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This is the second of three related conference papers focused on verifying and validating a
CFD model for laminar hypersonic flows. The first paper deals with the code verification and
solution verification activities. In this paper, we investigate whether the model can accurately
simulate laminar, hypersonic experiments of flows over double-cones, conducted in CUBRC’s
LENS-I and LENS-XX wind-tunnels. The approach is to use uncertainty quantification and
sensitivity analysis, along with a careful examination of experimental uncertainties, to per-
form validation assessments. The validation assessments use metrics that probabilistically
incorporate both parametric (i.e. freestream input) uncertainty and experimental uncertainty.
Further validation assessments compare these uncertainties to iterative and convergence uncer-
tainties described in the first paper in our series of related papers. As other researchers have
found, the LENS-XX simulations under-predict experimental heat flux measurements in the
laminar, attached region of the fore-cone. This is observed for a deterministic simulation, as
well as a probabilistic approach to creating an ensemble of simulations derived from CUBRC-
provided estimates of uncertainty for freestream conditions. This paper will conclude with
possible reasons that simulations cannot bracket experimental observations, and motivate the
third paper in our series, which will further examine these possible explanations. The results
in this study emphasize the importance of careful measurement of experimental conditions
and uncertainty quantification of validation experiments. This study, along with its sister pa-
pers, also demonstrates a process of verification, uncertainty quantification, and quantitative
validation activities for building and assessing credibility of computational simulations.

Nomenclature

ρ∞ = Freestream density
U∞ = Freestream velocity
T∞ = Freestream temperature
Tv∞ = Freestream vibrational temperature
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Twall = Temperature of the double-cone wall boundary
Re = Unit Reynolds number
h0∞ = Total enthalpy
M∞ = Mach number
PPitot = Pitot pressure

I. Introduction

This conference paper is part of a series of three related papers (the others being [1, 2]) on the verification, validation,
and uncertainty quantification (VVUQ) of the Sandia Parallel Aerodynamics and Reentry Code (SPARC). SPARC is

a second-order finite-volume simulator, which is being designed for hypersonic CFD simulations on next-generation
platforms. These papers aim to establish a body of evidence regarding the capabilities and accuracy of the simulator.
This study, with its sister papers, also demonstrates a process of verification, uncertainty quantification, and quantitative
validation activities for building and assessing credibility of computational simulations.

SPARC solves the unsteady compressible Navier–Stokes equations for a multi-component reacting mixture of gases,
which may be in thermal non-equilibrium. It adopts a finite-volume spatial discretization and the solution is advanced
in time using a second-order backward-difference formula. The first paper in this series, Ref. [1], addresses code
and solution verification. That paper addresses the numerical solution technique: whether the discrete form of the
partial differential equations (PDEs) are solved correctly, and estimates the numerical error. Issues of convergence
(under spatial- and temporal-refinement), tolerances on iterative convergence, etc. are also addressed. In this paper,
we consider validation, i.e., “the process of determining the degree to which a model is an accurate representation of
the real world from the perspective of the intended uses of the model.” [3]. We do so by simulating experiments and
comparing experimental measurements against SPARC predictions. This paper will cover uncertainty quantification
(UQ), sensitivity analysis, and validation for a hypersonic, laminar flow over a double-cone. It will include an aggregation
of experimental, parametric, iterative and numerical, and experiment–simulation bias uncertainties. Validation metrics
are used in the validation assessment.

The experiments in question consist of M∞ ≈ 12 flows over a 25o/55o double-cone, which were conducted in
the Calspan-University at Buffalo Research Center (CUBRC) Large Energy National Shock Tunnel (LENS-XX) [4]
with air as the working fluid. LENS-XX is an expansion tunnel. Reference [5] provides a good summary and images
of these experiments, such as model dimensions and sensor locations, the key flow features, and the physics models
necessary to accurately simulate the flow. The stagnation enthalpies in these experiments vary between 5 MJ/kg and 21
MJ/kg, which produce flows ranging from vibrational non-equilibrium (downstream of the shock structure around the
double-cone) to nearly complete dissociation at the highest enthalpies. We chose two extreme cases, Case 1 and Case 4,
as listed in Table 2. The 25o cone (henceforth, the “fore-cone”), joins the frustum of a 55o cone (the “aft-cone”), and the
instrumentation is heaviest near the frustum to capture the separation bubble and the effects of the shock interaction that
the corner induces. The experimental observables consist of pressure and heat-flux measurements at a set of sensors
distributed over the entire double-cone.

There have been previous attempts to simulate these experiments [5, 6], including a “blind” code comparison [7].
Ref. [5] provides a good description and plots of the shock-wave/laminar boundary layer interaction on the double-cone.
The 25o fore-cone results in an attached shock, whereas the 55o aft-cone results in a detached bow shock. The two
shocks, attached and bow, intersect, creating a triple point and a transmitted shock that impinges at a point on the
aft-cone. The adverse pressure gradient created by the transmitted shock feeds upstream via the (subsonic) boundary
layer, causing the laminar flow to separate upstream of the impingement point. This separated region, in turn, induces a
separation shock, which intersects with and modifies the transmitted shock. Plots of these complex shock interactions,
and the vortex sheets they induce, can be found in Figure 1, as well as in Ref. [5].

CFD simulations in Ref. [5], where both perfect-gas and non-equilibrium flow models were used, show that the
fore-cone pressure is simulated accurately (i.e., it matches LENS-XX measurements), but separation occurs too late.
The simulated heat flux under-predicts the measurements significantly, even when measurement errors are taken into
account. The authors in Ref. [6] examined whether a more sophisticated model for the coupling between vibrational
non-equilibrium and dissociation could explain the mismatch between CFD and experiments. They found that Parks’s
simple model [8] provided results that were very similar to their more sophisticated one [9]. Furthermore, they found
the same under-prediction of heat flux and separation bubble as seen in Ref. [5], as well as accurate CFD predictions for
pressure on the fore-cone.

The blind code comparison referred to in Ref. [7] is quite revealing as it shows five different CFD codes failing
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Fig. 1 This figure shows a simulated Schlieren image of the flowfield from a SPARC simulation of LENS-I Run
35. Simulated Schlieren images essentially show high density gradients, so shockwaves and contact surfaces
appear as dark lines.

to agree with the LENS-XX measurements. In addition, they fail to agree with themselves, despite the fact that their
constituent models were similar. The simulation results were grid converged, so the discrepancies were attributed
to differences in the grids used by the participants of the blind code comparison exercise. Again, all the models
under-predicted the separation zone, mostly due to a delay in predicting the separation bubble, and under-predicted the
heat flux.

