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for handling non-uniqueness, nonlinearity and high-dimensionality of unknowns. We
have developed a new method for estimating soil moisture fields from crosshole GPR
data. It uses a pilot-point method to provide a low-dimensional representation of the
relative dielectric permittivity field of the soil, which is the primary object of inference:
the field can be converted to soil moisture using a petrophysical model. We integrate a
multi-chain Markov chain Monte Carlo (MCMC) - Bayesian inversion framework with
the pilot point concept, a curved-ray GPR travel time model, and a sequential Gaussian
simulation algorithm, for estimating the dielectric permittivity at pilot point locations
distributed within the tomogram, as well as the corresponding geostatistical parameters
(i.e., spatial correlation range). We infer the dielectric permittivity as a probability
density function, thus capturing the uncertainty in the inference. The multi-chain MCMC
enables addressing high-dimensional inverse problems as required in the inversion
setup. The method is scalable in terms of number of chains and processors, and is
useful for computationally demanding Bayesian model calibration in scientific and
engineering problems. The proposed inversion approach can successfully approximate
the posterior density distributions of the pilot points, and capture the true values. The
computational efficiency, accuracy, and convergence behaviors of the inversion
approach were also systematically evaluated, by comparing the inversion results
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Reviewer #2:  
 
I have now read the revised manuscript and response letter and I am mostly happy with the way 
the Authors answered my comments. 
 

Response: Thank you for your approval of our work. 

 

 

 

Reviewer #3:  
 
Also this revision cleared up some things for me. I understand now, how the chains are 
connected through the proposal density q and why the noise affects the posterior distribution in 
an asymmetric way. As the authors explain in their response, the latter is caused by the usage of 
a relative error in the likelihood-function. I have to admit, that I have overlooked that in the 
previous revision. In my experience, it is rather uncommon to use a relative error in the 
likelihood-function, because it introduces a bias towards smaller values of the observed quantity 
(in this case travel-times). I think the authors need to explain clearly in the manuscript why they 
chose to introduce this bias. I at least do not see a reason, why one would do that. 
 
As the minor comments have been addressed, the paper can be published if the usage of the 
relative error in the likelihood-function can be justified reasonably and if the consequences of 
this choice are described. 
 
Response:  
Thank you for your approval of the most part of the revised manuscript. The reason why using the 
relative error is explained below. 
 
The likelihood has the expression 

𝐿(𝑑 | 𝜃, 𝜎2) = ∏
1

𝜎√2𝜋
𝑒𝑥𝑝 [−

{(𝑑𝑘 − 𝐺𝑘(𝜃))  /  𝑑𝑘 }2

2𝜎2 ] ,
𝐾

𝑘=1

 

where 𝑑𝑘 is the observed travel time and 𝐺𝑘(𝜃) is the model prediction. Conventionally, one uses 
the error (𝑑𝑘 −  𝐺𝑘) in the likelihood expression. However, if the observations show a wide range 
of values (e.g., over an order of magnitude), the conventional expression for the likelihood biases 
the likelihood towards larger values of 𝑑𝑘. In such cases, one may use the log-transformed values 
instead i.e., cast the likelihood as (log(𝐺𝑘) −  log (𝑑𝑘) ). However, 
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log (𝐺𝑘(𝜃)) − log(𝑑𝑘) = log (𝐺𝑘
𝑑𝑘

) = log (𝑑𝑘−(𝑑𝑘− 𝐺𝑘)
𝑑𝑘

) = log(1 − 𝑟) ≈  −𝑟, 

where 𝑟 =  𝑑𝑘− 𝐺𝑘
𝑑𝑘

 is the relative error and the last result is a Taylor series expansion of log(1-x). 
Thus, we see the approach of using log-transformed values for observations with a large dynamic 
range is equivalent to using relative errors in the likelihood expression. 
 
In this paper, we have chosen to use relative errors, as opposed to log-transformed observations, 
as the former has a concrete physical meaning.  log-transformed value, while widely used, could 
give rise to questions about using other transformations that could also shrink the dynamic range 
of 𝑑𝑘. The brief explanation is added into the manuscript. 
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Abstract 13 

In this study, we focus on a hydrogeological inverse problem specifically targeting monitoring soil 14 

moisture variations using tomographic ground penetrating radar (GPR) travel time data. Technical 15 

challenges exist in the inversion of GPR tomographic data for handling non-uniqueness, 16 

nonlinearity and high-dimensionality of unknowns. We have developed a new method for 17 

estimating soil moisture fields from crosshole GPR data. It uses a pilot-point method to provide a 18 

low-dimensional representation of the relative dielectric permittivity field of the soil, which is the 19 

primary object of inference: the field can be converted to soil moisture using a petrophysical model. 20 

We integrate a multi-chain Markov chain Monte Carlo (MCMC) – Bayesian inversion framework 21 

with the pilot point concept, a curved-ray GPR travel time model, and a sequential Gaussian 22 

simulation algorithm, for estimating the dielectric permittivity at pilot point locations distributed 23 
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within the tomogram, as well as the corresponding geostatistical parameters (i.e., spatial 24 

correlation range). We infer the dielectric permittivity as a probability density function, thus 25 

capturing the uncertainty in the inference. The multi-chain MCMC enables addressing high-26 

dimensional inverse problems as required in the inversion setup. The method is scalable in terms 27 

of number of chains and processors, and is useful for computationally demanding Bayesian model 28 

calibration in scientific and engineering problems. The proposed inversion approach can 29 

successfully approximate the posterior density distributions of the pilot points, and capture the true 30 

values. The computational efficiency, accuracy, and convergence behaviors of the inversion 31 

approach were also systematically evaluated, by comparing the inversion results obtained with 32 

different levels of noises in the observations, increased observational data, as well as increased 33 

number of pilot points.  34 

 35 

Keywords: Tomographic ground penetrating radar; Soil moisture; Multi-chain Markov chain 36 

Monte Carlo; Bayesian  37 

 38 

1 Introduction 39 

Monitoring soil moisture in the vadose zone is crucial for weather forecasts (Ni-Meister et al., 40 

2005), predicting natural disaster (Tohari et al., 2007), evaluating contaminant transport (Murdoch, 41 

2000),  agriculture (Shaxson and Barber, 2003), and many other societal needs. 42 

 43 

The techniques of monitoring soil moisture can be divided into four main classes, and they are 44 

space-borne sensors, air-borne sensors, wireless sensor networks, and ground-based sensors 45 

(Vereecken et al., 2008). Tomographic ground penetrating radar (GPR) are superior to other 46 



approaches in the class of ground-based sensors, usually due to practical reasons. GPR does not 47 

provide the most accurate soil moisture measurement compared to some conventional sensors (e.g., 48 

gravimetric, frequency- and time-domain reflectometry (FDR and TDR), neutron probe and 49 

capacitance probe techniques), but in practice, it is very time-consuming to capture the spatial 50 

variability of soil moisture by using large numbers of closely spaced conventional sensors/probes. 51 

Moreover, conventional soil moisture measurement techniques at small scales are invasive and 52 

provide limited spatial coverage. GPR is a great practical choice given its spatial coverage, 53 

resolution, and efficiency. Based on the assumptions that GPR travel-times are closely related to 54 

dielectric permittivity distribution in the vadose zone, and that the dielectric permittivity is mainly 55 

determined by the soil moisture (Lunt et al., 2005), tomographic GPR data can be used to infer 56 

soil moisture (Moysey et al., 2003; Tsai et al., 2015). Tomographic GPR can provide centimeters 57 

to meters spatial resolution (Vereecken et al., 2008), sub-daily temporal resolution, and meanwhile 58 

is minimally invasive to the study site. In addition, through time-lapse and/or joint inversion, 59 

tomographic GPR has the capability for long-term monitoring of spatial distribution of soil 60 

moisture within the vadose zone (Binley et al., 2002; Hubbard et al., 1997), and for deriving other 61 

spatially heterogeneous soil physical properties (e.g.,  permeability and porosity) (Binley et al., 62 

