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Compressible jet-in-crossflow interactions are poorly simulated using Reynolds-Averaged
Navier Stokes (RANS) equations. This is due to model-form errors (physical approxima-
tions) in RANS as well as the use of parameter values simply picked from literature (hence-
forth, the nominal values of the parameters). Previous work on the Bayesian calibration
of RANS models has yielded joint probability densities of C = (Cµ, Cε2, Cε1), the most influ-
ential parameters of the RANS equations. The calibrated values were far more predictive
than the nominal parameter values and the advantage held across a range of freestream
Mach numbers and jet strengths. In this work we perform Bayesian calibration across a
range of Mach numbers and jet strengths and compare the joint densities, with a view of
determining whether compressible jet-in-crossflow could be simulated with either a single
joint probability density or a point estimate for C. We find that probability densities for
Cε2 agree and also indicate that the range typically used in aerodynamic simulations should
be extended. The densities for Cε1 agree, approximately, with the nominal value. The den-
sities for Cµ do not show any clear trend, indicating that they are not strongly constrained
by the calibration observables, and in turn, do not affect them much. We also compare the
calibrated results to a recently developed analytical model of a jet-in-crossflow interaction.
We find that the values of C estimated by the analytical model delivers prediction accura-
cies comparable to the calibrated joint densities of the parameters across a range of Mach
numbers and jet strengths.

Nomenclature

(ue,ve) Experimental counterpart of (um,vm)
(um,vm) Modeled streamwise velocity deficit and normalized vertical velocities at probes
(Cµ, Cε2, Cε1) Parameters in the k − ε RANS model requiring calibration
Ca Analytical estimates of (Cµ, Cε2, Cε1)
Cnom Nominal value of (Cµ, Cε2, Cε1)
R Physically realistic part of the parameter space
CVP Counter-rotating vortex pair
JIC Jet-in-crossflow

I. Introduction

Jet-in-crossflow interactions occur in a myriad of natural and engineering settings.1 In aerodynamics, spin
jets are often used to maneuver launch vehicles, setting up a compressible jet-in-crossflow interaction.

Experimental investigations2 have shown that the exhaust from the spin rockets (the “jet”) rolls into a
complex configuration of counter-rotating vortex pairs (CVPs) that significantly modify the pressure dis-
tribution over the stabilizing fins of the flight vehicle. Detailed experimental investigations of compressible
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JIC interactions, for a range of Mach numbers and jet strengths, have been performed experimentally,3–5

referred to here as the “Beresh” experiments. They have been compared to simulations performed using
Reynolds-Averaged Navier Stokes (RANS) models.6 These comparisons show that RANS simulations have
poor predictive skill - the simulated jet rolls into a CVP that is far too strong and penetrates into the
freestream far more than what is observed in experimental data. These predictive errors arise from two
sources. The first concerns model-form errors i.e., due to approximations of turbulence physics in RANS
equations. The second source of errors is the use of parameters in RANS equations simply picked from
literature, which are often derived by calibrating to canonical incompressible flows. It is unclear which is
the larger source of predictive uncertainty.

One way of improving the predictive skill of RANS in JIC simulations is to obtain calibrated parameters.
Due to the model-form errors and limited experimental data, it is not always possible to estimate these
parameters with much certainty. Consequently, Bayesian calibration techniques are used, as they model the
parameters to be estimated as random variables and infer their probability density functions (PDFs) from
observational data. The PDFs capture the uncertainty in the estimation. Bayesian estimation of k−ε RANS
models has been performed for flow over flat plates under favorable and adverse pressure gradients7 and for
turbulent flow in urban canyons.8 Alternatively, one may assume that the poor predictive skill of RANS
equations may be ameliorated by augmenting some of the model equations with a spatially variable source
term which is learned by calibrating (i.e., full-field inversions for the source term) to high-fidelity data e.g.,
Direct Numerical Simulation solutions of flows similar to the flow of interest. The dependence of the source
term on local flow properties is then learned using the calibrated RANS solutions as the training data. This
approach has been used for 2D flows over bumps in channels and airfoils.9–12 In case the flow shows a
significant degree of anisotropy, one may devise data-driven models (e.g., neural nets and random forests)
to rectify the short comings of the (usually linear) eddy viscosity models used in RANS simulators.13–15

A completely different way of improving the predictive skill of RANS JIC simulations is to develop
expressions/estimates of critical parameters via an analytical approach. In a companion paper,16 we derive
a self-similar solution of the jet (after a JIC interaction) that is applicable in the farfield and obtain estimates
of 3 k − ε parameters C = (Cµ, Cε2, Cε1) analytically, without using Beresh’s measurements and without
performing any type of fitting. Thus these estimates are free of any conflation of model-form and parametric
inadequacies. The parameter estimates Ca = {0.1, 2.0, 1.34} are somewhat different from the nominal
values of the parameters Cnom = {0.09, 1.92, 1.44} typically used in k − ε RANS simulations, but produced
predictions of the flowfield that were significantly better than those obtained using Cnom. This determination
was performed using the Beresh experimental data, but was limited to the interaction of a Mach 0.8 crossflow
interacting with a jet with a jet-to-crossflow momentum ratio of 10.2.