These difficulties with simulating LENS-XX data parallel those experienced with double-cone experiments in the
LENS-I shock tunnel [10] in 2000. Navier–Stokes simulations over-predicted the heat flux on the double-cone, though
the pressure profile and the separation zone were well predicted [11]. Note that only one experiment, called Run 35,
was simulated. However, it was later found that the extreme conditions in the shock tunnel lead to an inflow into
the test section that was in strong vibrational non-equilibrium [12]. When the inflow was adjusted accordingly, CFD
simulations matched the experimental data quite well. Table 1 lists the original and corrected freestream conditions for
Run 35. Again, as with Ref. [6] and LENS-XX, the choice of vibrational non-equilibrium models had little impact on
the predictive skill of CFD on LENS-I experiments [13].

In all the studies listed above (i.e., Refs. [5–7]), simulating the experiments implied performing a single simulation,
using freestream and other boundary conditions provided by the experimentalists. However, the experimental observables,
including the freestream specifications, are uncertain, and these uncertainties have been estimated and provided by the
experimentalists. In this paper, we pursue the hypothesis that the uncertainties in the freestream may explain the failure
of the previous studies to match experiments, especially if one considers that our quantities of interest (i.e., the pressure
and heat fluxes on the test article, as well as the stagnation enthalpies and pressure of the flow upstream of the shock
structure) are themselves uncertain.

We will test our hypothesis in the following manner. The freestream uncertainties have been specified by the
experimentalists as percentages, not as distributions. Given the constraints imposed by the conservation laws, it is
inconceivable that these uncertainties are uncorrelated. However, the correlation structure has not been provided;
therefore, we will adopt the maximum-entropy model by (1) using the percentages as the upper and lower bounds of a
uniform distribution centered around the nominal values specified in Tables 1 and 2 and (2) assuming that the uniform
distributions are independent. We will sample realizations of freestream conditions from this uniform distribution and
perform SPARC simulations with them. This ensemble of simulations will provide a distribution of predictions at
each of the measurement sensor locations, i.e., at every sensor location, SPARC predictions will take the form of a
probability density function (PDF). The uncertain experimental measurements at the same sensors take the form of a
uniform PDF. The distance between the prediction and measurement PDFs, as quantified using a Sorensen distance,
indicate the degree to which they overlap, and thus how well the simulations reproduce the experimental data.
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Note that such a formulation for validating SPARC simulations accomplishes two aims. First, the assumption
of maximum entropy distributions is conservative in the sense that it should provide over-dispersed (or overly wide)
prediction PDFs. Failure to intersect the measurement PDF is a strong statement regarding the simulation’s inability to
match experiments. Secondly, ensemble runs allow us to compute the global sensitivity of the quantities of interest
(surface pressures and heat flux) with respect to freestream conditions. At the very least, these allow us to identify
which freestream uncertainties can be neglected when seeking to explain the prediction-measurement mismatch.

In the following section, we describe the mathematical machinery used to compute sensitivity indices and to perform
the ensemble runs. Our strongly probabilistic formulation of the validation problem, relying as it does on global
sensitivities and PDFs of predicted and measured quantities, requires an enormous number of freestream realizations
(O(104)) to compute accurately. This is quite intractable due to SPARC’s computational cost, if considered naively.
Consequently, we will take recourse to ensemble simulations on Smolyak [14] grids defined in the space of freestream
conditions, which are then used to construct polynomial chaos expansion [14] surrogates (i.e., statistical emulators
of SPARC). Sampling-based statistics and PDFs are computed using these emulators. The complex workflow that
underlies these statistical computations is automated using Dakota [15].

II. Approach

A. SPARC
SPARC solves the conservation laws for mass, momentum, and energy, formulated for reacting fluids, modeled as

continua, where energy in vibrational and translational/rotational modes may not be in equilibrium, i.e., it tracks the two
modes using separate conservation laws. The equilibration of vibrational energy is governed by the Landau–Teller
model [16], with relaxation time-scales computed using the Millikan–White expression [17]. SPARC can accommodate
reacting flows with multiple species, though the simulations in this paper used a 5-species, 17-reaction chemical
mechanism for air [18]. In the case of non-equilibrium flows with T , Tv (corresponding to the different modes into
which energy is partitioned), an effective temperature Teff =

√
TTv is used to compute the chemical reaction rates.

Diffusion of individual species is modeled using Lewis numbers, and viscosities for the species are obtained using
Blottner’s model [19]. Thermal conductivities for the individual species are obtained from Eucken’s relations [16], which
are then assembled into the mixture’s value using Wilke’s model [20]. The equations are solved using a finite-volume
method with the conserved variables. SPARC accommodates structured and unstructured meshes, though only the
former are used in this paper. For the simulations in this paper, we use a Steger–Warming scheme for the inviscid
fluxes, extended to second-order accuracy using MUSCL reconstruction. A minmod limiter is used in our simulations.
Central differencing is used for diffusion and viscous terms. SPARC solves the unsteady form of the conservation
equation, using a three-point backward-difference scheme to achieve second-order accuracy in time. However, all the
simulations used in this paper are steady, and the time-integrator is run in its first-order form to accelerate convergence
to a steady-state solution.

For all simulations in this paper, we assume the flow over the double-cone is axisymmetric and that the inflow
is spatially uniform. No-slip boundary conditions are imposed on the double-cone surface, which is modeled as
non-catalytic and is held at a constant temperature of 300 K. These flows are simulated on a stretched mesh. The
simulations are run to steady state by reducing the residual by 6 orders of magnitude or by ensuring that 100 flow-through
times have been simulated.

B. Verification & Validation Approach
This is the second of three related papers focused on verifying and validating SPARC for hypersonic, laminar flows.

The first paper focuses on code- and solution verification activities [1]. In this paper, we investigate whether the model
can accurately simulate hypersonic, laminar flows over double-cones, conducted in CUBRC’s LENS-I and LENS-XX
wind-tunnels. The third paper [2] examines possible causes for a mismatch between the experiments and simulations,
particularly in the laminar, attached flow region on the fore-cone. The following sections present the techniques and
results that contribute to the double-cone validation assessment. We examine the available validation experiments and
their limitations. The methods for uncertainty quantification and sensitivity analysis, as well as the validation metrics,
are described. In concert, these activities are conducted to determine the ability of the models in SPARC to predict the
experimental measurements and to ultimately build credibility for hypersonic reentry simulations.
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Table 1 Freestream and boundary conditions for LENS-I experiments. 100% Nitrogen.