2002; Chen et al., 2001; Clement and Barrash, 2006; Dubreuil-Boisclair et al., 2011; Hubbard et 63 

al., 2001; Hubbard et al., 1997; Kowalsky et al., 2005; Kowalsky et al., 2004).  64 

 65 

Interpreted tomographic GPR images of soil moisture from tomograms are subject to great 66 

uncertainty due to ill-conditioned nature of the inverse problem, non-uniqueness of solutions, 67 

variable spatial resolutions, and measurement errors. For example, variation in resolution within a 68 

tomogram makes pixel-specific inference of petrophysical properties uncertain. Regularization or 69 



smoothing among large number of possible solutions can stabilize solutions, but the inversion 70 

results usually overestimate the size but underestimate the magnitude of subsurface anomalies, and 71 

the true correlation structure is normally under represented (Day-Lewis, 2004).  72 

 73 

Inverting geophysical data can be done deterministically or stochastically. Deterministic 74 

approaches, such as least-square optimization, are computationally efficient, but are not able to 75 

accurately quantify uncertainties associated with the inversion, except under simplifying 76 

assumptions such as Gaussian likelihoods and linear models which have ellipsoid confidence 77 

intervals on the inferred parameters.  Alternatively, data can be inverted within a stochastic 78 

framework wherein parameters are represented in a probabilistic manner. For example, Bayesian 79 

inference derives the posterior probability as a consequence of two antecedents, a prior probability 80 

and a "likelihood function" derived from a statistical model for the observed data, where 81 

parameters retain their probabilistic structure throughout inversion process and can be updated 82 

quantitatively when new data is available(Chen and Rubin, 2003; Chen et al., 2008; Copty et al., 83 

1993; Dubreuil-Boisclair et al., 2011; Hou and Rubin, 2005; Hou et al., 2006; Hubbard et al., 2001; 84 

Kowalsky et al., 2005; Kowalsky et al., 2004; Lehikoinen et al., 2010). The parameters are 85 

therefore estimated with uncertainty, which can be reduced continuously as more data/information 86 

are integrated or a more accurate inverse problem is formulated. 87 

 88 

A Bayesian formulation of an inverse problem (as we adopted in this study) leads to an arbitrary 89 

expression for a probability density function (PDF), in terms of the parameters/quantities being 90 

estimated via the inverse problem. The PDF can be realized by sampling from it, using a method 91 

such as Markov chain Monte Carlo (MCMC). MCMC (Liang et al., 2010; Silva et al., 2017) 92 



methods describe a random walk in the parameter space, with each step in the walk being evaluated 93 

by a model (called the forward problem; in our case an GPR model) to gauge the quality of a new 94 

parameter proposal. Because most random steps are rejected, MCMC is computationally very 95 

expensive for finding sufficient number of samples to recover the PDF. The sufficiency of samples 96 

can be gauged by the Raftery-Lewis method (Raftery and Lewis, 1996) or the Brooks-Gelman-97 

Rubin method (Brooks and Gelman, 1998). In order to improve the efficiency of sampling, 98 

adaptive MCMC methods e.g., Delayed Rejection Adaptive Metropolis (DRAM) (Haario et al., 99 

2006)  seeks to use previously accepted samples to identify an optimal subspace where proposals 100 

have a better chance of being accepted. As a further step to reduce computational time, multi-chain 101 

i.e., parallel MCMC methods have been developed, such as a parallel version of adaptive 102 

Metropolis (Solonen et al., 2012).  103 

 104 

MCMC methods have been used to reconstruct soil-moisture content and/or other related soil 105 

physical properties using cross-hole GPR measurements. All such studies have two components 106 

in common that determine the quality of the reconstructions – the spatial parameterization for the 107 

spatially variable soil-moisture field (also called the random field model (RFM), whose parameters 108 

are the target of inference from GPR first-arrival-travel time measurements) and the MCMC 109 

algorithm that estimates the RFM’s parameters as a high-dimensional PDF. In Chen et al. (2004), 110 

the authors used GPR measurements and a Gibbs sampler to infer iron concentration at the South 111 

Oyster site, where soil is a mixture of sand and mud. The field was modeled as a grid where an 112 

indicator denoted whether a grid-cell was sand or mud (the lithofacies). Probabilistic linear models 113 

were used to relate the lithofacies to the electromagnetic (EM) attenuation; the attenuation and 114 

lithofacies were related to iron concentrations using yet another mixed linear model. A Gibbs 115 



sampler was used to sample the lithofacies field, attenuation, and iron concentration, conditional 116 

on cross-hole GPR data. In the work by Laloy et al. (2012), the authors developed a method for 117 

reducing the dimensionality of the random field model and inferred the water tracer distribution 118 

field using GPR data. A low dimensional parameterization for the moisture field was developed in 119 

terms of orthogonal (Legendre) moments of the water tracer field being estimated. Known 120 

constraints e.g., mass of water injected could be exactly satisfied in such a formulation. Linde and 121 

Vrugt (2013) developed three alternative formulations of a random field model to infer a field of 122 

EM transmission speeds using cross-hole GPR data. A water plume was the object of the imaging 123 

effort. They clearly distinguished between the mesh on which the EM ray-tracing eikonal equation 124 

was solved, i.e., where soil-moisture was described, and the far coarser mesh on which the quantity 125 

of interest (the EM velocity) was inferred. The best reconstructions were obtained using a 126 

relatively coarse 4x4 mesh field model that allowed an explicit retention of large length scales that 127 

could be informed by the GPR data and was also sufficiently low dimensional that the uncertainty 128 

bounds on the 16 parameters inferred were small. A 10 x 10 mesh, on the other hand, yielded the 129 

worst reconstruction since it had a high dimensionality, and had no way of disallowing very small 130 

length scales. More abstractly, this paper is about estimating a spatially variable field from indirect 131 

and limited observations. In geophysics, the field is often modeled by a multivariate Gaussian (mG) 132 

distribution, described by a covariance function. The true field is supposed to be a realization 133 

drawn from the distribution. Since the limited observations do not allow one to identify the correct 134 

realization, one reconstructs it approximately i.e., by drawing samples that explain the 135 

observations, given an error model. The sampling is often done using MCMC. Pioneering work 136 

has been done using MCMC for inversion of high dimensional problems (Hunziker et al., 2017; 137 

Jimenez et al., 2016; Laloy et al., 2015; Romary, 2009; Rubin et al., 2010). These approaches have 138 



been successfully applied to solve various synthetic and real case inversion problems (Mara et al., 139 

2016; Zanini and Kitanidis, 2008). This study built upon these pioneering work and proposed an 140 

approach that is effective and efficient for real-time inverting and monitoring relative dielectric 141 

permittivity field. 142 

 143 

In this paper, we study the inversion of a relative dielectric permittivity field using synthetic, first-144 

arrival-travel time GPR data between multiple sources and receivers. We use a RFM based on the 145 

pilot point method, where relative dielectric permittivity is defined at a small set of points and a 146 

field in the domain of interest is created using a multi-variate Gaussian model. The correlation 147 

range of the variogram and the relative dielectric permittivity values at the pilot point are inferred 148 

using a parallel MCMC AM (Adaptive Metropolis). Our initial tests with DRAM revealed that 149 