In a previous paper17 we addressed the Bayesian calibration of compressible JIC interactions using data
from one of the Beresh experiments. The experiment consists of introducing a Mach number M = 3.73
jet of 9.53 mm diameter into a M = 0.8 freestream in a wind tunnel test section. The jet-to-freestream
momentum ratio J is 10.2. The jet bends into the flow and rolls into a CVP as it flows downstream.
PIV (velocity) measurements are available on the mid-plane, the longitudinal plane of symmetry and a
transverse/cross plane that slices through the CVP. Experimentally measured vorticity on the crossplane
was used, via Bayesian calibration, to obtain a 3D joint PDF (JPDF) for C = (Cµ, Cε2, Cε1), the parameters
to which the flow was found to be most sensitive. An optimal parameter set Copt = {0.1025, 2.099, 1.416}
was also obtained, which is quite different from Cnom. Samples of C drawn from the calibrated JPDF
provided predictions of the flowfield that were far more accurate than those obtained using Cnom; this was
verified by comparing with (Beresh) experimental velocity measurements on the mid-plane and crossplane.
The improvement in predictive skill was retained, when examined against experimental data, at other M
and J values, though the agreement was not as good as the M = 0.8, J = 10.2 case.

Clearly, then, Ca, Copt and the calibrated JPDF from the (M = 0.8, J = 10.2) calibration study are all
more predictive than Cnom. However the predictive skill of Copt and the JPDF from the (M = 0.8, J = 10.2)
calibration study is seen to drop as we apply them to (M,J) combinations other than (0.8, 10.2). The ultimate
aim of this study is to find a replacement for Cnom in k− ε simulations of compressible JIC interactions that
is robust across a (M,J) range. In this study we perform calibration for C for four (M,J) combinations
for which we have experimental measurements in Refs. 3–5; they are (M,J) =, (0.6, 10.2), (0.7, 10.2), (0.8,
10.2) and (0.8, 16.7). These calibrations will results in four JPDFs which are specific to the experiments
they have been calibrated to. If the JPDFs are similar, it may be possible to smooth them into a single
JPDF that would hold across the (M,J) covered by the Beresh experiments. If they are very dissimilar, it
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may be practical, though perhaps not very accurate, to find a single point estimate that would be predictive
across the same (M,J), and we will explore whether Ca can serve in this role.

II. Problem formulation

II.A. Experimental and computational setup

The experimental and computational setup used in this calibration study have been described fully else-
where17 and we provide a summary below. The data used here is obtained from a set of wind tunnel
experiments conducted by Beresh et al.3,4 . A schematic of the test section is shown in Fig. 1. The ex-
periments involve injecting a M = 3.73 jet, of diameter 9.53 mm, into a freestream from the bottom of
the test section. The freestream Mach number is denoted M and the ratio of jet-to-freestream momenta
is J . Experiments are conducted for M = 0.6, 0.7 and 0.8 while J = 10.2. For M = 0.8, experiments are
conducted at J = 16.7 and 5.6, in addition to 10.2. The jet bends into the freestream and rolls into a
CVP. PIV measurements are made on two planes, as shown in Fig. 1. The plane of symmetry is called the
mid-plane, whereas the transverse plane slicing through the CVP is called the crossplane. Velocity measure-
ments are available on the mid-plane for all the five experimental datasets being considered in this study.
Velocity measurements (and therefore streamwise vorticity) are available only for the three M = 0.8 test
cases (i.e., for J = 5.6, 10.2, 16.7) and was used as the calibration observable in our previous work.17 Since
we will perform calibration for four (M,J) combinations (not all of which have crossplane measurements),
we will use measurements of streamwise velocity u and vertical velocity v on the mid-plane as our calibration
observable. Measurements on the mid-plane are made at 5 stations, with the first station being 200 mm
downstream of the jet and the rest at intervals of 50 mm. At each location, measurements are made at 63
vertically distributed points called “probes”. The crossplane is 321.8 mm downstream of the jet.

Figure 1. Schematic of the test section showing the orifice where the jet is introduced and the mid- and crossplane
where experimental measurements are made.

