle
tested in the tunnel at NASA Ames. Vy and ω were again used, though the streamwise vorticity
was not calculated on the x-y centerplanes. This resulted in 48 total comparisons between the data
determined from the two different sets of RANS parameters and PIV data (Figure 6).

The MSE values determined when comparing the PIV data to the RANS results using Copt
were lower (better) than the MSEs determined based on Cnom in every one of the 48 comparisons
(Figure 6(a)). This is a strong indication that the use of Copt is a general improvement over using
Cnom for these jet-in-crossflow experiments, regardless of the specific flow case. Using Copt pro-
duced more accurate peak velocity and vorticity values than did Cnom in every case. It also appears
that the improvement in MSE is somewhat more pronounced for the α = 0° and 15° cases than
for the other inclination angles. This may be related to the fact that as α increases, the vortex cores
stay closer to the wall and are increasingly tied to the boundary layer and HSV flow, thus reduc-
ing the complexity of the vortical structures being modeled [14]. The simpler flow fields of the
cases with the higher nozzle inclination angles had less room for improvement than did the cases
with the lower angles and were more similar to a wall-bounded flow, for which Cnom is known to
perform relatively well. It may also be related to the fact that the α = 0° and 15° cases are the
most similar to the case used for the calibration procedure that resulted in the determination of
Copt. The cases with the steeper inclination angles (and with the lowest Js) were the most different
from the calibration case and therefore constitute a more extreme test of the applicability of Copt.
Regardless of the exact causes for the behavior of MSE versus α, the MSEs for all cases still
showed improvements with Copt.

When the GME results were investigated, a similar, though slightly less drastic result was
found (Figure 6(b)). In 44 of the 48 comparisons, the RANS results based on Copt produced
a better GME measure than did the results based on Cnom. The four comparisons where the
nominal approach remained slightly better than the calibrated approach were two comparisons of
Vy on planes at x = 321.8 mm with α = 45° and J = 2.8 and 5.6, the comparison of the streamwise
vorticity as discussed above (Table 3), and the comparison of Vy at x = 219 mm from that same
α = 0°, J = 10.2 case. Contour plots of the mean velocities from the PIV for the cases with
α = 45° and J = 2.8 and 5.6 can be found in Beresh et al. [14], and show the relative simplicity
of the flow topology for those cases as discussed above. The use of Copt reduced the peak velocity
magnitudes correctly, resulting in the improved MSE values, but resulted in CVP cores that were
more inclined than in the PIV or Cnom simulations. This inclination resulted in poor alignment
of velocity values around the edges of the CVP cores, leading to slightly elevated GME values.
These two cases were arguably the most different from the case used in determining Copt. For the
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(a) (b)

(c)

Figure 5: The streamwise vorticity on a y-z plane at x = 820 mm in the vicinity of the full-scale
flight vehicle as viewed aft from the nose and as collected from the PIV (a), as determined by
RANS using Cnom (b), and using Copt (c). The dashed circles depict the diameter of the model at
the axial location along the vehicle at which the nozzles were mounted, whereas the solid circle de-
picts the model diameter at the location at which the plane of PIV data was collected and is smaller
due to the vehicle’s boat-tailed design. The nozzle cross section and its approximate orientation
are also depicted.

case with J = 5.6, this incorrect cant of the vortex cores also resulted in a poorer corr value.
That poorer value was one of only six comparisons, from among the 48, where the correlation

coefficient was slightly worse when Copt was used instead of Cnom (Figure 6(c)). The remaining
five comparisons where Cnom produced superior corr values were the comparisons of vorticity
taken from the same two α = 45° cases for which the GME of Vy was also worsened, the com-
parison of vorticity for the α = 0° case discussed above (Table 3), the comparison of Vy for that
same α = 0°, J = 10.2 case, and the comparison of Vy on the centerplane as discussed above (Table
2). In each of these cases where either GME or corr were not improved by the use of Copt, the
results were scarcely worse than when Cnom was used. The improvements to GME and corr (and
obviously MSE) for the remaining cases were typically much more drastic than were the declines
in accuracy for the cases where they were worsened.
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Table 5: Quality metrics for Vy and ω on the plane collected in the vicinity of the full-scale flight
vehicle as depicted in Figure 5.