Delayed Rejection did not contribute much to performance but slightly slowed down 150 

computational speed, leading us to turn it off in the DRAM algorithm (and thus retaining just AM).   151 

 152 

Our paper introduces two novelties. The first is the use of the pilot point method as a RFM in an 153 

MCMC setting. Unlike (Laloy et al., 2012), we neither have a constraint to impose, nor do we 154 

require one to obtain a successful inversion. Unlike (Linde and Vrugt, 2013), our method does not 155 

require the use of multiple meshes. However, it does face the issue of constructing a RFM of an 156 

appropriate sophistication/flexibility; this is equivalent to their search for the correct mesh 157 

resolution (4x4 versus 10x10). Laloy et al (2015) and Hunziker et al. (2017) used geostatistical 158 

parameters, such as mean, variance, field smoothness, integral scale, and so on, to control the RFM, 159 

which significantly reduce the dimensions of the inversion problem. The method was successfully 160 

demonstrated for estimating the conductivity and permittivity fields. However, there are some 161 



cases where the stochastic field maybe hard to be described by the geostatistical parameters, such 162 

as layered structure. For example, the permittivity is mainly affected by soil moisture, which is 163 

usually dynamic rather than a “permanent” property of the subsurface domain. The permittivity 164 

field could be a layered structure or has gathered wet and dry zones, due to precipitation or other 165 

external forcing. Additionally, for a small area, it can be hard to get a reliable geostatistical 166 

parameter (Hunziker et al., 2017). Using pilot points to control RFM, as proposed in this study, is 167 

expected to help deal with the gathered zone or layered structure cases. Rubin et al (2010) used 168 

the pilot point concept to control the stochastic field, but the approach requires direct 169 

measurements at the pilot points. Our proposed approach does not require direct permittivity 170 

measurements at the pilot points, and is integrated with multi-chain MCMC design, which is more 171 

feasible for efficient inversion and monitoring of changes of permittivity field. Jimenez et al (2016) 172 

applied the pilot point concept as well, but the reference field was a deterministic field. Romary’s 173 

model (Romary, 2009) used truncated Karhunen-Loeve expansion (Loeve, 1955), which is 174 

effective for dimension reduction, but the approach usually leads to inverted fields smoother than 175 

the true case. Another novelty introduced in this paper is a procedure for configuring the RFM (i.e., 176 

devising its complexity) commensurate with observations, by exploiting the probabilistic 177 

inferences (obtained using MCMC) while varying the quality and quantity of observations and the 178 

dimensionality of the RFM. Thus our method requires an MCMC formulation that can 179 

accommodate the high dimensionality of the inverse problem (due to the number of parameters in 180 

the RFM) and a moderately expensive forward problem.  181 

 182 

2 Methodology 183 

2.1 Tomographic GPR and the forward model 184 



Tomographic GPR transmits an EM pulse from a source in one borehole and recording the arrival 185 

of EM energy at a receiver position in a separate borehole. The source and receiver vertical 186 

locations are varied in the boreholes to collect a suite of data of signal arrival times and magnitude 187 

for various source-receiver pairs. 188 

 189 

Inversion of the first-arrival-times of the EM signal is used to estimate the velocity, which is 190 

assumed to be closely related to the dielectric permittivity (𝜖) distribution between the boreholes. 191 

For convenience, the dielectric permittivity is normalized by the speed of light in vacuum (𝑐 =192 

0.3 𝑚/𝑛𝑠), and is called the relative dielectric permittivity (𝜖𝑟). For high frequency GPR signals 193 

(~50-1000MHz) and in low-loss environments (non-magnetic, low electrical conductivity), the 194 

relative dielectric permittivity (𝜖𝑟) can be related to EM wave propagation velocity (𝑣) by:  195 

𝜖𝑟 = (𝑐
𝑣)

2
, (1) 

(Davis and Annan, 1989). Since we are interested in the spatial variation of dielectric permittivity, 196 

which depends on the EM velocity spatial variation, the subsurface domain of interests is 197 

discretized into n grid blocks with velocities 𝑣1 … 𝑣𝑛. The travel time data can be simulation with 198 

a forward model (𝑮) that describes the propagation path (distance) travelled by the EM signal:  199 

𝑮(𝒗) = 𝒕, (2) 

where 𝒗 is a vector of the velocities of the grid blocks, and 𝒕 represents the vector of measured 200 

travel times. The relative dielectric permittivity ( 𝜖𝑟 ) can be converted to the soil moisture 201 

according the the empirical relationship derived from the experiment measurements (Behari, 2005; 202 

Mohan et al., 2015). Note that, the relationship between 𝜖𝑟 and moisture is not identical, and may 203 

involve some uncertainties.  204 



The GPR forward model (𝑮) can be full-waveform methods, which directly solve Maxwell’s 205 

equations (Casper and Kung, 1996; Kowalsky et al., 2001; Vasco et al., 1997) or ray-based 206 

methods (Cai and Mcmechan, 1995; Peterson, 2001; Zhang et al., 2005), which simplify and 207 

discretize the travel time between source and receiver as: 208 

𝑡 = ∑ 𝑑𝑖
𝑣𝑖

𝑛
𝑖=1 , (3) 

where 𝑑𝑖 is the distance travelled by the ray through the ith grid block. If the variation of EM signal 209 

velocity is small, such as smaller than 10% (Day-Lewis, 2005), the straight-ray paths are assumed.  210 

Typically, solutions to model parameters (the grid blocks) are in terms of slowness, and can be 211 

approximated via iterative techniques like the algebraic reconstruction techniques (ART) (Peterson, 212 

2001; Peterson et al., 1985) or the simultaneous iterative reconstruction technique (SIRT) (Dines 213 

and Lytle, 1979).  However, when significant heterogeneity is expected, curved-ray methods that 214 

account for physically realistic ray trajectories including reflection and refraction phenomena 215 

should be used.  The first-arrival-travel time through realistic bended path for 2-D or 3-D velocity 216 

problem is usually solved by finding the finite-difference (FD) approximation to the eikonal 217 

equation,  218 

(𝜕𝑡
𝜕𝑥)

2
+ (𝜕𝑡

𝜕𝑦)
2

+ (𝜕𝑡
𝜕𝑧)

2
= 𝑆2, (4) 

which was introduced by Reshef and Kosloff (Reshef and Kosloff, 1986) and Vidale (Vidale, 1988, 219 

1990). 𝑡 is the travel time from source to the spatial Cartesian coordinates 𝑥, 𝑦, and 𝑧. 𝑆 is the 220 

slowness at position 𝑥, 𝑦, and 𝑧. The eikonal equation can be numerically solved by fast sweeping 221 

method (Tsai et al., 2003; Zhao, 2005). 222 

 223 

2.2 Pilot point concept 224 



Considering the limited amount of observations and computational resources, it is very challenging 225 

to directly invert the dielectric permittivity and its probability distribution at every grid point, for 226 

a high resolution discretized 2-D or 3-D vadose zone. This is because the zone may be discretized 227 

by thousands of grid points. Pilot points and regularization can be used as an adjunct to 228 

geostatistics-based stochastic parameterization methods (Certes and Marsily, 1991; Doherty, 2003; 229 