The calibration is performed using the compressible form of the k − ε RANS equation18 and is fully
described in Ref. 17. The most important parameters that affect the flowfield are (Cµ, Cε2, Cε1), which we
will refer to as C. Our flow solver, SIGMA CFD (Sandia Implicit Generalized Multi-Block Analysis Code
for Fluid Dynamics), uses a Roe-TVD flux scheme with a minmod limiter for spatial discretization. Time
integration is carried out using a first order point-implicit scheme. The calculations are initialized using a
first-order spatial scheme, time-marched for 5000 timesteps, and relaxed to convergence using the second
order scheme for 25000 timesteps. Time marching to steady state was carried out using local time stepping
with a gradual CFL ramp to accelerate convergence. A multi-block mesh with approximately 10 million grid
cells is used; mesh convergence studies are in Ref. 6. Details of initial and boundary conditions and mesh
refinement near the walls are in Ref. 17.
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II.B. The inverse problem

Let ye be a vector (of length Np) of experimental observations, measured at a set of Np locations (“probes”).
Let ym(C) be model predictions of the same, produced by a parameter setting C. They are related by
ye = ym(C) + ε where ε is a combination of measurement and model-form error. We make a modeling
assumption that the errors at the probes are uncorrelated, independently and identically distributed as a
zero-mean Gaussian i.e. ε = {εi}, εi ∼ N (0, σ2). σ2 thus provides a crude measure of the model - data misfit
after calibration. If the measurement errors are low, σ2 provides an estimate of the model-form error.

Let P (C, σ2|ye) be the joint probability density function of the parameters and the model - data misfit,
conditional on the observed data ye. Let Π1(C) and Π2(σ2) be our prior belief regarding the distribution of
C and σ2. The likelihood of observing ye, given a parameter setting C, L(ye|C), is given by

L(ye|C, σ2) ∝ 1

σNp
exp

(
−||ye − ym(C)||22

2σ2

)
.

By Bayes’ theorem, the calibrated distribution (or posterior distribution) of (C, σ2) can be given as

P (C, σ2|ye) ∝ L(ye|C, σ2) Π1(C) Π2(σ2) ∝ 1

σNp
exp

(
−||ye − ym(C)||22

2σ2

)
Π1(C) Π2(σ2) (1)

The actual model outputs i.e., components of ym, are the streamwise velocity deficit udef and normalized
velocity vnorm defined as

udef =
Umax − u
U∞(x)

vnorm =
v

U∞
,

where Umax is the maximum streamwise velocity at an x-location and U∞ is the freestream velocity. Let um
be the predicted streamwise velocity deficit udef and vm be the normalized vertical velocity vnorm for all the
probes . Let ue and ve be their experimental counterparts over all the probes . The specific form of Eq. 1
used in this study is:

P (C, σ2|ue,ve) ∝
1

σNp
exp

(
−||(ue − um(C))/Ku||22

2σ2

)
exp

(
−||(ve − vm(C))/Kv||22

2σ2

)
Π1(C) Π2(σ2),

(2)
where Ku = max(ue) and Kv = max(ve). Normalization of the model-data mismatch using Ku and Kv

ensures that the contributions from udef and vnorm are equally weighted in the expression for the posterior
distribution.

As in Ref. 17, the inverse problem is solved via sampling. We use a Markov chain Monte Carlo (MCMC)
method called Delayed Rejection Adaptive Metropolis (DRAM; Ref. 19), as implemented in the R20 package
FME21 to draw samples of {C, σ2}. We reconstruct P (C, σ2|ye) empirically by kernel density estimation.22

The prior density for σ2 is defined in terms of its reciprocal i.e., Π2(σ−2) and is modeled using a Gamma
prior i.e., σ−2 ∼ Γ(k, θ), where k = 1, θ = 1. The inverse Gamma prior for σ2 is a conjugate prior which
simplifies sampling of σ−2 via a Gibbs sampler. Also, the prior is virtually non-informative for σ2 > 5. The
Raftery-Lewis method23 implemented in the R package mcgibbsit24 is used to judge the convergence of the
MCMC chain. The MCMC method requires O(104) samples to construct P (C, σ2|ye), each of which requires
a 3D RANS model evaluation to provide ym(C). Since this is impractical, we will develop a surrogate model,
a polynomial that maps the dependence of our calibration variables (um,vm) on C. The surrogate model
will serve as a computationally inexpensive proxy for SIGMA CFD. We consider the following bounds on C
taken from Ref. 18:

0.06 ≤ Cµ ≤ 0.12, 1.7 ≤ Cε2 ≤ 2.1, and 1.2 ≤ Cε1 ≤ 1.7. (3)