Experiment ρ∞ [kg/m3] U∞ [m/s] T∞ [K] Tv∞ [K] Twall [K]
LENS-I, Run 35 (CUBRC nominal) [11, 21, 22] 5.515 × 10−4 2713 138.9 138.9 296.1
LENS-I, Run 35 (non-equilibrium) [12] 5.848 × 10−4 2545 98.27 2562 296.1
LENS-I, Run 42 (non-equilibrium) [13] 1.468 × 10−3 3849 268.7 2947 294.7

Table 2 Freestream conditions for LENS-XX experiments. 76.5% Nitrogen and 23.5% Oxygen. The wall
surface temperature, Twall, is assumed to be 300 K [4]. This paper will focus on the lowest and highest enthalpy
cases, Case 1 and Case 4.

Experiment ρ∞ U∞ T∞ Tv∞ Re h0∞ M∞ PPitot

[kg/m3] [m/s] [K] [K] [m−1] [MJ/kg] [kPa]
LENS-XX, Case 1 4.999 × 10−4 3246 175 175 0.14 × 106 5.44 12.2 5.1
LENS-XX, Case 2 9.84 × 10−4 4303 389 389 0.19 × 106 9.65. 10.90 17.5
LENS-XX, Case 3 5.10 × 10−4 6028 521 521 0.11 × 106 18.70 13.23 18.0
LENS-XX, Case 4 9.640 × 10−4 6497 652 652 0.20 × 106 21.77 12.82 39.5
LENS-XX, Case 5 1.057 × 10−3 5996 523 523 0.23 × 106 18.51 13.14 36.8
LENS-XX, Case 6 2.045 × 10−3 5466 573 573 0.39 × 106 15.23 11.46 59.0

C. Available Validation Data
The 25o/55o double-cone was subjected to hypersonic conditions in CUBRC’s LENS Tunnels. A set of experiments

were performed in 2001 in the LENS-I tunnel [11, 21]. These experiments are laminar flows of single species (N2) in
mild thermochemical non-equilibrium. In 2014, a new set of experiments over a range of higher total enthalpies was
conducted in the LENS-XX tunnel [4]. The LENS-XX experiments are laminar flows of an air mixture in mild to strong
thermochemical non-equilibrium in the region downstream of the leading shock. The double-cone was instrumented on
the surface for heat flux and pressure measurements on the fore-cone, in the separation region, and along the aft-cone.

Table 1 lists the freestream conditions for the LENS-I experiments referenced in this validation study. CUBRC
provided freestream conditions that assumed thermal equilibrium in the freestream. Druguet et al. examined the effects
of numerical settings, particularly focusing on Run 35 from LENS-I, using the CUBRC-provided freestream conditions
shown in the first row of Table 1 [22]. However, Nompelis et al. simulated the nozzle and corrected the non-equilibrium
freestream conditions in the LENS-I experiment of Run 35 [12]. Run 42 is a higher-enthalpy flow in LENS-I; the
computed non-equilibrium freestream conditions were provided in Ref. [13].

Table 2 provides the freestream conditions for the six LENS-XX experiments; Case 1 and Case 4 were chosen for
this validation study. The LENS-XX experiments spanned a range of enthalpies higher than those in LENS-I. Case
1 and 4 were chosen for this validation study because they had the smallest and largest enthalpies of the LENS-XX
experiments. As for LENS-I, CUBRC assumed thermal equilibrium (i.e., T∞ = Tv∞) in the freestream. However, as
with LENS-I, there are unresolved questions about the freestream conditions in LENS-XX. Two published studies have
shown simulations that under-predict the experimental heat flux measurements in the laminar, attached region on the
fore-cone when using the CUBRC-provided freestream conditions [5, 6]. The validation study described in this paper
will describe our similar results using SPARC, and introduce possible reasons for the computational under-prediction
of the laminar, attached region. A companion paper [2] further explores the possible causes for the computational
under-prediction of the laminar, attached region and presents an estimation of the inflow parameters and uncertainties.

D. Experimental Uncertainty Quantification
CUBRC provided a percent error on their assumed thermal equilibrium freestream conditions: ρ∞: 7%, U∞: 3%, T∞:

3% . Their estimation of percentage error includes conservative bounds and subjectivity in their estimates. Consequently,
we have assumed uniform distributions (±%) for each input parameter. Because CUBRC assumed thermal equilibrium
(Tv∞ = T∞) in the freestream, they did not state a separate percent error for Tv∞ . It is possible to use forward uncertainty
quantification studies to explore the effects of independently varying the vibrational temperature, but we do not have an
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initial estimate of its uncertainty. The results of our sensitivity analysis and forward uncertainty quantification studies
will be themselves sensitive to these assumed input uncertainties.

The uncertainty of the experimentally measured quantities of interest (QoIs) are also a key component for making
validation assessments and computing validation metrics. Here, both experimentally and computationally, we are
interested in the surface pressure (p(x)) and heat flux (q(x)) along the length of the double-cone geometry. CUBRC
provided heat flux and pressure measurements along the surface of the double-cone at discrete probe locations. They
provided a conservative estimate of percent error for these measurements, which we assume and interpret as bounds of a
uniform distribution. For LENS-I, CUBRC estimated the the heat flux- and pressure-measurement uncertainties were ±
5% and ± 3%, respectively. For LENS-XX, CUBRC provided error estimates for heat flux and pressure of ± 7% and ±
5%, respectively.

E. Uncertainty Quantification: Parametric (Input) Uncertainty

1. Propagation of Freestream Uncertainty
The goal of a generic uncertaintypropagation problem is to characterize the uncertainty of a model output QoI,

given a set of input parameters with characterized uncertainties. Many different approaches are possible. These depend
on the number and characterization of the input parameters; the nature of the model, such as whether the model provides
just the output quantity or additional information (i.e., derivative information with respect to the input parameters);
and the expense associated with evaluating the model. In this section, the approach for estimating the uncertainty of
the QoIs (p(x) and q(x)) due to the uncertainty of the freestream conditions is described. In this case, the “model” in
the uncertaintypropagation problem is comprised of all the physics models (governing equations, boundary and initial
conditions, and material models) and numerical approximations necessary for solving those governing equations as
instantiated in SPARC. Since uncertainty propagation is used to estimate output uncertainty, it is also called uncertainty
quantification (UQ).

Whereas the objective of validation is assessing the physics models, solution verification is used to estimate the
numerical error on the grids used for the simulations. Ideally, numerical error can be neglected compared to parametric
uncertainty and physics model error. This paper will present that comparison, using solution verification results from
our companion paper [1].