Venue and Marsily, 2001), which can significantly reduce the dimensionality of the inverse 230 

problem. With the assumption that a realistic dielectric permittivity field is not completely random 231 

and independent at every grid point, the field usually can be constrained by a few pilot points and 232 

spatial correlation range, and the permittivity at the grid points other than the pilot points can be 233 

estimated by sequential Gaussian simulation (SGSIM) algorithm (Deutsch and Journel, 1998).  234 

 235 

2.3 Multi-chain MCMC framework 236 

A multi-chain MCMC framework (Solonen et al., 2012) is used to generate posterior distributions 237 

on model parameters, given experimental data and a prior distribution on model parameters. It also 238 

requires a presumed probabilistic relationship between experimental data and model output called 239 

the likelihood function. Then, by Bayes formula:  240 

𝜋(𝜃|𝑑) ∝ 𝜋(𝜃)𝐿(𝑑|𝜃), (5) 

where 𝜋(𝜃|𝑑) is posterior parameter distribution, 𝜋(𝜃) is prior parameter distribution, and 𝐿(𝑑|𝜃) 241 

is likelihood function. 𝜃 represents model parameters, and 𝑑 = {𝑑𝑘}, 𝑘 = 1 ⋯ 𝐾, is the vector of 242 

observed data is the observed data. The observed data is assumed to be the summation of model 243 

output and an error, which is a composite of measurement errors and the forward model’s 244 

shortcomings: 245 

𝑑 = 𝐺(𝜃) + 𝜀,  (6) 



where 𝐺(𝜃) = {𝐺𝑘(𝜃)}, 𝑘 = 1 ⋯ 𝐾, are predictions from a forward model, and 𝜀 is error, which 246 

are assumed to be independent, zero mean Gaussian random variables with variance 𝜎2. Hence, 247 

the likelihood is defined as: 248 

𝐿(𝑑 | 𝜃, 𝜎2) = ∏ 1
𝜎√2𝜋 𝑒𝑥𝑝 [− {(𝑑𝑘− 𝐺𝑘(𝜃))  /  𝑑𝑘 }2

2𝜎2 ]𝐾
𝑘=1 , (7) 

where the subscript 𝑘 stands for the index of the observation, and runs from 1 to 𝐾. Note that the 249 

likelihood function can base on either the absolute error (𝑑𝑘 −  𝐺𝑘(𝜃)) or the relative error  250 

((𝑑𝑘 −  𝐺𝑘(𝜃))  /  𝑑𝑘). The absolute error may bias the likelihood towards larger values of 𝑑𝑘, if 251 

the observations show a wide range of values. Therefore, the relative error is used, which provides 252 

more stable evaluation of the error for the likelihood function in this study.  MCMC generates a 253 

chain of the parameters in sequence, whose probability density approximates the posterior 254 

distribution. Our method (Adaptive Metropolis) employs Metropolis-Hastings sampling. It first 255 

samples a candidate 𝑌 from the proposal density function 𝑞(𝑌|𝜃𝑖), performs a model run to obtain 256 

the model prediction 𝐺(𝑌) and obtains the likelihood L(d|Y). It then calculates the acceptance ratio 257 

as  258 

𝛼(𝜃𝑖, 𝑌) = 𝑚𝑖𝑛 [1, 𝐿(𝑑|𝑌)𝜋(𝑌)𝑞(𝑌|𝜃𝑖)
𝐿(𝑑|𝜃𝑖)𝜋(𝜃𝑖)𝑞(𝜃𝑖|𝑌)]. (8) 

If 𝛼(𝜃𝑖, 𝑌) > 𝑧, 𝑧 ~U[0, 1], then the new sample is 𝜃𝑖+1 = 𝑌, else the new sample is 𝜃𝑖+1 = 𝜃𝑖. 259 

U[a, b] denotes a uniform distribution between a and b. MCMC usually requires more than 10,000 260 

evaluations of the forward simulation model, which can be very expensive. With increase of the 261 

dimension of the parameter space, the requirement of number of the forward simulation evaluation 262 

may increase rapidly, which may reach 100,000 to 1,000,000. This cost is amortized over multiple 263 

chains as mentioned in the previous section. Note that the proposal density 𝑞(: | ∶) can be any 264 

distribution, including an asymmetric one (such as a log-normal). In such a case, to preserve 265 



detailed balance (see Chapter 1, (Gilks et al., 1996)), the proposal density appears in numerator 266 

and denominator of the expression for 𝛼. In our case, where we use a normal distribution (a 267 

symmetric distribution), the numerator and denominator cancel out and the expression for 𝛼 does 268 

not have 𝑞(: | ∶) in it actually. 269 

 270 

In this study, MCMC proposes candidate input parameters such as dielectric permittivity at pilot 271 

point locations and spatial correlation range. The input parameters are then used to generate a 272 

candidate random dielectric permittivity (𝜖𝑟) field by the SGSIM algorithm. The first-arrival-travel 273 

time between every source and receiver is computed by numerically solving the eikonal equation 274 

(Eq. (4)), with slowness 𝑆 = √𝜖𝑟
𝑐 . The estimated first-arrival-travel time for the candidate 𝜖𝑟 field 275 

is compared to the observations, and the likelihood function is calculated using Eq.(7). Once the 276 

likelihood function is evaluated, the candidate input parameters are accepted or rejected via Eq. 277 

(8).  This process is called the Metropolis-Hastings sampler. 278 

 279 

The actual inference technique is slightly different as we infer {𝜃, 𝜎2} from the data. Thus Eq. 5 is 280 

restated as  281 

𝜋(𝜃, 𝜎2|𝑑) ∝ 𝜋(𝜃)𝜋(𝜎−2)𝐿(𝑑|𝜃, 𝜎2), (9) 

where we have included a prior for 𝜎−2. The prior is an inverse Gamma prior i.e 282 

𝜎−2~ Γ(𝛼, 𝛽), (10) 

where 𝛼 = 1 and 𝛽 = 10−6 are the shape and rate parameters of the Gamma distribution. This 283 

particular set of parameters makes our prior belief for 𝜎−2 resemble U(0, ∞). The inverse Gamma 284 

prior is a conjugate prior, i.e., given a 𝜃, a realization of 𝜎−2 can be sampled as  285 



𝜎−2~ Γ (𝛼 + 𝐾
2 , 𝛽 + 12 ∑{(𝑑𝑘 − 𝐺𝑘(𝜃))  /  𝑑𝑘 }2

𝑘
). 

(11) 

This is called Gibbs sampling. Thus, in a given MCMC iteration, we obtain a realization of 𝜃 first 286 

using Metropolis-Hastings, and then a sample of 𝜎2, conditional on the previously selected 𝜃, 287 

using Gibbs sampling. This yields a chain of {𝜃, 𝜎2}  samples from which construct a joint 288 

probability density function (PDF) for the model parameters and the estimate for the model – data 289 

misfit. The entire construction is called a Metropolis-within-Gibbs sampling. 290 

 291 

The sampling algorithm is described in Solonen et al. (2012). We start M MCMC chains which 292 

execute an adaptive Metropolis sampler, as described in Haario and Saksman (2001). Essentially, 293 

we describe a random walk that executes the Metropolis-within-Gibbs sampler described above. 294 

However, periodically, we use the samples collected by the chain to update the multivariate 295 

Gaussian proposal distribution 𝑞(: | ∶), so that the proposal  distribution resembles the posterior 296 

distribution and thus provides good 𝜃 candidates that have a higher chance of being accepted. This 297 

updating of  𝑞(: | ∶) can be done incrementally, using samples collected since the previous update. 298 