II.C. Priors and surrogates

An informative prior: While it is tempting to combine the bounds in Eq. 3 into a uniform distribution in
the cuboid C in (Cµ, Cε2, Cε1) space, we shall refrain from doing. Arbitrary combinations of (Cµ, Cε2, Cε1)
from C may not be physical, and consequently, we will use the discrepancy ye−ym(C) to choose a physically
realistic region R ⊂ C to serve as Π1(C). Details on how Π1(C) is constructed are in Ref. 17 and we provide
a summary here.
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Constructing the surrogates requires us to generate a training dataset that captures the variation of um
and vm over C. We draw 2744 (= 143) samples of C from C using a quasi Monte Carlo space-filling (Halton
sequence) method and conduct 3D RANS simulations with them using SIGMA CFD. Many of the samples
are non-physical and the simulations do not converge to a steady state. Others (2628 samples) do, but yield
flowfields that are quite unlike transonic, high Reynolds number flows. In order to isolate values of C that
yield realistic flowfields we compute the RMS (root mean square) error between (ue,ve) and (um,vm) for all
the successful simulations and preserve the top 25%, resulting in 0.25×2628 = 657 samples. A random subset
of these C samples are plotted in Fig. 2 (left) and occupy a certain section of C i.e., they are not uniformly
scattered in C. This is the physically realistic part of C, called R, and forms the basis of constructing the
prior density Π1(C). As in Ref. 17, we define

Π1(C) =

{
1 if C ∈ R
0 otherwise

(4)

The 2628 successful runs (of which 657 mark out R) are used to train a binary support vector machine
classifier. The procedure and software to do so are in Ref. 17. A misclassification rate less than 10% is a
requirement for building a successful classifier. The classifier is used as the implementation of the prior Π1(C)
as described in Eq. 4 and is used within the MCMC procedure to infer the posterior density P (C, σ2|ue,ve).
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Figure 2. Left: A set of C points in C that produce physically realistic flowfields i.e., they approximately mark out R.
Right: A plot of the probes on the mid-plane where experimental data are available. The filled circles are the probes
for which we could build accurate surrogate models. They track the spatial evolution of the CVP, and do not cover the
boundary layer at the test section walls..

Surrogate models: A surrogate model is defined as a polynomial curve-fit between a model prediction
at a probe i.e., udef and vnorm, that captures their dependence on C. We use the samples of C that
define R, and the flowfields they yield, to learn the polynomial model. The procedure is described in detail
Ref. 17. We start with a cubic polynomial in (Cµ, Cε2, Cε1) space to map C to udef (or vnorm). The fitting
is performed via least-squares regression and simplified via incrementally dropping terms and computing the
Akaike Information Criterion. Many cubic terms are removed and, for a few probes, the surrogate reduces
to a quadratic one. However, simply being able to construct a surrogate does not imply that it is accurate.
As in Ref. 17, we compute the predictive error of the surrogate via repeated random sub-sampling validation
(a form of cross validation) and retain only those probes whose surrogate models have less than 15% error
(for both udef and vnorm). In Fig. 2 (right) we plot the probes on the mid-plane that were retained for the
(M = 0.8, J = 10.2) case. As the figure shows, of the 63 × 5 = 315 probes for which we have experimental
measurements, we could make surrogate models (of acceptable accuracy) for only 107. These “model-able”
probes follow the trajectory of the CVP. Note that we do not keep any probes in the boundary layer - the
calibration is simply aimed at simulating the jet and its roll-up accurately.
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Figure 3. Marginalized posterior PDFs of Cµ, Cε2 and Cε1 as inferred using (ue,ve) (marked “UV”) and using streamwise
vorticity (marked “Omega”). The corresponding priors are plotted using symbols. The vertical line is the nominal
value.

II.D. Bayesian calibration

Having implemented the prior Π1(C) via a classifier and constructed polynomial surrogates for um and vm,
we solve the inverse problem (Eq. 2) for the posterior density P (C, σ2|ue,ve). We will use P(ue,ve) as an
abbreviation for P (C, σ2|ue,ve) and Pωe for P (C, σ2|ωe) which we estimated in our previous work.17 Here,
ωe is the experimentally observed vorticity on the crossplane due to the CVP. We plot the marginalized
posterior and prior PDFs in Fig. 3. For comparison, we also plot the marginalized PDFs obtained using
measurements of vorticity on the crossplane17 for the same interaction. We see that the two posterior PDFs
are close but not identical. Further, the priors that we use here (plotted using ◦) are different from those
used in our previous study,17 plotted with 4. This is especially true for Cε1. The comparison ensures that
(1) (ue,ve) are as informative about (Cµ, Cε2, Cε1) as vorticity on the crossplane and (2) the classifier and
surrogates were constructed with a degree of accuracy that is comparable to our previous work.17 Therefore,
the calibration methodology using (ue,ve), as described above, can be applied to other JIC interactions i.e.,
those with different (M,J) combinations.