The uncertain input parameters are the freestream density (ρ∞), streamwise velocity (U∞), temperature (T∞), and
vibrational temperature (Tv∞ ), which are boundary conditions for the governing equations solved by SPARC. Depending
on the type of analysis, we may choose to constrain Tv∞ = T∞ when assuming thermal equilibrium in the freestream, or
allow the two temperatures to vary independently. The information for characterizing them was provided by CUBRC
in the form of percentage error, and they were upfront in acknowledging a desire for conservative bounds and the
subjectivity in their estimates. Consequently, uniform distributions have been assumed for each input parameter. The
stagnation enthalpy and the Pitot pressure are also measured for each CUBRC experiment, and, from a deterministic
view, should constrain the freestream parameters to lie in a two-dimensional input parameter space rather than a
four-dimensional space. However, the stagnation enthalpy and Pitot pressure are also subject to measurement error,
and constraining the freestream variables to the smaller space might skew or under-represent the output uncertainty.
Following the conservatism in the selection of the input-parameter bounds, the freestream conditions were unconstrained
by the stagnation enthalpy and static pressure measurements. These choices and their consequences are reviewed in the
discussion.

2. Polynomial Chaos Expansions
The most common “black-box” strategy to estimate output uncertainty is to randomly sample the uncertain input

parameters and evaluate the model at the sample points; doing so produces a histogram of the output uncertainty for
each of the QoIs. As the number of sample points is increased, the histogram converges to a probability distribution
(probability density function (PDF)). The advantages of random-sampling approaches, such as Monte Carlo, quasi-Monte
Carlo, and Latin Hypercube Sampling (LHS), are that they are simple to implement and understand, and they converge
at the same rate, regardless of the number of input variables. The main disadvantage is that the convergence rate is low,
so many samples are required to obtain an accurate characterization of the output uncertainty.

Alternatively, stochastic expansion methods use high-order polynomial approximations to construct a functional
mapping between the uncertain input parameters and a QoI. When the QoI is a smooth function of the inputs, the
convergence rate is much higher, but the number of model evaluations scales poorly with the number of input parameters.
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In this work, we use polynomial chaos expansions (PCEs), which are based on multidimensional orthogonal polynomials,
evaluated on sparse grids, as implemented in DAKOTA [15]. Since we consider only a small number of input parameters,
the PCE approach is much more efficient than sampling.

3. Limitations of UQ Approach
Since the input uncertainties are not well characterized and the output uncertainties are functions of the input

uncertainties, the output uncertainty results should not be interpreted as precise. The freestream conditions in the
double-cone experiments are assumed to be spatially uniform. For Run 35, there is modeling and experimental
justification for this assumption, but this does not extend to all LENS-I runs, and there is no evidence for or against spatial
uniformity for the LENS-XX cases. In this work, we have focused on input parametric uncertainty (i.e., uncertainty of
the QoI due to uncertainty of freestream conditions), and not on the uncertainty associated with the numerical settings.

F. Sensitivity Analysis
In sensitivity analysis, one tries to determine which input parameters have the largest influence over a QoI. Results will

be presented in this paper for both local- and global-sensitivity analysis. SPARC supports a form of forward-embedded
local-sensitivity analysis where local partial derivatives of response quantities of interest with respect to model parameters
and boundary conditions are computed internally within SPARC. Local sensitivity, for the purposes of this paper, is
defined as follows. Let φi be a QoI, e.g., pressure at a location i. Let pj be the j th parameter being perturbed. Then,
sensitivity si j is described as

si j =
pj

φi

∂φi
∂pj

.

The discrete nonlinear equations implemented in SPARC are differentiated using the Sacado automatic differentiation
package, resulting in a new set of sensitivity equations that are then solved along side the original equations using
pseudo-transient time integration [23–26]. This allows local sensitivities with respect to a small number of parameters to
be computed accurately and efficiently without finite-difference truncation error and only requires a few additional lines
in the SPARC input file. This method was employed to screen out potentially insignificant parameters for subsequent
uncertainty propagation and calibration calculations, and to efficiently assess sensitivity prior to conducting a global
sensitivity analysis.

In contrast, global sensitivity analysis integrates the effects of each parameter over the input parameter space as
the basis for estimating influence. As for uncertainty propagation, the input parameters must be characterized, and
the global sensitivity analysis results critically depend on this characterization. In fact, many of the methods used for
uncertainty propagation are also used for global sensitivity analysis, and, in some cases, the only distinction is in the
interpretation of the results.

In this work, Sobol’ sensitivity indices are used to measure input-variable sensitivities; the variance of the QoI
across all of the inputs is computed and then apportioned to each of the input parameters. The “main effects” index, Si ,
measures the influence of parameter i alone, and the “total effects” index, STi , measures the influence of the parameter
and all its interactions. Index values near zero indicate that the QoI is insensitive to parameter i. The sum of the main
effects indices,

∑
i Si , is less than or equal to unity, and Si ≈ 1 indicates that parameter i dominates the effects of the

others. The sum of the total effects indices is greater than or equal to unity, but values can be interpreted in the same
way as for the main effects indices.

Because PCE provides a functional mapping between the input parameters and QoI, the Sobol’ sensitivity indices
can be evaluated analytically. They can also be estimated when random sampling approaches are used, but they require
many more function evaluations and provide only approximate results. (In most uses of sensitivity analysis, approximate
results are sufficient.)

G. Validation Metrics
The simplest and least-informative validation assessment is a straightforward scalar metric of the difference (or bias)

between a deterministic simulation result and the corresponding nominal experimental measurement at each probe
location. However, the uncertainty propagation activities described above will yield a distribution of computational
predictions at each measurement location along the length of the cone, i.e., at each sensor location. This distribution
represents one major element of parametric uncertainty — the input uncertainty due to uncertain freestream conditions.
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These SPARC predictions can be represented and visualized as a PDF. At each sensor location, the uncertain experimental
measurements are assumed in the form of a uniform PDF.

For a qualitative validation assessment, one can visually compare the distance and/or overlap between the prediction
PDF and the observation PDF, examining the difference at each measurement probe location. However, it is beneficial to
have quantitative, objective measures of predictive accuracy. In addition, a comparison using only parametric uncertainty
(of the prediction) and the experimental uncertainty does not consider other sources of uncertainty. In particular, we are
interested in how the experimental and parametric uncertainties compare to uncertainties quantified in the solution
verification activities: numerical uncertainty (i.e., from mesh convergence studies) and iterative uncertainty. Other
sources of uncertainty can include analyst-to-analyst variability (e.g., different grids), surrogate error from the PCE
process in the uncertainty propagation activity, other parametric uncertainties (e.g., from the chemistry or viscosity
models), and other numerical uncertainties from other numerical settings. The example of analyst-to-analyst variability
based on different grid design will be briefly examined, but these other sources will not be considered quantitatively in
this study.