 299 

In the multichain case, each chain collects samples from all the chains to perform the periodic 300 

update of its 𝑞(: | ∶). Thus each chain has the same proposal distribution, but informed by samples 301 

collected by all the chains. It provides a global view of the posterior distribution. Thereafter, the 302 

chains continue their independent exploration of the parameter space till the next update of 𝑞(: | ∶303 

). At the end of the sampling run, each chain writes out the samples it collects to a file. The 304 

convergence of the MCMC was assessed by pooling the samples together and computing certain 305 



quantiles of the objects of interest. We performed this repeatedly by letting the chains proceed for 306 

increasingly more iterations and stopping when quantiles converge. 307 

 308 

3 Synthetic experiment 309 

Figure 1 (a) shows the synthetic relative dielectric permittivity field between two boreholes 310 

generated using SGSIM, and is considered as the true field in this study. The study area is 4 m 311 

wide and 15 m deep. The true 𝜖𝑟 field is created using a pilot point method using 8 pilot points 312 

and a variogram that has a range of 2 and 20 meters in the vertical and horizontal directions 313 

respectively. The base case considers 30 equally spaced source locations on the left side of the 314 

field (x=0 m), and for each source location, GPR arrival time data is collected at 30 evenly spaced 315 

receiver locations on the right side of the field (x=4 m) for a total of 900 observations. The forward 316 

GPR model computes the 900 first-arrival-travel times as shown in Figure 1 (b), which are 317 

considered to be the observational data. The symbols “+” and numbers in Figure 1 (a) indicate the 318 

positions and indices of 24 pilot points. Pilot points 1-8 are the ones used to generate the true 𝜖𝑟 319 

field. Table 1 lists the position and true values of relative dielectric permittivity at the 24 pilot 320 

points. In Section 4, we examine the effects of the amount of noise in the observations, the number 321 

of sources and receivers, and the number of pilot points on the inversion results, with a view of 322 

identifying the most appropriate RFM. 323 

 324 

4 Results  325 

Below we explore the usefulness of parallel MCMC in inverting the 𝜖𝑟 field. We shall model the 326 

𝜖𝑟 field using multivariate Gaussians placed at the first 8 pilot points. The Gaussians are governed 327 

by the same variogram, whose range is also estimated from the 𝜖𝑟  field data. Thus our RFM 328 



contains nine parameters including 𝜖𝑟 at 8 pilot points and the variogram’s correlation range. They 329 

are treated as random variables in our statistical formulation of the inverse problem and their nine-330 

dimensional joint PDF is inferred via MCMC. Although the same forward model is used for 331 

generation of the synthetic true field and MCMC inversion, there is still model-form error, as we 332 

use SGSIM, a stochastic generator of relative permittivity fields. It means that even if we use the 333 

same parameter values as the true case in the forward model, we will not reproduce the exact 334 

relative permittivity field or measurements as the true case.  In other word, the MCMC inversion 335 

in this studied case is not an “inverse crime”. A more detailed explanation is in Section 4.1.   336 

 337 

4.1 Inversions with observations with 2% noise (the base case) 338 

As a first step, we solve the inverse problem with 2% noise and limited observations. 30 sources 339 

and 30 receivers are used to calculate the first-arrival-travel time to compare against the 900 340 

observations, as shown in Figure 1 (b). In this study, we assume the horizontal correlation range 341 

of the variogram is 10 times larger than the vertical one. Prior distributions for relative dielectric 342 

permittivity at the pilot points is U[4, 18] and U[1, 3] for the correlation range. 20 MCMC chains 343 

were used, and Figure 2 shows the posterior density distribution after 50000 iterations per chain 344 

i.e., a total of 1 million parameters samples were explored for constructing the posterior density 345 

distribution. The red vertical lines are the true value. The density distributions show convergences 346 

to the true values for all the parameters except for the parameter spatial correlation range, although 347 

its distribution does encapsulate the true value. A possible reason is that the locations of the 8 pilot 348 

points already impose a length-scale for the 𝜖𝑟 field, which may conflict with the 9th parameter 349 

(spatial correlation range).  Further, there is no consistent over- or underestimation of 𝜖𝑟 at the 8 350 

pilot points. The MAP (maximum a posteriori) estimate for 𝜖𝑟 i.e., the peak of the marginalized 351 



PDF, at pilot points 4 and 7 are overestimates, whereas 𝜖𝑟 at pilot point 8 and the correlation range 352 

are underestimated. There is no substantial difference in the MAP estimates and true values for the 353 

rest of the parameters. Thus our formulation and implementation seem to be correct and do not 354 

introduce bias in the results. In this study, as mentioned in Section 3, the permittivity field covers 355 

4 m by 15 m area, and is discretized into a 20 X 75 grid (1500 points total). The permittivity value 356 

on each point is calculated by sequential Gaussian simulation (SGSIM) algorithm (Deutsch and 357 

Journel, 1998), which internally depends on a random number generator. SGSIM takes as its inputs 358 

the permittivity values at the pilot points, as well as the variogram for a multiGaussian distribution, 359 

and outputs a realization that serves as the permittivity field. For commonly used random number 360 

generator, an integer number is used as random seed (or seed state, or seed) for initializing a 361 

“pseudorandom” number generation. With a fixed random seed, the random number generator can 362 

always give the same random numbers series, which will provide the same permittivity field with 363 

given value at pilot points and correlation range. Figure 3 shows the results for an inversion test 364 

case with a fixed random seed, which is the same as the one used for the generation of the true 365 

field. The posterior distribution is very sharp and almost collapses to the true model parameters’ 366 

values (2% noise is added to the observations, which leads to a slightly imperfect collapse). The 367 

posterior distribution of the correlation range is wide, since the pilot points’ permittivity values 368 

partially constrain the correlation range.   369 

 370 

However, in this study, the random seed are deemed unknown, similar to a real inversion problem. 371 

The random seed cannot be calibrated as the relationship between random seed and generated 372 

random number series is chaotic. In summary, the generation of the true case/field is not repeatable 373 

if the random seed is unknown. Figure 4 shows an simple example to demonstrate how the random 374 



seed affects the posterior distribution. In this simple example, all the true values for the 8 pilot points 375 

and the parameter spatial correlation range are used to generate the stochastic field through SGSIM, but 376 

without knowing the random seed, there can be infinite number of the stochastic fields that look different 377 

from each other. All these stochastic fields can be used to calculate the travel time, and the travel times for 378 

the fields would be different from each other as well. The root-mean-square errors (RMSEs) between the 379 

computed travel times for the stochastic fields and the travel time calculated from the synthetic true field 380 

can be evaluated. The red line in Figure 4 shows the distribution of the RMSEs for 1000 stochastic fields, 381 

which are all generated through SGSIM using true values of the pilot points and the parameter spatial 382 

correlation range. As a comparison, the blue line in Figure 4 shows the distribution of the RMSEs of the 383 

1000 fields where the pilot point 1 is 10% bigger than the true value (Keeping all other parameters the same 384 

as true case, only changing pilot point 1). Similar evaluations were done by increasing the pilot point 1 to 385 

be 25% and 50% bigger than the true value, shown as the green and black lines, respectively. There are 386 

obvious overlaps among these distributions, such as the pink shadow area indicating the overlap between 387 

the case with all true values (red line), and the case with the pilot point #1 to be 50% higher than the true 388 

value (black line). This represents the possibility that biased pilot points may yield a better-performing 389 

stochastic field than the stochastic field(s) generated with all the true values, although this possibility is 390 

only 5% (the pink shadow area in Figure 4) in the example. Such possibilities are 42% and 23% respectively, 391 

when the pilot point 1 is 110% and 125% of the true value. This is the reason why the posterior does not 392 

perfectly collapse to the true value (the red line would stack at zero in that case). Please note that the values 393 

of the possibilities listed here are only for this simple example. Summarily, since we let the random seed 394 

to vary during MCMC iterations,  it causes the posterior distribution to be wide, as shown in Figure 395 