Next we check the effect of the difference in PDFs, plotted in Fig. 3, on the flowfield, primarily to check its
sensitivity to (Cµ, Cε2, Cε1). We sample 100 realizations of (Cµ, Cε2, Cε1) from P(ue,ve) and Pωe separately,
perform RANS simulations and compare their results. In Fig. 4 (top) we plot the streamwise velocity deficit
udef and normalized vertical velocity vnorm at streamwise locations x/Dj = 21, 31.5 and 42, where Dj = 9.53
mm is the diameter of the jet. Results due to Cnom, the nominal value of the parameters, and Ca, parameters
estimated analytically in Ref. 16 are also plotted. We find that the ensemble mean predictions using P(ue,ve)

and Pωe are practically indistinguishable, which is remarkable given that the two PDFs were calibrated to
different observations (mid-plane velocity and crossplane vorticity respectively). We also plot the profiles
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Figure 4. Profiles of udef (top) and vnorm (bottom) at three stations x/Dj = 21, 31.5 and 42 for a (M = 0.8, J = 10.2)
interaction. The symbols ◦ are the experimental measurements, the solid blue and red lines are the ensemble means
computed using 100 C samples from Pωe and P(ue,ve) respectively. The dashed red line is the prediction using Cnom

and the dashed black line is computed using Ca from Ref. 16.

Figure 5. Comparison of the crossplane vorticity field (due to the right vortex of the CVP) as reproduced using
various parameters for a (M = 0.8, J = 10.2) interaction. The contour are the vorticity field from experiments.4 Top
left: The flood plot is the vorticity field predicted by Cnom. Top right: Vorticity field produced by Ca.16 Bottom left:
Vorticity field computed using Copt,1 = {0.1025, 2.099, 1.416}, obtained from Pωe .17 Bottom right: Vorticity field from
Copt,2 = {0.11, 1.86, 1.66}, obtained from P(ue,ve).
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due to the analytically predicted values Ca from Ref. 16, which also agree with experiments. In Fig. 5, we
plot the corresponding vorticity fields due the right vortex of the CVP on the crossplane. The experimental
vorticity field is plotted with white contours. Again, in Fig. 5 (top left) we see that Cnom predicts the
experimental data badly, whereas as Ca (Fig. 5, top right) results in a marked improvement. In Fig. 5
(bottom left and right) we plot the predictions using Copt,1 and Copt,2, where Copt,1 = {0.1025, 2.099, 1.416}
is the (Cµ, Cε2, Cε1) set from the 100 drawn from Pωe that achieves the best reproduction of crossplane
experimental vorticity (see description in Ref. 17) and Copt,2 = {0.11, 1.86, 1.66} is its counterpart drawn
from P(ue,ve) that reproduces the mid-plane streamwise velocity deficit and normalized vertical velocity best.
We see that the predictions using Copt,1 and Copt,2 are indistinguishable from each other and agree quite
well with the experimental vorticity. They are also much improved compared to the Cnom simulations.

Thus it is clear that predictions using P(ue,ve) improves the agreement of RANSl simulations with experi-
ments. While that is not surprising when considering udef and vnorm (since they were used in the calibration),
the crossplane vorticity predictions are remarkably good. Further, the mid-plane and crossplane predictions
also match predictions using Pωe , indicating the calibration using mid-plane velocity measurements is similar
in quality to those obtained using vorticity measurements in Ref. 17. Thus we can proceed with calibration
using mid-plane quantities, which are available for the four cases being considered in this study.

II.E. Combining JPDFs

The J = 4 separate JPDFs obtained using Bayesian calibration will yield distributions gj(C, σ
2), j = 1 · · · J .

If they are similar, the could be combined into a “smoothed” distribution G(C, σ2) that would be predictive
across the (M,J) space spanned by the Beresh experiments. This could be a practical way of summarizing
the results of Bayesian calibration. We will use Bayesian model averaging (BMA) to do so, closely following
the arguments in Ref. 25.

We sample N = 100 realizations of C from gj(C, σ
2), leading to Cl, l = 1 · · ·L,L = NJ . We use the

surrogate models used in Bayesian calibration to predict udef and vnorm at M probes for which we have
surrogate models for all K = 4 experiments. Let the predictions generated using Cl be zl, a vector 2MK
long; the factor of 2 indicates the two predictions udef and vnorm that we obtain at each probe.