As part of the evaluation of freestream conditions Θ, we will have to compare its predictions z, as generated by
SPARC, with observations zobs. Here z = {zj}, j = 1 . . . J is a vector of predictions, e.g., pressures at a set of J
probes. If we are provided with a single Θ, we can compute the root-mean-square error (RMSE) between z and zobs
to obtain a simple figure of merit for the quality of Θ. However, under an uncertain characterization of freestream
conditions, we have a PDF P(Θ), which does not lend itself to a single figure of merit using RMSE. More accurately,
our observations zobs are also uncertain (measurement errors are specified using percentages); therefore, we model the
uncertain observations as a uniform distribution Q(zobs), with the bounds computed using the error percentages. For
convenience, we also require a single figure of merit to compare the quality of P(Θ) given Q(zobs).

Therefore, in order to compare the SPARC predictions to the experimental observations for each experimental case,
we will use the following validation assessments.

1. Validation Metrics for Certain Observations
For comparison of uncertain predictions with a certain representation of observations, we use a scalar metric, a

Continuous Ranked Probability Score (CRPS, [27, 28]), as a function of spatial location on the cone, CRPS(x). We will
use the CRPS as the figure of merit for P(Θ) given zobs (note, not Q(zobs)). The CRPS is computed for each probe, and
a single figure of merit obtained by taking the average over all J probes. We take a set of Θ samples, Θ(m),m = 1 . . . M ,
and compute predictions z(m). Thus, at every probe j, we have the predictions z(m)j , which allow us to construct a
predicted distribution Q′(zj) to be compared with zobs, j . Let Q′c, j(z) be the cumulative distribution function (CDF)
corresponding to the probability density Q′(zj). The CDF of the perfect observation zobs, j is the Heaviside function
H(zobs, j). The CRPS of the prediction at the j th probe, CRPSj , is defined as

CRPSj =

∫ ∞

∞

(
Q′c, j(y) − H(y − zobs, j)

)2
dy. (1)

Thus CRPSj has units of the observed quantity zobs, j . Small values of CRPSj denote a good match between predictions
and observations. We will denote the mean of CRPSj as CRPS.

2. Validation Metrics for Uncertain Observations
CRPS, as defined above, will be used to gauge the quality of P(Θ) when we are not quite sure of our uniform-

distribution model for Q(zobs). For consideration of uncertain experimental observations, we assume the uniform-
distribution model for measurement errors and gauge the quality of P(Θ) using the Sorensen distance dS [29]. The
Sorensen distance quantifies the distance between the prediction and measurement PDFs and indicates the degree to
which they overlap.

Let Q(y) denote the PDF of the observed quantity zobs, j . Let Q′(y) be the PDF of the predicted quantity zj at probe
j. Let Qk(y) and Q′j(y) be their discretized form on a 1-D discretization of the y−space. Then, dS between Q(y) and
Q′(y) is defined as

dS =

∑
k |Qk −Q′

k
|∑

k(Qk +Q′
k
)
. (2)

dS = 0 indicates a perfect match. dS = 1 corresponds to Q(y) and Q′(y) being disjoint.
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3. Comparison of Uncertainties
Relative errors from several uncertainty sources will be plotted and compared along spatial location for each

experiment, and compared to the relative-difference bias between the deterministic simulation and the nominal
experimental values. The uncertainty sources will be: parametric uncertainty (from the uncertainty-propagation
results), experimental uncertainty (provided by CUBRC), numerical uncertainty (i.e., mesh convergence), and iterative
uncertainty. The relative parametric uncertainty, uparam, rel was estimated as follows:

uparam, rel =
(µ + 2σ) − (µ − 2σ)

µ
, (3)

using the mean (µ) simulation and the standard deviation (σ) from the ensemble of simulations resulting from the
uncertainty propagation. In other words, at each location along the cone, it represents approximately 95% of the values
that lie within two standard deviations of the mean, and is normalized by the mean simulation result. The relative
iterative uncertainty was estimated using the median SPARC prediction compared to a reference solution at high
iterations (200,000 for Case 4, 83,000 for Case 1) and the finest mesh (1024 × 512):

uiter, rel =
|median − reference|

median
(4)

The relative numerical uncertainty was estimated using the median SPARC prediction compared to the extrapolated
numerical solution:

unum,rel =
|median − extrapolated|

median
(5)

Our companion paper [1] describes the solution verification methods for the reference high-iteration solutions and
extrapolated numerical solutions used in the relative numerical and iterative uncertainties. The relative experimental
uncertainty (uexpt, rel) was determined from CUBRC-provided estimates. For LENS-I, CUBRC estimated the the heat
flux- and pressure-measurement uncertainties were ± 5% and ± 3%, respectively. For LENS-XX, CUBRC provided
error estimates for heat flux and pressure of ± 7% and ± 5%, respectively.

4. ASME V&V20 Validation Metric
The uncertainties examined in the above comparison will be combined into another validation metric, as described in

the ASME V&V20 Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer [30].
The absolute bias, |E | = |S − D |, is the difference between the median simulation and the experimental measurement.
At each spatial location, an overall validation uncertainty was calculated as follows:

uval, rel =
√

u2
param, rel + u2

iter, rel + u2
num, rel + u2

expt, rel (6)

uval = (uval, rel)(median) (7)

The median is the median simulation from the uncertainty propagation activity. The results section will show plots of
the absolute bias along with uncertainty ranges, as well as |E |uval

.

III. Results and Discussion

A. Deterministic Simulations
In this section, we first present example SPARC simulations in a deterministic manner, i.e., with a single set of

freestream conditions as input, and without considering uncertainty in those input. In the next sections, we will provide
examples of how uncertainty propagation techniques allow us to add parametric uncertainty to the simulation in order to
consider uncertainty in the simulation results, as well as in the experimental observations.

Fig. 2 gives an example flowfield around the double-cone geometry. This example is for LENS-XX Case 4, using
the freestream conditions listed in Table 2. The plot on the left shows contours of the temperature through the flow field
and demonstrates some of the features in the different areas of the cone, which make this simulation challenging and
interesting to study. On the fore-cone, there is a laminar, attached shock, which separates near the inflection point to the
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Fig. 2 Example flowfield around the double-cone geometry using freestream conditions given in Table 2 for
LENS-XX Case 4. Mesh size: 512 × 256. Left: Flooded contours for the temperature. Right: Flooded contours
for the difference between the temperature and vibrational temperature, i.e., T −Tv; Streamlines for velocity.

second cone. The separation shock and region spans the cone corner, where an intersection meets near the surface of the
second cone at the transmitted shock and near the impingement point. Near the aft-cone, there is a supersonic jet and a
detached shock. (Not all features are visible in this example image).