2. 396 

 397 

Figure 5 shows the convergence of the posteriors for the base case. Because there are one million 398 

data points for each parameter, it is difficult to check the convergence through the trajectories. 399 



Hence, the boxplot is used to show the convergence of the quantiles of the posteriors distributions. 400 

After about 20000 iteration (totally 400000 samples for 20 chains), the posteriors converged. 401 

 402 

4.2 Inversions with different level of noise in observation 403 

In practice, observations are noisy; they affect the quality of the inferences and the sophistication 404 

of the RFM that can be used with them. Here we investigate the impact of noisy observations on 405 

the inferred permittivity field. We do so by varying the noise added to observations. The noise is 406 

modeled as a normal distribution, with mean set to 0 and the standard deviation defined as a 407 

percentage of the average (true) observation. 4 cases were investigated with the noise standard 408 

deviation set to 2, 5, 10, and 15 percent of the mean of the synthetic true observation. The number 409 

of the sources and receivers is kept at 30. The results are based on 20 chains, each executing 50000 410 

iterations. The mean of the true, noiseless observations is 0.0765 (µs), and the standard deviation 411 

is 0.030025 (µs). Table 2 lists the standard deviation of the noise and the ratio of noise standard 412 

deviation over observation standard deviation.  413 

 414 

Figure 6 shows the boxplots for the inferred permittivities and correlation range, as a function of 415 

the standard deviation of the noise added to observations. The horizontal red lines are the true 416 

value for the 8 pilot points and the correlation range. The horizontal axis of each plot shows the 417 

magnitude of the noise. When the noise’s standard deviation is smaller than 10% of the 418 

observations’ mean, the proposed approach captures the true values within the interquartile range 419 

(IQR) of the samples produced by MCMC. At noise levels of about 15%, the inversion is 420 

destabilized i.e., the information content in the observations is sufficiently masked that they can 421 

no longer constrain the nine-dimensional RFM with no model form error. 422 



 423 

4.3 Data worth and redundancy 424 

In this section, we investigate the effects of varying the number of sources and receivers to evaluate 425 

the data worth and redundancy issues. Equal numbers of sources and receivers are used. The 426 

sources and the receivers are uniformly distributed in their respective wells from 0 to -15 m at the 427 

left side (x=0 m) and right side (x=4 m) of the field.  12 cases were investigated with 5, 10, 15, 20, 428 

25, 30, 35, 40, 45, 50, 75, and 100 sources and receivers. 2% noise is added to the true observations. 429 

The results are based on 20 chains, each executing 50000 iterations. Figure 7 shows the boxplot 430 

of the 8 pilot points and the correlation range’s posterior density distribution. With the increase of 431 

sources and receivers, the posterior density distribution is seen to capture the true value better 432 

when the number of sources/receivers reach 30. The bound of the posterior cannot be improved 433 

when the number of sources/receivers exceeds 35. With the increase of number of 434 

sources/receivers, the distance between nearby receivers become smaller and smaller, which 435 

means that the measured travel time at nearby receivers are closer and closer. The small difference 436 

of the travel time between nearby receivers may be covered by the noise. The only exception is 437 

the 9th parameter, range, which is not affected much as the number of sources is varied. This is 438 

because the 8 pilot points already include the information on the field’s spatial correlation range. 439 

 440 

4.4 Pilot points 441 

In this section, we investigate the effects of changing the number of pilot points. The number of 442 

pilot points is increased from 4 to 24 incrementally, for a total of 6 test cases. The position and 443 

true value of the 24 pilot points are shown in Figure 1 (a) and Table 1. 2% noise is added to the 444 

true observations. The number of the sources and receivers is kept at 30 (900 observation data). 445 



The aim of this section is to show that with a given observational dataset, there is an optimal 446 

number of pilot-points. Commonly, when the number of pilot points increases, the variance of 447 

permittivity field in the domain should decrease. However, this assumes that the permittivity of 448 

the pilot points is known. In our case, the permittivity of the pilot points are unknown, and needs 449 

to be inferred from observations. As the number of pilot-points increases, and the number of 450 

indirect observations do not, it becomes progressively more difficult to infer them accurately. 451 

Figure 8 shows the boxplot of posterior density distribution for the pilot points in the 6 cases in 452 

the study. The horizontal red lines are the true value of the 24 pilot points. There are 24 boxplots 453 

in Figure 8, representing the posterior density distribution of the 24 pilot points obtained for the 6 454 

cases. For example, the first bar in the first plot (named “pilot point 1”) stands for the posterior 455 

distribution of the pilot point 1 in the case with a total of 4 pilot points modeling the field. For the 456 

plot named “pilot point 23”, there is one bar in the plot, because pilot point 23 can only be 457 

calibrated when the total numbers of pilot points is at least 23. With the increase in the total number 458 

of pilot points, the uncertainty ranges slightly increase, especially for the pilot points 1 to 8. Figure 459 

9 (top) shows the mean dielectric permittivity field for the cases with 4, 8, 12, 16 and 24 pilot 460 

points controlling the field. The mean dielectric permittivity field is the average of 200,000 461 

realizations of 𝜖𝑟  fields generated using samples randomly picked from the MCMC chains. 462 

Compared to the true field (Figure 1(a)), we see that the mean field computed with 4 and 8 pilot 463 

points can capture the main spatial variation of the field. The cases with 12 and 16 pilot points 464 

controlling the field capture more spatial details, though they might be spurious. In Figure 9 465 

(bottom) we plot the pointwise variance computed from the 200,000 realizations. One can see that 466 

as the number of pilot points in the RFM (i.e., its complexity, flexibility and consequently, 467 

dimensionality) increases, we see higher variance in 𝜖𝑟 . This is especially true for the most 468 



complex RFMs with 20 and 24 pilot points. Figure 10 shows the best dielectric permittivity field 469 

of the 200,000 realizations, i.e., the one whose simulations best match the observations. Note that 470 

the individual fields do not necessarily resemble Figure 9 (top row). Figure 11 shows the root mean 471 

squared error (RMSE) between the 5 inverted fields and the true field. The black circles are for the 472 

RMSE between the mean field and the true field. The red circles are for the RMSE between the 473 

best inverted filed and the true field. The RFM with 8 pilot points, with limited observations (900 474 

in this study), provides the best matches in terms of the estimated mean and best fields compared 475 

to other RFMs. However, a good agreement between observations and mean or best field does not 476 

automatically imply that the eight-pilot-point RFM is the one to use for the given observational 477 

dataset; rather the determination must be made based on all the realizations that may be obtained 478 

from a calibrated RFM. 479 

 480 

This is accomplished using the cumulative rank probability score (CRPS); see Ray et al.  (Ray et 481 

al., 2015) for the definition of CRPS and how it can be used, along with an ensemble of predictions 482 

from a (Bayesian) calibrated model, to gauge the quality of the calibration. CRPS, loosely speaking, 483 

computes the discrepancy between an ensemble of predictions (by computing the empirical 484 

cumulative distribution function) and observations. It has units of the observed quantity (time, in 485 

our case) and smaller values of CRPS are preferred. In Figure 12, we plot the CRPS of the 486 

ensemble predictions obtained from calibrated models that used RFMs of increasing complexity. 487 