We view the (collection of) surrogate models, each seeded with a different Cl, as an ensemble of L models.
Let zobs be the observations of udef and vnorm from the K experiments at the same probes. We establish
that

zobs ∼ N (zl,Σ
2)

where Σ is unknown and N (:) is a Gaussian distribution, with mean zl and standard deviation Σ. This
equation can be used to calculate the “importance” of model l (equivalently, Cl), given Σ; if zobs and zl are
very different, the likelihood of sampling zobs will be low. We formulate the smoothed version as

G(C, σ2) =
∑
l

wlql(zl),

E(zobs|zl) =
∑
l

wlzl,
∑
l

wl = 1. (5)

Here ql serves as an abbreviation for N (zl,Σ
2); wl are the weights of each model/Cl. Eq. 5 can be solved

using Expectation-Maximization for (wl,Σ) as done in Ref. 25. The weighted collection of Cl can be
used to construct a JPDF for C that retains the region of the C-space that is predictive across a (M,J)
range. However, this assumes that highly weighted Cl will cluster. If they do not, BMA will results in a
complex, multimodal distribution that would not be any simpler than J separate JPDFs. In Sec. III we will
investigate if G(C, σ2) can be computed or if Ca is the only way of summarizing the JPDFs arising from
Bayesian calibration.

III. Results

III.A. Evaluating Ca

We perform Bayesian calibration using mid-plane velocity measurements (strictly, streamwise flow deficit
and normalized vertical velocity, as captured in Eq. 2) from the Beresh experiments.3–5 These are performed
for (M,J) =, (0.6, 10.2), (0.7, 10.2), (0.8, 10.2) and (0.8, 16.7). In Fig. 6 we plot the marginalized PDFs
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Figure 6. Marginalized posterior PDFs inferred for JIC interactions corresponding to five different (M,J) combinations.
The dashed vertical line is Cnom whereas the solid line is the analytical estimate Ca.

(i.e., marginalized versions of P (C, σ2|ue,ve)) obtained from the four Bayesian calibrations. The nominal
values Cnom are plotted using dashed vertical lines and the analytical estimate Ca using a solid vertical line.
It is clear that Cε2 is much higher that the nominal value and one could argue that the upper bound for Cε2
should be increased to allow a better calibration. The nominal estimate for Cε1 agrees with the peak for
many of the calibration cases except for the (0.6, 10.2) case. The PDFs for Cµ do not show any consistent
trend, though we do see 3 peaks in the region Cµ > 0.11. Post-calibration, the residual model-data mismatch
(quantified by σ) is also plotted in Fig. 6; it is clear that the (M = 0.6, J = 10.2) has the worst fit whereas
the (M = 0.8, J = 10.2) and (M = 0.7, J = 10.2) have the best fits (lower σ).

Fig. 6 shows that the analytical estimate for Cε2 and Cµ are closer to the peaks of the PDFs than
the nominal one, whereas the opposite holds true for Cε1. The three parameters exert different degrees of
influence on the flowfield and it is unclear whether the predictive skill of Ca may be similar to the calibrated
JPDF. Consequently we discuss the flowfields that the calibrated P(ue,ve) produce vis-à-vis experiments, Ca

and Cnom. Note that we have already shown in Ref. 16 that Ca is more predictive than Cnom.
Comparisons for the (M = 0.8, J = 10.2) case are plotted in Fig. 4 and Fig. 5. The accuracy of the P(ue,ve)

distribution is assessed using the ensemble mean of predictions obtained using 100 C samples drawn from it,
as described in Sec. II.D. In Fig. 4 we see that the velocity profiles using ensemble means from P(ue,ve) match
well with experimental data; they are also indistinguishable from the predictions using Ca. This holds true
for both udef and vnorm. Further, they are an immense improvement over Cnom predictions. We next check
the ability of P(ue,ve) and Ca to reproduce the crossplane vorticity field. We obtain Copt,2 = {0.11, 1.86, 1.67}
from P(ue,ve), and in Fig. 5 (bottom right), we plot its vorticity field vis-à-vis experimental data (plotted as
white contours). The agreement with experimental results is very good, and certainly much better than the
one obtained using Cnom (Fig. 5 , top left). In Fig. 5 (top right) we also plot the vorticity field produced by
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Ca. Comparing with experimental data, we see that the agreement is good. Further, the predictions using
Ca and Copt,2 are very similar. Clearly, then, Ca can serve as a proxy for P(ue,ve) for the (M = 0.8, J = 10.2)
interaction.