The plot on the right of Fig. 2 shows flooded contours of the difference between the temperature and vibrational
temperature, i.e., T −Tv , in the flowfield around the double-cone. This is an interesting measure because it demonstrates
the strong thermal non-equilibrium. Immediately behind the shock, Tv < T , and then they approach each other as the
internal energies (vibrational and translational) equilibrate. In the separation bubble in the corner, T is approximately
equal to Tv . This is because the gas recirculates in the bubble at a relatively low speed; therefore, it has time to equilibrate.
The plot on the right of Fig. 2 also shows streamlines for the velocity. Streamlines clustered together generally indicate
compression; streamlines spread apart indicate expansion.

Fig. 3 shows an example of a deterministic simulation by SPARC of LENS-I Run 35. These figures show the heat
flux and pressure on the surface of the cone along the length of the cone. The heat flux decreases along the attached
region, then drops abruptly in the separated zone. It increases again to a maximum located at the impingement point on
the aft-cone. The simulations are plotted alongside the experimental probe measurements, with error bars indicating
the CUBRC-provided experimental error estimates. The green curve shows the Run 35 simulations using the original
CUBRC-provided freestream conditions, which assumed thermal equilibrium in the freestream. As Druguet et al. and
Nompelis et al. demonstrated, the Run 35 simulations greatly over-predict the heat flux experimental measurements on
the fore-cone, in the laminar, attached region [12, 22]. Using the computed non-equilibrium freestream conditions from
Nompelis et al. (the red curve in Fig. 3), the simulation appears to better predict the experiment in the attached region.

SPARC solutions were compared to solutions generated by colleagues at the University of Minnesota using US3D
for LENX-XX Cases 1-6 [7]. US3D is a finite-volume Navier-Stokes solver with finite-rate thermochemistry developed
at the University of Minnesota [31]. SPARC solutions compare favorably to solutions using US3D. Figures 4 and 5
show the comparison of SPARC solutions to Minnesota’s US3D solutions for Cases 1-6 of LENS-XX. Overall, these
are favorable comparisons. Similar to US3D and other CFD codes shown in the blind code comparison referred to in
Ref. [7], SPARC under-predicts the heat flux in the attached region as well as under-predicts the separation zone of the
six LENS-XX cases, mostly due to a delay in predicting the separation point. The trend is magnified for the higher
enthalpy cases where there is stronger thermochemical nonequilibrium. We do observe differences between SPARC and
US3D in the separation region and the aft-cone, and these differences increase with larger enthalpy cases. In these
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Fig. 3 SPARC deterministic simulation using freestream conditions for LENS-I Run 35 given in Table 1.
SPARC simulations use a 512 × 1024 mesh, 50000 iterations, 5-species, 1-temperature model. Experiment error
bars: heat flux, ±5%; pressure, ±3%; per CUBRC. Left: Heat flux distribution along the cone. The small red
star on the green curve indicates the approximate detachment point, as detected by a sharp drop in the heat
flux in the simulation at the beginning of the separation region. The small black star at the maximum peak of
the green curve indicates the approximate impingement point on the second cone, as indicated by the maximum
heat flux in the simulation. Right: Pressure along the cone.

regions, SPARC solutions are still sensitive to mesh and iterative convergence (see our companion paper [1]), and so we
may expect to see these differences between SPARC and US3D. We confirmed that SPARC solutions using our own
mesh matched SPARC solutions using the Minnesota mesh (both 512 × 1024 resolution for LENS-I Run 35), which
suggests the mesh itself is not a source of differences (comparison not shown here). Overall, the differences between
SPARC and US3D in the separation region are much smaller than the difference in comparison to the experimental
measurements.

B. Uncertainty Propagation
Figures 6 and 7 demonstrate the parametric uncertainty around a deterministic simulation for LENS-XX Cases 1 and

4. The SPARC deterministic simulation is plotted with the green curve, alongside the blue experimental measurements.
On the left, we observe that the deterministic simulation result under-predicts the experimental heat flux measurements
in the laminar, attached region of the fore-cone. The under-predictions were observed to various degrees in all six
cases of LENS-XX. The under-predictions have also been observed by other researchers in recent publications [5, 6].
Figures 6 and 7 also show an example of using uncertainty propagation techniques to represent parametric (specifically,
input) uncertainty. For this ensemble of uncertainty propagation simulations, a level-2 PCE surrogate was built from
31 original SPARC simulations. Then, 10,000 evaluations of the PCE surrogate were used to plot the quantile and
median simulation lines. This ensemble was built using 7%, 3%, and 3% uniform uncertainty of ρ, U∞, and T∞, based
on CUBRC-supplied estimates of uncertainty on freestream conditions. In this example, we assume thermal equilibrium
in the freestream (as CUBRC assumed) and set Tv∞ = T∞, so that Tv∞ is always perturbed along with T∞. This ensemble
forms an estimate of the parametric uncertainty, specifically from the freestream input uncertainty. All simulations used
a 512 × 1024 mesh at 100,000 iterations determined to be sufficiently converged based on our companion study of
solution verification [1].

In this section, we showed that we are unable to bracket the experimental measurements of heat flux for Case 1 and
Case 4 in the laminar, attached region and in the aft-cone of Case 4 using CUBRC-provided estimates of freestream
uncertainty (see Figs. 6 and 7). However, with ± 15% perturbations, we were able to bracket observations on the
fore-cone (not shown here). Our companion paper [2] explores this further in the context of estimating freestream
conditions.

As noted in our companion paper [1], the regions around the separation and on the aft-cone are very sensitive to
mesh and iterative convergence. In the sections below, this computed parametric uncertainty will be compared with the
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Fig. 4 LENS-XX Cases 1–3 SPARC solutions shown with experiments and US3D solutions (provided by
University of Minnesota). Both US3D and SPARC used 512 × 1024 meshes. SPARC simulations use 100,000
iterations and a 5-species, 2-temperature model. Experiment error bars: heat flux: ±7%, pressure: ±5%, per
CUBRC.

