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What is this talk about?
§ When we validate simulations with experimental data, we assume that the 

data is trustworthy and the model is not

§ What happens if you suspect that the situation is flipped? Prove it?

§ In the previous talk, you saw some of our difficulties in reproducing LENS-

XX experiments with SPARC

§ We’ll discuss a statistical framework that can be used check whether an 

experimental dataset is consistent

§ hypothesize causes behind the mismatch of predictions & experimental data;  

gather evidence for/against in a quantifiable manner

§ We’ll demonstrate this framework with the double-cone problem
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Introduction

§ Problem: Our model (SPARC) and others cannot reproduce LENS-XX double 
cone experiments
§ Even when stated experimental errors are accommodated in model predictions

§ Aim: Could it be that stated experimental settings are inconsistent with 
measurements? Can you prove it?

§ Process:
§ Propose experimental settings that may be in error, and ones that are not

§ Infer the true values of the experimental variables deemed wrong

§ Compare inferred (“true”) and stated (“wrong”) values. Are they outside their 
respective uncertainty bounds?
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Recap – The experiments
§ We have a double-cone in hypersonic 

flow
§ Expansion tunnel, low temperatures, 

thermochemical equilibrium freestream
§ Freestream errors: 3 % (U, T); 7% (r)
§ 6 experiments, H0 = [5.4, 21.8] MJ/kg
§ Mild vibrational non-equilibrium to 

widespread dissociation
§ Laminar, attached flow on the fore-cone; 

simple physics
§ Shock interactions, separation bubble
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Recap – Our difficulties

§ Case I – lowest H0. Pressure (p(x)) prediction fine but under-predict heat flux 
(q(x)) on the forecone. After separation, agreement is bad

§ Adding in uncertainty due to freestream conditions doesn’t help (no overlap)
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A bit about experimental datasets …
§ Most experimental datasets have two parts:

§ The data that specifies the experimental environment (IC & BC for models)
§ The data that describes the physical processes that occur in the experiment

§ Not all data in an experimental dataset are measurements
§ Some are inferred using models, and have assumptions built into them

§ Uncertainties in actual measurements are usually known
§ Uncertainties in inferred quantities are harder to quantify

§ In LENS-XX / double-cone datasets:
§ Flow processes on the double-cone are actually measured (direct quantities)

§ Experimental settings e.g. axisymmetry, freestream etc. are often inferred from 
more fundamental measurements (derived quantities)
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Hypotheses 

§ The causes of the model – experiment mismatch could be:
§ Cause I – the experimental environment, specifically freestream conditions, 

could be inconsistent with measurements of flow processes
§ Test: Infer “true” freestream from direct measurements and compare with stated 

conditions

§ Cause II – The thermochemical models e.g., reactions, models of viscosity etc. 
are not suitable for high enthalpy flows
§ Test: Prediction errors using “true” freestream for low enthalpy flows should be 

smaller than for higher enthalpy flows

§ Cause III – the incoming freestream is not axisymmetric
§ Test: Do the flow processes satisfy self-similar collapses?
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Investigating Cause I
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§ Claim: The true freestream conditions 
!", $", %&'(,", %)*+," lie outside the 

stated uncertainty bounds

Pressure Heat-flux

§ Test: Estimate θ = !", $", %&'(,", %)*+,"
consistent with measurements . =
(0 1 , 2 1 , 34, 5')
§ Use data from 3 p(x) and 17 q(x) sensors



Bounding & Global Sensitivity Analysis
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§ Can a ±15% uncertainty bound about 
the nominal freestream bracket 
experimental data? Yes

§ Does variation of θ affect &? Global 
Sensitivity Analysis!
§ Compute the Sobol indices of p(x) and 

q(x) as X is varied over the +/- 15% 
uncertainty bounds

§ Only r and U have any impact on 
pressure and heat flux



A self-similarity collapse
§ While we have 3 p(x) probes and 17 q(x) 

probes, the information content in the 
measurements is meager
§ Pressure: !" = $% &'()

§ Heat-flux self-similar. !* = $+(-) -
&'(/

§ Implications:
§ Estimating q not possible with much 

certainty – use Bayesian inference
§ 3D effects should be small, but not non-

existent!
§ See scatter in heat-flux plot 
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Inverse problem for freestream conditions

§ We have to infer 4 quantities θ = #$, &$, '()*,$, '+,-,$ from 4 
measurements Y = (K1, K2, H0, P0) – very uncertain
§ So estimate θ = #$, &$, '()*,$, '+,-,$ as a 4-dimensional joint probability 

density function (JPDF) and capture the uncertainty in the estimate
§ Done using Bayesian calibration

§ Bayesian calibration

§ Formulation: .()-0) =M(2) + 4, 4 = 5, , 5,~N (0, 89)

§ Likelihood: L .()-0) 2 ∝ ∏,∈= exp −
BC
DEF G BC

HIJK L
M

9NM
, O = sensors
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Bayesian calibration

§ Suppose we have a prior belief (a PDF) on !, #$(!) and one on ', #((')
§ Then by Bayes law, the posterior PDF of !

