
Data

‒ The dataset contains 835 P-wave 

arrivals as measured by the 3C 

station WB2 at Warramunga, NT, 

Australia

‒ The sources of these arrivals are 

events at regional and teleseismic 

distances from WB2; an analyst 

picked the arrivals manually

CONCLUSIONS

Detecting P-waves in streaming seismic data using a hidden Markov model

Develop a method to fuse outputs of diverse

seismic wave arrival detectors (algorithms) to

improve performance i.e., reduce false positive

and negative rates

‒ Use hidden Markov models (HMM)s to implement the 

fusion scheme

‒ Test on P-wave arrivals recorded at WB2, Warramunga

IMS stations, NT, Australia
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‒ The fusion of the 3 detector algorithms improved precision

and recall compared to the individual algorithms

‒ Polarization etc., when used as features improved recall

slightly, at the expense of recall

‒ However precision is still very low, and there are lots of FP.

‒ Future work: Train two HMMs, one each for noise and P-

waves, and model-select between the two for a signal

FEATURIZING THE DATA
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‒ Two Gaussian HMMs were trained using 10-fold cross-

validation

‒ One HMM was trained using the 3 detector algorithms’ outputs 

as the observables

‒ The second also had the other observables (rectilinearity, etc.)

‒ If the HMM’s predicted arrival time was within a few seconds 

of the analyst’s, it was deemed a true detection

‒ A raw seismogram may show

an abrupt commencement of

activity (depending on SNR),

indicating the arrival of a

seismic wave

‒ An analyst picks a time as the

time of arrival of the seismic

wave

‒ Detector algorithms like

STA/LTA compute a function,

derived from the seismic

waveform, that has a “spike”

‒ The timing of the “spike”

should be close to the arrival

time

The Hidden Markov Model (HMM)

‒ Consider a system that occupies one of N states at time 

t, and moves to a new state at time t+1

‒ Ht = {hi}, i = 1…N, are the probabilities that the system 

is in state i at time t

‒ Consider, too, that the system evolves as Ht+1 = [ P ] Ht

‒ Here [ P ] is a N x N matrix

‒ pij is the probability of transitioning from state ‘i’ to 

state ‘j’ in one timestep, and is constant over time

‒ This is a Markov system

‒ The state of the system is not seen (i.e., hidden), but it 

causes observable phenomenon

‒ Let the observed state of the system at time t be one of 

K states 

‒ Let Ot = {ok}, k = 1…K be the probabilities that the 

system is in observed state ‘k’

‒ Also Ot = [ M ] Ht, [ M  ] is a K x N matrix

‒ mki is the probability of hidden state i causing 

observed state k

‒ Such a discrete-time, discrete-state model for a time-

dependent system is called a hidden Markov model 

(HMM)

Learning HMMs

‒ Given a long sequence of true internal states, one can 

learn the transition matrix [ P ]

‒ Given a long sequence of observed states, one can 

learn the emission matrix [ M ] from Ht

‒ If only observed states are available, along with 

guesses [ P* ] and [ M* ], one can:

‒ Adjust [ P* ] to get [ P ] and [ M* ] to get [ M ]; also 

infer internal states Ht

Fusion model

‒ The seismogram is supposed to be a binary system, 

capable of being in S = {s1, s2}, s1 = noise or s2 = 

seismic signal

‒ We have defined 10 observables. Each observable has 

many measured values which is represented as a 

Gaussian

‒ 3 observables are outputs of seismic wave detection 

algorithms. They should have a spike at the arrival time

‒ The other 7 observables also assume very different 

values for noise versus P-waves, e.g. rectilinearity. 

They help recognize the seismic signal.

OBJECTIVE

‒ The seismic waveform may have to be bandpass filtered

first to enhance the signal relative to background noise

‒ Multiple detection algorithms add robustness: It is

unlikely that a non-seismic (confounding process) will

cause all detector algorithms to misfire at the same time

‒ Thus a simultaneous “spike” (a large change in detector

function value) across multiple detector algorithm should

indicate a seismic wave arrival with high confidence

‒ It should also reduce false positive (FP) and false

negative (FN) rates

‒ But how to harness the joint predictive power of multiple

detector algorithms?

‒ Premise: The fusion could be performed using hidden

Markov models (HMMs)
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Features

‒ The waveform was bandpass-filtered in 

(1.5, 3), (3, 6), (2, 5) & (6, 12) Hz bands

‒ In each band, the classic STA/LTA, 

recursive STA/LTA and Z-statistic 

algorithms provided the 3 observables 

with spikes to denote arrivals

‒ In each band we computed polarization, 

rectilinearity, planarity, azimuth, angle of 

incidence and ratio of vertical to total 

power

‒ These features help discriminate 

between noise and P-waves

‒ The choice of features is dictated by 

their use in a streaming context – they 

are computationally inexpensive

‒ We also compute the area, in different 

frequency bands, under the PSD curve 

computed from the sonogram

Constructing and testing HMMs

‒ The internal state of the HMM was 

computed by setting the state to 1 over a 4-

second duration starting from the pick 

time.

‒ The HMM was trained over 80% of the 

dataset and tested over the remaining 20%

‒ The observed data of the test set was used 

to infer the internal (hidden) state (0-1 rise)

‒ Predicted arrival times were compared with 

the analyst time for the test waveforms  
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Detections

HMM (Detection 
algorithms only)

Classic STA/LTA Z-Statistic
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True 774 61 753 82 219 616

False 457 2879 1187

‒ The performance of the HMM-based fused detector is 

summarized using the precision & recall

‒ TD: True Detection; FD: False Detection; FM: False Misses  

HMM 
(Detection 
algorithm

only)

Classic 
STA/LTA

Z-Statistic

Precision 0.63 0.21 0.16

Recall 0.92 0.90 0.26

‒ Precision = *+
*+,-+

‒ Recall = *+
*+,-1
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