We see that the 4-pilot-point RFM has the lowest CRPS, showing the difficulty of estimating 488 

permittivity accurately as the pilot points are increased.  489 

4.5 Discussion 490 



The uncertainty in the inferred parameters – 𝜖𝑟 at the pilot points and the correlation range of the 491 

variogram are caused by three factors: (1) the quality of the observational data, i.e., the magnitude 492 

of noise in it; (2) the quantity of observational data, and (3) the adequacy of the RFM in estimating 493 

a spatially complex 𝜖𝑟 field. In Section 4.1 to 4.4 we performed a set of experiments, and we 494 

interpret the results to gauge the interplay of the three factors in deciding the quality of the 495 

inversion. 496 

 497 

In Section 4.1, we check if the formulation of the likelihood and the MCMC implementation 498 

produces correct results i.e., if the inferences are bias-free when observations are noiseless. In 499 

Figure 2 we find the inferences drawn with limited observations to be free of any systematic errors 500 

and we proceed to the problem of the information required to constrain a nine-dimensional RFM 501 

(Figure 6). We find that for less than about 10% noise, the PDF for 𝜖𝑟 get wider with the noise. 502 

For 15% noise, the median of the inferred PDFs shift away from the true value. Note that the 503 

observations may still be sufficiently informative to constrain a simpler RFM. 504 

   505 

Having established an approximate lower bound on the amount of information required to 506 

constrain the RFM, we refine the analysis by removing the paucity of observational 507 

data/information. In Figure 7 and Section 4.3 we perform inversions with the 8-pilot-point RFM 508 

while increasing the amount of observations. Figure 4 shows that the median 𝜖𝑟, as inferred at the 509 

8 pilot points, asymptote to position-specific constants by about 50 source-receiver pairs, while 510 

their uncertainty keeps shrinking as the number of source-receiver pairs increases. The parameters 511 

with the largest estimation errors are pilot point #4 and the correlation range. As seen in Figure 1, 512 

pilot point # 4 is near a sharp gradient in 𝜖𝑟, and capturing it with a mixture of eight pilot points is 513 



difficult. The difficulty in estimating correlation range is explained by an ambiguity. There are two 514 

length scales in the inverse problem – the correlation range and the distance between the pilot 515 

points. The correlation range is therefore difficult to estimate and increasing the number of source-516 

receiver pairs does not sharpen the PDF (see Figure 7).  517 

 518 

In reality, the appropriate RFM is not known a priori, and one typically has to investigate RFMs 519 

of increasing complexity to arrive at the best one. In our case, this implies performing the inversion 520 

using RFMs constructed with increasing numbers of pilot points. This is also investigated in 521 

Section 4.4, where we investigate RFMs constructed using 4-24 pilot points. As seen in Figure 8, 522 

9 and 11, a more sophisticated RFM does not necessarily lead to better reconstructions of 𝜖𝑟 fields, 523 

if the quantity of observational data is held constant; instead it runs the danger of overfitting and 524 

providing poor predictions. In Figure 8 (plots of 𝜖𝑟 for pilot points #2, #4, #5 and #8), we see that 525 

the width of the uncertainty bounds seems to become constant after about 10 pilot points in the 526 

RFM. This is also reflected in Figure 9. In the plots on top, where we plot the mean of 200,000 527 

realizations of 𝜖𝑟, increasing the complexity of the RFM seems to reconstruct more spatial details. 528 

However, the variance in the reconstructions (Figure 9 (bottom row)) increases with the 529 

complexity of the RFM, and the details captured by the mean field are not necessarily more 530 

accurate, given the increasing uncertainty associated with them. Figures 9 and 10 reveal the danger 531 

of using a mean 𝜖𝑟 field from the MCMC solution as a representative of the entire ensemble of 𝜖𝑟 532 

field realizations. As Figure 9 (bottom) shows, the pointwise standard deviations are large, and 533 

consequently, the best field (Figure 10) has little resemblance to the mean field (Figure 9 (top 534 

row)). 535 

 536 



Figure 11 also shows that the agreement between the true and estimated fields actually become 537 

worse as we add pilot points beyond 8 to the RFM. Figure 12, which plots the CRPS as the RFM 538 

complexity is increased, shows that the RMSE of the mean field is not a good guide for selecting 539 

RFMs, as it ignores the variability/uncertainty in the inferred field. The CRPS plot shows us that 540 

of the RFMs considered, the 4-pilot-point RFM is most appropriate for use with the dataset, even 541 

though the RMSE of the mean field it produces is not the most optimum. Thus while we may have 542 

900 travel time observations, they may not be of much use in constraining a complex RFM. This 543 

may be due to the physics of the problem – EM waves can find alternative paths with much the 544 

same travel times as we place more pilot points – or it could be due to the variability of the 545 

multiGaussian permittivity fields generated by SGSIM. 546 

 547 

In Figure 13, we plot the estimate of the noise (𝜎) for the tests shown in Figures 6, 7 and 8. In 548 

Figure 13(a), we see that when the observations are corrupted by 2%, 5%, 10% and 15% noise, we 549 

infer 𝜎 to be about 5%, 8%, 15% and 25%. This overestimate is due to the variability introduced 550 

by SGSIM and the limited nature of the observations. In Figure 13(b), we see that increasing the 551 

observations actually improves the estimate of 𝜎, drawing it closer to its true value of 2%; however, 552 

there is still some residual variability due to the stochastic nature of SGSIM. In Figure 13(c), we 553 

see that increasing the number of pilot points somewhat reduces 𝜎. 554 

 555 

5. Conclusion 556 

We have developed a new inversion method to reconstruct relative dielectric permittivity fields 557 

from tomographic GPR arrival time data. It is based on a pilot-point modeling of relative dielectric 558 

permittivity field, so that the dimensionality of the inverse problem can be reduced. In order to 559 



capture the uncertainty in the quantities of interest inferred from GPR data, we use a multi-chain 560 

MCMC sampler. The solution is developed as a multi-dimensional PDF of the parameters of the 561 

pilot-point representation. For each set of pilot point parameters, we develop a relative dielectric 562 

permittivity field using SGSIM. In the absence of observational noises, we find that MCMC 563 

samples successfully capture true values of the relative permittivity field. The inversion test with 564 

noisy observational data shows that when the noise level is smaller than 10% of the mean 565 

observational magnitude, the proposed approach can well capture the true values within the IQR 566 

of the posterior samples. In some cases, e.g., in Figure 6, the IQR contains most of the true values; 567 

in a well-calibrated inversion, only about half the true values would have lain within the IQR 568 

bounds. This indicates that in some low-noise inversions, the uncertainty in the inferred quantities 569 

is larger than in an ideal inversion. This could be due to the design of our spatial parameterization, 570 

since (1) we attempt to recreate the permittivity field using only 8 pilot points and (2) the 571 

correlation range and the distribution of pilot points impose two conflicting length scales in the 572 

problem. 573 

 574 

We also see that when the amount of observation data increases, the posterior density distributions 575 

capture the true values better (i.e., more accurate and with narrower bounds). In our study case, 576 

the bounds of the posteriors narrow significantly when the number of sources/receivers exceeds 577 

25 (625 observational GPR arrival times data). Increasing the number of pilot points while holding 578 

the amount of observational data constant is not always helpful: comparing the estimated dielectric 579 

permittivity field to the true one, the cases with 4 and 8 pilot points can capture the main spatial 580 

variation of the field, while the cases with more pilot points constraining the field can capture a 581 

little more spatial detail, but not necessarily lead to a more accurate inverted field due to increased 582 



number of unknowns. The RMSEs between the mean inverted fields and the true field indicates 583 

that the test cases with 8 pilot points, with limited observations (900 in this study); however, the 584 

use of RMSE of the mean field is misleading, as it ignores the effect of estimation uncertainty. 585 

This is rectified in Figure 12, where we use CRPS to perform RFM selection. Note that a larger 586 

domain with the same length scale of spatial variation would likely require more pilot points, and 587 

consequently, more observations for inversion. Nevertheless, in practice, the use of CRPS to 588 

choose the most appropriate RFM for an observational dataset is the correct approach. It is a purely 589 

data-driven method for deciding on a suitable RFM, balances estimation accuracy and uncertainty 590 

and is a particular strength of MCMC solutions of inverse problems.  591 
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Figure 1: Synthetic Data: (a) Relative dielectric permittivity of the synthetic field, where the 

symbols “+” and numbers indicate the positions and indices of the 24 pilot points; (b) Forward 

GPR simulated first-arrival travel times between the sources and receivers for the synthetic field. 