In Fig. 7 and 8, we perform the same comparison for a (M = 0.7, J = 10.2) interaction. Copt,2 =
{0.12, 2.1, 1.45} is obtained in a manner identical to the one described in Sec. II.D. In Fig. 7, we plot the
streamwise flow deficit udef (on top) and the normalized vertical velocity vnorm below. The predictions using
Ca are indistinguishable from the ensemble mean computed using 100 samples drawn from P(ue,ve). They are
both closer to the experimental data than the predictions using Cnom. In Fig. 8 (left), we plot the vorticity
field using Copt,2 with predictions using Ca overlaid using white contours. The agreement is very close. In
Fig. 8 (right), we compute the circulation, centroid and radius of gyration of the vorticity field predicted by
the samples drawn from P(ue,ve), normalized by their counterparts computed using Ca. The ratios show less
that 5% deviation, showing that (1) the joint PDF of (Cµ, Cε2, Cε1) plotted in Fig. 6 do not result in much
variation in the vorticity field and (2) Ca can reproduce an approximation to the ensemble predictions quite
accurately. This does not automatically imply that the predicted vorticity field is accurate; unfortunately,
experimental measurements of crossplane velocities do not exist for this jet-in-crossflow interaction to allow
verification of P(ue,ve).

While not shown in this paper, the (M = 0.6, J = 10.2) and (M = 0.8, J = 16.7) interactions show
the same agreement between mid-plane experimental measurements, Ca predictions and ensemble means
generated using C samples from P(ue,ve).

Figure 7. Profiles of udef (top) and vnorm (bottom) at three stations x/Dj = 21, 31.5 and 42 for a (M = 0.7, J = 10.2)
interaction. The symbols ◦ are the experimental measurements, the solid red lines are the ensemble means computed
using 100 C samples from P(ue,ve). The dashed red line is the prediction using Cnom and the dashed black line is
computed using Ca from Ref. 16.

III.B. Constructing G(C, σ2)

We implemented the BMA method for combining Cl samples using udef and vnorm observations from K = 4
experiments. M = 82 probes for which we could make surrogate models; there are 315 probes in all.
Therefore we seek to estimate NJ = 100 × 4 = 400 wl using 2 ×M × K = 656 observations. In Fig. 9
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Figure 8. Left: Comparison of the crossplane vorticity field (right vortex of the CVP) as reproduced using Copt,2 =
{0.12, 2.1, 1.45} computed using P(ue,ve) from a (M = 0.7, J = 10.2) interaction against predictions using Ca, which is
overlaid using white contours. Right: Circulation of the vortex, the horizontal and vertical positions of the centroid
of the vorticity distribution and radius of gyration, computed using 100 samples from P(ue,ve), normalized by the
counterparts computed using Ca.

(left) we plot the distribution of weights; most are very small. In fact, twenty-two models/Cl combinations
account for 99.9% of the weights. In Fig. 9 (right) we plot the 400 Cl samples; they are clearly disjoint, and
unlikely to lead to a simple distribution. The twenty-two Cl samples that account for most of the weight are
also plotted; they do not cluster. Thus it is unlikely that there exists a distribution in C-space that could
summarize the collection of JPDFs obtained (see Fig. 6) and Ca may be the only useful summary.

III.C. Discussion

The results presented here are best viewed within the context provided by our previous publications,17,26

and our companion paper Ref. 16. These studies seek to uncover the cause behind RANS’s inability to
simulate compressible JIC interactions with much precision. There can be two possible causes: (1) the use
of inappropriate values of RANS constants (Cµ, Cε2, Cε1) and (2) approximations (“missing physics”) in
RANS which can be removed only by augmenting the RANS equations. In our studies, we consider both
the possibilities.

In Ref. 17, we developed a Bayesian calibration method to estimate (Cµ, Cε2, Cε1) from experimental
measurements on the crossplane of a JIC interaction. The calibration improved predictions immensely (vis-à-
vis predictions using Cnom, the nominal/literature values of (Cµ, Cε2, Cε1)), though it was limited to the mean
flow; turbulent stresses were not substantially improved. Further, the calibration was performed for a Mach
0.8 crossflow interacting with a jet with a jet-to-crossflow momentum ratio of 10.2. The optimal parameters,
referred to in this paper as Copt,1, were quite different from Cnom. Some results from this calibration are
in Sec. II. However, Bayesian calibration merely fits a model to data, and there is no guarantee that the
JPDF (or optimal parameter values) so inferred have any physical basis. In addition, Bayesian calibration
could easily conflate model-form errors (RANS approximations) with parametric uncertainty i.e., the newly
inferred parameters could simply be compensating for RANS’s “missing physics”.