) !, '( | +(,-.) ∝ ∏1∈3 exp −
89
:;< = 89

>?@A B
C

(DC #$ ! #( '
§ Provides the PDF of (q, s2) conditioned on y(obs)

§ PDF constructed by sampling from ) !, '( | +(,-.) using MCMC

§ Each sample consists of making a SPARC run ~ 150 CPU-hours; sampling is 

sequential

§ Too expensive – replace SPARC with a statistical emulator
12



Statistical emulators
§ A “curve-fit” that maps freestream ! to the SPARC prediction 
"#
(%&'() = +#(!)at a pressure or heat-flux sensor ,, , . /

§ Take 01samples of !2, 3 = 1⋯01, from a +/- 15% region around the 
nominal freestream !

§ Run SPARC with them. Database the results "# %&'( (!2), "#
(%&'() =

{78, 79, :;, <;}
§ Try to fit  3rd order polynomials separately to 78 ! , 79 ! , :; ! , <;(!)

§ Use AIC to cut down on terms (prevent over-fitting)
§ Accept the polynomial curve-fit as a proxy for SPARC if its prediction error < 5% 

and use it in MCMC

§ Result: Most of our surrogates are weak, linear functions of (>&?@,A, >B#C,A)
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Case 1
§ H0 = 5.4 MJ/kg, vibrational non-

equilibrium, no dissociation

§ 50,000 MCMC steps

§ As expected, can’t estimate !"#$,& and 
!'(),&; the PDFs are flat

§ Can estimate freestream r and U and their 
most probable values
§ Discrepancies similar to meas. errors

§ Implication: Stated and measured 
freestreams look consistent
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Disagreement Meas. error

Density ~2% 7%

Velocity ~4% 3%



Quality of a probabilistic forecast

§ When check our inferred freestream as follows:

§ We take 100 q samples from the posterior distribution

§ We runs SPARC forward & get 100 predictions per sensor

§ Our predictions are samples describing a PDF, !(#$)

§ Our experimental data is either a number #$
(&'()or a 

uniform distribution )(#$
(&'())

§ Comparison

§ CRPS : Continuous ranked probability score

§ Sorensen distance, *+ = ∑. /. 0 12.(0)
∑. /. 0 32.(0)

§ dS = 1 (no overlap); dS = 0 (complete overlap)
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Predictive skill
§ Case 1 (low enthalpy), 

after calibrating the 
freestream

§ Pressure
§ OK, fore-cone
§ Bad, separation zone
§ Bad, post-reattachment

§ Heat transfer
§ OK, fore-cone
§ Bad, separation zone
§ OK after reattachment
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Case 4
§ H0 = 21.7 MJ/kg, extensive dissociation

§ 50,000 MCMC steps

§ As expected, can’t estimate !"#$,& and 
!'(),&; the PDFs are flat

§ Can estimate freestream r and U and their 
most probable values
§ Discrepancies greater than meas. errors

§ Implication: Stated and measured 
freestreams are inconsistent
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Disagreement Meas. error

Density 10.4% 7%

Velocity 8.45% 3%



Predictive skill
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§ Case 4 (high enthalpy), 
after calibrating the 
freestream

§ Pressure
§ OK, fore-cone
§ Bad, separation zone
§ OK, post-reattachment

§ Heat transfer
§ OK, fore-cone
§ Bad, separation zone
§ So-so, after reattachment



Summarizing

§ Post-calib, Case 1 & 4 pressure predictions degrades and heat-flux improved
§ Freestream mis-specification a cause (?), but probably not the main one. [Cause # 1]

§ Post-calibration dS smaller for high-enthalpy flows. 
§ Thermo-chemical models not the culprit for bad predictions [Answers Cause # 2]

§ The incoming flow is may be mildly axisymmetric
§ Would explain the behavior of Case 1 and 4 

§ Self-similar collapse shows non-axisymmetry is small [Kind of answers Cause #3 ]
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Test Case Pressure (dS) Heat Flux (dS)

Pre-calib Post-calib Pre-calib Post-calib

Case 1 (H0 ~ 5 MJ/kg) 0.77 0.899 0.87 0.734

Case 4 (H0 ~ 21 MJ/kg) 0.6756 0.7882 0.955 0.7248



Conclusions

§ Demonstrated a way of checking consistency of an experimental dataset
§ Consists of carefully demarcating between trustworthy and non-trustworthy 

data (e.g., derived data, which could be experimental settings)
§ Using trustworthy data and a validated model, infer the “untrustworthy” data
§ Compare the two. Requires estimation & comparison under uncertainty

§ Used it to check the LENS-XX/double cone experimental dataset
§ The low-enthalpy experimental datasets seem OK (high confidence)
§ The high-enthalpy dataset has problems (medium confidence)
§ The thermo-chemical models in SPARC are not the culprit (high confidence)
§ Our model – data mismatch could be because of mild 3D effects (low 

confidence)
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BACKUP
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How good is the inferred freestream PDF?
§ Take 100 q samples from JPDF

§ Run SPARC and get 100 predictions @ 
sensors; compare with measurements

§ Definite improvement, but how to 
quantify?
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How good is the inferred freestream PDF?
§ Take 100 q samples from PDF

§ Run SPARC and get 100 predictions @ 
sensors; compare w/ measurements

§ Still, a net bias (model under-predicts)
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