12



Fig. 5 LENS-XX Cases 4–6 SPARC solutions shown with experiments and US3D solutions (provided by
University of Minnesota). Both US3D and SPARC used 512 × 1024 meshes. SPARC simulations use 100,000
iterations and a 5-species, 2-temperature model. Experiment error bars: heat flux: ±7%, pressure: ±5%, per
CUBRC.
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Fig. 6 LENS-XX, Case 1: Uncertainty propagation along with a deterministic SPARC simulation. SPARC
simulations used a 512 × 1024 mesh; 100,000 iterations; and a 5-species, 2-temperature model. Uncertainty
propagation ensembles created using 7%, 3%, and 3% uncertainty on ρ, U∞, and T∞, per CUBRC-supplied
uncertainty on freestream conditions. In this example, we assume thermal equilibrium in the freestream and
set Tv∞ = T∞, so that Tv∞ is perturbed along with T∞. Ensemble of 10,000 evaluations of a PCE surrogate (level
2) built from 31 original SPARC runs. Experimental error bars: heat flux, ±7%, pressure: ±5%, per CUBRC.

Fig. 7 LENS-XX, Case 4: Uncertainty propagation along with a deterministic SPARC simulation. SPARC
simulations used a 512 × 1024 mesh; 100,000 iterations; and a 5-species, 2-temperature model. Uncertainty
propagation ensembles created using 7%, 3%, and 3% uncertainty on ρ, U∞, and T∞, per CUBRC-supplied
uncertainty on freestream conditions. In this example, we assume thermal equilibrium in the freestream and
set Tv∞ = T∞, so that Tv∞ is perturbed along with T∞. Ensemble of 10,000 evaluations of a PCE surrogate (level
2) built from 31 original SPARC runs. Experimental error bars: heat flux: ±7%, pressure: ±5%, per CUBRC.
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convergence and iteration uncertainty (from our companion paper [1]), as well as experimental uncertainty. We have
also examined evidence that a level-3 PCE surrogate shows little difference over a level-2 PCE surrogate (not shown
here), and we estimate that surrogate error is negligible in comparison to other sources of uncertainty. Finally, this
estimate of parametric uncertainty will be used in the validation metrics in later sections.

C. Sensitivity Analysis
In Fig. 8, we plot the local sensitivities for LENS-XX Case 1 around the nominal conditions. Local sensitivities were

generated with SPARC’s embedded sensitivity analysis. We see that the heat flux is barely sensitive to perturbations
of T∞ and Tv∞ . The sensitivity to U∞ perturbations is about an order of magnitude larger than that due to ρ∞. In our
companion paper [2], we present global sensitivity analysis results for Case 1 at the probe locations and find that,
qualitatively, the sensitivity results agree. This inspires confidence in our calculation of Sobol’ indices.

Fig. 9 shows an example of local and global sensitivity analysis of LENS-XX Case 4. In the top figure, the local
sensitivity of heat flux to each of the four freestream parameters is plotted along the length of the double-cone (entire
length not shown here). As with Case 1 in Fig. 8, the heat flux for Case 4 is most sensitive to freestream velocity, and
negligibly sensitive to T∞ and Tv∞ . In the bottom figure, global sensitivity is represented with Sobol’ indices for heat
flux. As with local sensitivity, we see that the vast majority of variation in heat flux is due to changes in velocity; both
temperatures have a minor influence.

Figure 10 shows the results of the global sensitivity analysis along the entire flowfield for both Cases 1 and 4. The
global sensitivity is represented with Sobol’ indices for heat flux and pressure. As with local sensitivity, we see that the
vast majority of variation in heat flux is due to changes in velocity; the temperature has a minor influence. In these
studies, we used CUBRC-provided estimates of uncertainty for ρ, U∞, and T∞, and set Tv∞ = T∞. Thus, the individual
impact of Tv∞ is not computed here, but is expected to be negligible based on the results shown above.

D. Validation

1. Validation Metrics for Certain and Uncertain Observations
As described in the Approach section, for comparison of uncertain predictions with a certain representation of

observations, we use a scalar metric, a Continuous Ranked Probability Score, as a function of spatial location on the
cone. Thus, CRPSj has units of the observed quantity zobs, j . Small values of CRPSj denote a good match between
predictions and observations. We will denote the mean of CRPSj as CRPS. For consideration of uncertain experimental
observations, we assume the uniform distribution model for measurement errors and gauge the quality of P(Θ) using the
Sorensen distance dS [29]. dS = 0 indicates a perfect match. dS = 1 corresponds to Q(y) and Q′(y) being disjoint.

Figures 11 and 12 plot these two metrics for Case 1 and Case 4. The metrics are shown for both heat flux and
pressure, at each probe location along the length of the cone. These distances were calculated using the ensemble results
from the uncertainty propagation studies presented in the previous sections. These metrics will be compared to results
after calibration in our companion paper [2]. We see that the CRPS values for pressure are large at the separation point
and the region downstream of reattachment, regardless of total enthalpy of the flow. This is paralleled in the plots for the
Sorensen distance dS , which saturates at 1.0 (i.e., no overlap between the prediction and measurement PDFs) for large
sections of the flow aft of the reattachment point. Matters are worse for the heat flux predictions — dS = 1 everywhere
except for the first few probes on the fore-cone. Also, we observe that dS for the heat flux on the aft-cone is less for Case
1 than for Case 4, where there is a greater mismatch in the heat flux on the aft-cone.

2. Comparison of Uncertainties
The top row in Figure 13 shows a comparison of the relative errors in heat flux and pressure for Case 4, derived

from several sources of uncertainty: experimental error (using CUBRC-provided uncertainty ranges), two standard
deviation range from parametric uncertainty (from the uncertainty propagation studies), iterative errors, and numerical
uncertainty.