We addressed this question in two ways. In our companion paper,16 we developed an analytical model for
JIC interactions, which yielded Ca, the analytical counterpart of Copt,1. Since Ca does not involve fitting
to data, there is no question of conflating model-form and parametric uncertainties. Ca is close to Copt,1,
as estimated for the (M = 0.8, J = 10.2) interaction, indicating that Bayesian calibration yields physically
defensible results and is not merely a “curve fit”.

The second approach used to examine the question is developed in this paper. We calibrated RANS
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Figure 9. Left: Histogram of log10(wl), showing that most of the weights are small. Right: Distribution of Cl used in
BMA. The red C points are chosen from the JPDF computed from (M = 0.6, J = 10.2), the blue ones from (M = 0.7, J =
10.2), the green ones from (M = 0.8, J = 10.2) and magenta symbols from the JPDF from (M = 0.8, J = 10.2) interaction.
The large black circles are the Cl combinations that were selected by BMA. There is no clustering.

to four JIC experiments and showed that predictions of the mean flow using the calibrated JPDF and Ca

agree; furthermore, both are close to experimental measurements. In addition, both result in a tremendous
improvement in predictions over Cnom. This holds for all for experiments that span a range of Mach numbers
(M = {0.6, 0.7, 0.8}) and J = {10.2, 16.7}). These imply that Bayesian calibration yield physically based
JPDFs and the lack of RANS’s predictive skill for JIC was likely due to the use of inappropriate values of
(Cµ, Cε2, Cε1).

As a check whether the model-form errors could be a leading cause of RANS prediction errors, we explored
augmenting the linear eddy viscosity model (EVM) used in SIGMA CFD with quadratic and cubic terms.
That investigation, which involved both the enrichment of the EVM and Bayesian calibration,26 and tested
for a (M = 0.8, J = 10.2) interaction, showed that the predictive skill was comparable to our results in
Ref. 17, which was purely a product of Bayesian calibration. This also somewhat corroborates our finding in
this paper that better RANS constants could improve its JIC predictions. Note that after calibration, any
lack of predictive skill is purely due to model-form errors, and they are manifest most clearly in the turbulent
stresses.17 More research is necessary to quantify them and uncover the degree to, and the mechanism by
which they impact the mean flow quantities investigated here.

The four JPDFs inferred from the experimental datasets considered here are quite different and cannot
be smoothed into a useful summary JPDF via a weighted average i.e., a mixture model. Instead, Ca serves as
an adequate summary. The reason is as follows. Cε2 is the most sensitive parameter, and all four calibrations
indicate a value of 2.0 or higher. This is captured by Ca which has it at 2.0. The PDF for Cε1 peaks at
a value close to Cnom and Ca is not very different either. Cµ exhibits very different values in the four
calibrations, but the mean flow is not very sensitive to it. There is some indication that Cµ should be higher
than its value in Cnom and Ca accommodates that slight evidence.

IV. Conclusions

In this paper, we explore the usefulness of Ca, an analytical value of RANS constants (Cµ, Cε2, Cε1) with
respect to predictive jet-in-crossflow simulations. We have done so for crossflow Mach numbers between 0.6
and 0.8, and for jet-to-crossflow momentum ratios of 10.2, and 16.7. We performed Bayesian calibration
using data from four separate experiments, so that we could obtain very good RANS predictions, and found
that Ca could reproduce them very closely. Further, both RANS and Ca predictions matched experiments
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and were far better than predictions using the Cnom, the nominal values of (Cµ, Cε2, Cε1). This held true
on the mid-plane, as well as the crossplane, for the two experiments that were used as illustrations in this
study and for which we have crossplane (experimental) data. Ca is thus a useful summary of the four joint
probability density functions inferred from Bayesian calibration. Model-averaging the four densities into a
smoothed summary distribution failed, mostly due to the fact that the Bayesian calibrations had only one
thing in common - the correction of the most important constant Cε2. This correction was also adequately
captured by Ca.

This work, along with our companion paper16 and our previous papers (Ref. 17, 26) lead us to believe
that the main cause of RANS prediction errors for jet-in-crossflow may be due to inappropriate RANS
constants. Calibration or the use of Ca improve mean flow predictions immensely (certainly vis-à-vis Cnom,
the nominal values of (Cµ, Cε2, Cε1)), but do little to improve turbulent stresses.17 Having removed prediction
errors due to inappropriate RANS constant, any residual errors are therefore due to model-form inadequacies
i.e., missing physics in RANS. A better treatment of the turbulence models i.e., the equations for k, ε, the
eddy viscosity model and the closures in the momentum and energy equations, are required to remedy this
shortcoming.
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