corr MSE GME

Vy:
Cnom 0.633 1.18 0.905
Copt 0.764 0.564 0.647

ω:
Cnom 0.651 0.649 0.974
Copt 0.843 0.363 0.796

V. Discussion, Conclusions, and Future Work
Taken as a whole, the use ofCopt does appear to produce superior RANS results than does using

the nominal parameter values. Some of the results seen here could be partially conjectured from
the later papers by Ray et al. In Ray et al. [21], the authors showed that high-order eddy viscosity
models will not perform appreciably better than linear eddy viscosity models for the JIC dynamics,
when both were tuned to data. This could indicate that perhaps that the linear eddy viscosity model
was sufficient, provided that its parameters were appropriately calibrated. In Ray et al. [11], the
authors tuned the same parameters to three other JIC interactions ((Mach 0.6, J = 10.2), (Mach 0.7,
J = 10.2), and (Mach 0.8, J = 16.7)) and obtained estimates of {Cµ,Cε1,Cε2} that were similar to
Copt, indicating again that the calibrated Copt would generalize beyond the (Mach 0.8, J = 10.2)
case where Copt was learned. The same paper derived analytical values for {Cµ,Cε1,Cε2} from
first principles (i.e., without any data fitting or assuming that α = 0), leading one to conjecture
that perhaps the calibrated values of {Cµ,Cε1,Cε2} represented physical processes inherent in JIC
interactions rather than being artifacts of the fitting process. Consequently, there was some reason
to believe that the tuned Copt would be predictive for other, perhaps canted jet, interactions.

A weakness of the fitting performed in Ray et al. [10, 11] is the use of strong jets (J = 10.2,
16.7) that penetrated well into the crossflow and evolved with little interaction with the boundary
layers on the wind-tunnel walls. This would indicate that the values of {Cµ,Cε1,Cε2} inferred in
Ray et al. [10, 11] do not reflect turbulent processes involving CVP-to-boundary layer interactions,
and Copt would not be predictive in flows where the jet stays close to the wind-tunnel wall e.g.,
weak jets (J = 2.8, 5.6) and steeply canted jets (α = 45°). To a large extent, this paper bears out
these conjectures. Copt has been shown to be predictive in cases where the jet does not interact
with the boundary layer. In the cases where it does (because of the cant or the weakness of the jet),
Cnom remains better than Copt according to some metrics. However, despite calibration, the linear
eddy viscosity model has significant drawbacks. The move from Cnom to Copt causes overshoots
in the needed correction for some variables for some cases, but appears to do so as a trade-off for
correcting magnitudes. Additionally, that overshoot in the correction may only be occurring in
some portions of the domain while other portions are corrected by the right amount. This was seen
in the data for the α = 0°, J = 10.2 case. The calibration procedure was performed on data from
this case by Ray et al. [10] and indeed improved all six metric measurements (three metrics of two
variables) at the x = 321.8 mm plane, but did so at the expense of the quality of the results at the
x = 219 mm plane. This may point to larger limitations that exist with the structure of the RANS
model itself.

One such limitation may be the use of constant scalar values for the model parameters. The po-
tential variability of model parameters as a function of flow variables is not accounted for in most
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Figure 6: The three quality metrics as determined when comparing RANS results based on the use
of Cnom and Copt to the PIV data. The MSE (a), the GME (b), and the corr (c) are compared.
Open symbols indicate comparisons made on one of the two y-z planes of data from the TWT.

traditional RANS codes [22]. A new model, trained on experimental data, that can pick optimal
values for the RANS parameters at every location in space, may be capable of producing better
results. Philosophically, this approach would be very similar to the zone-dependent k-ε parameters
demonstrated in Matai and Durbin [23]. The challenge in our case would be determining how to
demarcate various zones and how to ensure logical, continuous values of {Cµ,Cε1,Cε2} within
each zone. Development of such a model, using modern data science techniques, is ongoing, and
early a priori testing of model training and testing has shown promising results. Final implemen-
tation may still prove to be unhelpful or unstable, or ideally, will prove to enhance model accuracy
and robustness.
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