The relative bias reflects the relative difference between the median SPARC prediction and the experimental
observation, normalized by the median SPARC prediction. The relative iterative uncertainty was estimated using the
median SPARC prediction compared with a reference solution at high iterations (200,000 for Case 4, 83,000 for Case 1)
and the finest mesh (1024 × 512). Similarly, the relative numerical uncertainty was estimated using the extrapolated
solutions from solution verification methods in our companion paper [1].
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Fig. 8 Local sensitivities of the heat flux for Case 1 due to perturbation of freestream conditions. Sensitivities
for ρ∞, U∞, T∞ and Tv∞ are plotted (top left, top right, bottom left and bottom right). The vertical green line
shows the location where the flow becomes detached. The dashed horizontal line denotes zero. The blue line is
the heat flux predicted by SPARC using nominal inputs and is plotted for reference.
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Fig. 9 Local (top) and Global (bottom) Sensitivity Analysis for LENS-XX Case 4. Heat flux measurements
are shown at the experimental probe locations only on the fore-cone. For these results, Sobol’ indices are only
shown in the attached region, and the full flow field is not shown here. The upper and lower uncertainty bounds
for ρ∞, U∞, T∞ andTv∞ were ±10%, with the exception of -20% for ρ∞. These ranges were selected because this
was an initial step in preparation for Bayesian calibration, in order to see what ranges of uncertainties would
bracket the experimental observations. The calibration results are discussed in our companion paper [2].
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Fig. 10 Global sensitivities of the heat flux for Case 1 and Case 4 due to perturbation of freestream conditions.
Sensitivities for ρ∞, U∞, and T∞ are shown at the probe locations over the entire flowfield. Sobol’ indices were
calculated in conjunction with an uncertainty propagation ensemble created using 7%, 3%, and 3%uncertainty
on ρ∞, U∞, and T∞, per CUBRC-supplied uncertainty on freestream conditions. In this example, we assume
thermal equilibrium in the freestream and set Tv∞ = T∞, so that Tv∞ is perturbed along with T∞. Ensemble of
10,000 evaluations of a PCE surrogate (level 2) built from 31 original SPARC runs. SPARC simulations used a
1024 × 512 mesh; 100,000 iterations; and a 5-species, 2-temperature model.
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Fig. 11 Case 1 validationmetrics: CRPS and Sorensen distance using uncertainty propagation results obtained
from CUBRC-provided uncertainties for ρ∞, U∞, and T∞.
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Fig. 12 Case 4 validationmetrics: CRPS and Sorensen distance using uncertainty propagation results obtained
from CUBRC-provided uncertainties for ρ∞, U∞, and T∞.
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From this figure, we see that, at the detachment point at the start of the separation bubble, the numerical errors
become very prevalent for the heat flux. At the other locations along the cone, the parametric uncertainty (arising from
uncertainty in the freestream conditions) is the dominant source of uncertainty and has the most impact on the difference
between the experiment and simulation. The uncertainty comparison for pressure reflects a lower relative bias than for
heat flux, as shown in plots in the previous sections. In addition, the numerical and iterative errors are highest near the
impingement location for pressure, rather than the separation point for heat flux.

These results show that, if we want to reduce the overall uncertainty, then we need to know more about the freestream
conditions. The second priority would be to improve our knowledge of the experimental uncertainty in heat flux
and pressure measurements. Improving iterative error would have little improvement overall, and numerical mesh
refinement would only make improvements in the separation region. This also reinforces the conclusion that differences
in predictions in the separation bubble are still sensitive to further mesh refinement.

Figure 14 shows similar results for Case 1. Comparing Figs. 14 and 13, we see that, in general, across the length of
the double-cone, the uncertainties and bias are less for the lower-enthalpy Case 1.

3. ASME V&V 20 Validation Metric
The second and third rows of plots in Figures 13 and 14 depict the V&V20 validation metrics described in the

Approach section of this paper. The second row shows the absolute bias |E |, bracketed by the overall uncertainty, uval.
The overall uncertainty bands for pressure are smaller than for the broader uncertainties observed in heat flux. The third
row shows the ratio of the absolute bias to the overall uncertainty. A value of |E |uval

< 1 represents an uncertainty greater
than the bias, whereas a value greater than one represents uncertainty less than the bias. These plots show that, for heat
flux, the ratio is greater than one over most of the cone, except in the laminar, attached region, and, for Case 1, in the
aft-cone region. In other words, the bias is larger than the uncertainty in those regions. For Case 1 in the aft-cone region,
the ratio is less than one and thus the bias is smaller than the uncertainty. However, for pressure, the ratio is less than one
at most locations, except at the singularities that occur at the detachment and directly after the impingement location.

IV. Conclusions
This paper described our approach and results for uncertainty quantification, sensitivity analysis, and validation

assessments. Two previously published studies have shown simulations that under-predict the experimental heat
flux measurements in the laminar, attached region on the fore-cone when using the CUBRC-provided freestream
conditions [5, 6] for LENS-XX. The validation study described in this paper described our similar results using SPARC.
The results for LENS-XX Case 1 and Case 4 indicate that we are unable to bracket the experimental observations of
heat flux in the attached region even when considering the ensemble of simulations predicted by a large sampling of
perturbed freestream conditions. These results were obtained from an ensemble of uncertainty propagation simulations
that perturbed the freestream conditions using CUBRC-provided estimates of uncertainty for ρ∞, U∞ and T∞: ± 7%, ±
3%, and ± 3%. However, when we used a ± 15% perturbation, we did bracket the experimental data on the fore-cone.

In this chapter, we presented validation results for Cases 1 and 4 using a refined mesh, with uncertainty propagation
computed over the entire flowfield. We also compared uncertainties: parametric, experimental, and numerical
(i.e., convergence and iterative). We presented and compared quantitative validation metrics. The results showed that if
we want to reduce the overall uncertainty of simulation predictions, then we need to know more information about the
freestream conditions. Validation metrics indicated the regions where the uncertainty is greater than the bias between
experiments and simulations; these regions include the fore-cone for both Case 1 and 4, and the aft-cone of Case 1.

Here, we introduce potential reasons that numerical simulations cannot predict the experimental observations of
LENS-XX studies, particularly in the laminar, attached region of the fore-cone. Our companion paper [2] will use
a probabilistic framework and Bayesian inference to further explore these possible causes of the lack of predictive
accuracy:

1) Possible Cause 1 : The freestream conditions may be mis-specified. The true freestream conditions may be
outside the measurement error bounds in Table 2. Given our ability to bracket Case 1 and 4 experimental data
with a ±15% perturbation of the freestream conditions, our companion paper [2] tests the hypothesis that a
mis-specification of the freestream, might be the underlying reason for the lack of predictive accuracy of the
CFD simulations.

2) Possible Cause 2: The freestream may have spatial variations i.e., it is not radially uniform, and an assumption
of axisymmetry (which we, along with all previous studies, have used) may not be warranted.
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Fig. 13 Uncertainty comparison and validationmetrics for LENS-XXCase 4 using results from the uncertainty
propagation studies in this paper and the solution verification studies described in our companion paper [1].
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Fig. 14 Uncertainty comparison and validationmetrics for LENS-XXCase 1 using results from the uncertainty
propagation studies in this paper and the solution verification studies described in our companion paper [1].
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3) Possible Cause 3: The sub-models included in SPARC, e.g., chemical mechanisms, transport properties, etc., are
deficient.

Finally, this paper emphasizes the importance of careful measurement of experimental conditions and uncertainty
quantification in validation experiments. In combination with our companion papers [1, 2], these results also demonstrate
a process of verification, sensitivity analysis, UQ, and quantitative validation assessments for building and assessing
credibility of computational simulations.
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