 

Figure 2: Posterior density distributions for the base case (2 % noise). 

 

Figure 3: Posterior density distributions for the base case (2 % noise), and random seed same as the 

one used for generating the synthetic true case. This serves as a check for the MCMC method i.e., 

when we commit an inverse crime, our PDFs should be very sharp. 

 

Figure 4: RMSE distribution for the simple example demonstrating the effects of random seed on 

the posterior distribution 

 

Figure 5: The convergence of the posterior distribution with number of MCMC iterations 

 

Figure 6: Boxplots for the noise magnitude study. The boxes show the IQRs of the MCMC 

posterior samples of the relative dielectric permittivity at the 8 pilot points and variogram range. 

The black horizontal line is the median of the MCMC samples and the red horizontal line 

represents the true value. 

 

Figure 7: Boxplots for inferred quantities with different number of sources and receivers. 
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Figure 8: Boxplots of posterior samples for the pilot points involved in the 6 case studies. 

 

Figure 9: Top row: Mean of 200,000 realizations of 𝜖𝑟  fields generated from posterior samples 

randomly picked from the MCMC chains. Results are generated for RFMs of increasing 

sophistication/flexibility/dimensionality. Bottom row: Pointwise (grid-cell-wise) standard 

deviations computed from the 200,000 realizations. 

 

Figure 10: Best 𝜖𝑟  field out of the 200,000 realizations, for which the simulated first-arrive 

traveltimes match the observations the most. Results are generated for RFMs of increasing 

sophistication/flexibility/dimensionality. 

 

Figure 11: Root mean square errors between the true field and estimated fields for different 

numbers of pilot points. 

 

Figure 12.  DIC values computed using Bayesian estimations of 𝜖𝑟 performed using RFMs with 1, 

4, 8, 12, 16, 20 and 24 pilot points. The RFM with 4 pilot points is the most appropriate for the 

observations used in this study. 

 

Figure 13: Boxplot for 𝜎 in Eq. (7); (a) different level of noise; (b) different number of sources and 

receivers (with 2% noise); (c) different number of pilot points (with 2% noise). 
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Figure 1. Synthetic Data: (a) Relative dielectric permittivity of the synthetic field, where the 

symbols “+” and numbers indicate the positions and indices of the 24 pilot points; (b) Forward 

GPR simulated first-arrival travel times between the sources and receivers for the synthetic field. 

 

  



 

Figure 2. Posterior density distributions for the base case (2 % noise). 

 

 

 

 

 



 

Figure 3: Posterior density distributions for the base case (2 % noise), and random seed same as the 

one used for generating the synthetic true case. This serves as a check for the MCMC method i.e., 

when we commit an inverse crime, our PDFs should be very sharp. 

 

 

 

 

 

 



 

Figure 4: RMSE distribution for the simple example demonstrating the effects of random seed on 

the posterior distribution 

 

 



 

Figure 5: The convergence of the posterior distribution with number of MCMC iterations 

 



 

Figure 6. Boxplots for the noise magnitude study. The boxes show the IQRs of the MCMC 

posterior samples of the relative dielectric permittivity at the 8 pilot points and variogram range. 

The black horizontal line is the median of the MCMC samples and the red horizontal line 

represents the true value. 

 

 



 

Figure 7. Boxplots for inferred quantities with different number of sources and receivers (2 % 

noise). 

  



 

Figure 8. Boxplots of posterior samples for the pilot points involved in the 6 case studies (2 % 
noise). 
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Figure 9. Top row: Mean of 200,000 realizations of 𝜖𝑟  fields generated from posterior samples 

randomly picked from the MCMC chains. Results are generated for RFMs of increasing 

sophistication/flexibility/dimensionality. Bottom row: Pointwise (grid-cell-wise) standard 

deviations computed from the 200,000 realizations. 
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Figure 10. Best 𝜖𝑟  field out of the 200,000 realizations, for which the simulated first-arrive 

traveltimes match the observations the most. Results are generated for RFMs of increasing 

sophistication/flexibility/dimensionality. 

 

  



 

Figure 11. Root mean square errors between the true field and estimated fields for different 

numbers of pilot points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 12. CRPS values computed using Bayesian estimations of 𝜖𝑟 performed using RFMs with 

1, 4, 8, 12, 16, 20 and 24 pilot points. The RFM with 4 pilot points is the most appropriate for the 

observations used in this study. 
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Figure 13: Boxplot for 𝜎 in Eq. (7); (a) different level of noise; (b) different number of sources and 
receivers (with 2% noise); (c) different number of pilot points (with 2% noise). 

 

 

 

 

 

 

 



Table 1: Position and relative dielectric permittivity for the 24 pilot points. 

 

Table 2: Standard deviation of the noise and the ratio of noise standard deviation over observation 

standard deviation. 

 

 

  

table Click here to download table Table_r3.docx 

http://www.editorialmanager.com/serr/download.aspx?id=87615&guid=86353044-0ef0-4549-a562-2a81f7276b36&scheme=1
http://www.editorialmanager.com/serr/download.aspx?id=87615&guid=86353044-0ef0-4549-a562-2a81f7276b36&scheme=1


 

Table 1: Position and relative dielectric permittivity for the 24 pilot points. 

Pilot point index X (m) Z (m) Relative dielectric permittivity 
1 0.6 -1.2 9.3 
2 1.4 -4.8 14.3 
3 2.2 -8.4 9.7 
4 3 -12 12.1 
5 2.6 -3 13.5 
6 3.4 -6.6 10.1 
7 1 -10.2 13.5 
8 1.8 -13.8 16.3 
9 1.6 -1.6 9.84751 
10 2.4 -5.2 13.6757 
11 3.2 -8.8 10.2677 
12 3.6 -12.4 14.0186 
13 3.6 -3.4 13.3346 
14 0.4 -7 10.9779 
15 2 -10.6 14.7648 
16 2.8 -14.2 15.6381 
17 1 -2 10.6713 
18 1.8 -5.6 12.8234 
19 2.6 -9.2 10.8158 
20 3.4 -12.8 14.5242 
21 3.2 -3.8 13.9046 
22 1.2 -7.4 10.5123 
23 1.6 -11 13.1352 
24 2.4 -0.8 10.2261 

 

  



Table 2: Standard deviation of the noise and the ratio of noise standard deviation over observation 
standard deviation. 
 

 2% 5% 10% 15% 

Noise std. 0.001530 0.003826 0.007652 0.011478 

Noise std. /obs. std. 0.050958 0.127431 0.254862 0.382293 

 

 


