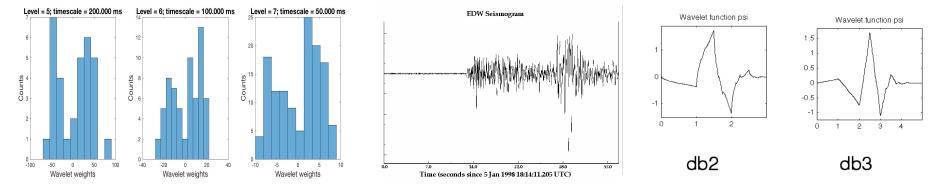
Exceptional service in the national interest



Using discrete wavelet transforms to discriminate between noise and phases in seismic waveforms J. Ray, C. Hansen, R. Forrest & C. J. Young

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Introduction

- Aim: Define features of a seismic waveform that can be used to discriminate between noise and P/S phases
 - Particularly, use the multi-resolution information in the waveform to define these features
- Focus on:
 - Regional scales (300-3000 km), wave travel through the upper mantle
 - 3-component data only; no use of data from arrays
- Hypothesis
 - Regional waves have structures that are localized in the coda
 - Global methods (like Fourier decompositions) are not very good for localized phenomena
 - Using energies measured over a given time-scale may be too coarse a measure to detect these structures
- These multi-resolution (MR) features would augment current features to discriminate noise/signal i.e., picking

Current method

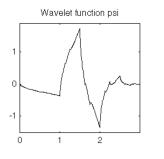
- Noise-signal discrimination done using STA/LTA algorithm or fitting 2 AR models via AIC criteria
 - STA/LTA requires one to specify windows of length S and L and abutting at t, compute the energy ratio, and search for an t_{max} that maximizes the ratio
 - *t_{max}* is the arrival time
 - *S, L* vary between station
 - AIC method requires one to make auto-regressive models in a noise & signal window, abutting at a pick time x
 - *t* is varied along the time axis till we minimize AIC
- P/S discrimination done using polarization metrics
 - *S* waves also have a bigger amplitude
 - Signal duration, horizontal-vertical amplitude ratio, rectilinearity, frequency, time difference between arrivals etc. are the classifier's features

What are multi-resolution features?

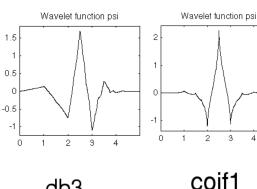
- MR features are derived from a wavelet decomposition of $f(t_i)$, i = 1...N, the waveform
 - Wavelets are orthogonal functions $\Phi(t)$ with compact support
 - Discrete wavelets are defined at resolution levels I, which change by powers of 2

•
$$f(t) = \sum_{l=0}^{L} \sum_{j=0}^{2^{l}} w_{lj} \Phi_{lj}(t)$$
, $L = \log_2(N)$

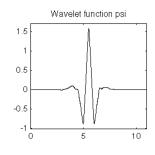
- Many types of wavelets, Haars, Daubechies 4,
 - Ideally, we'd like to choose a wavelet which maximizes the number of $w_{i} = 0$



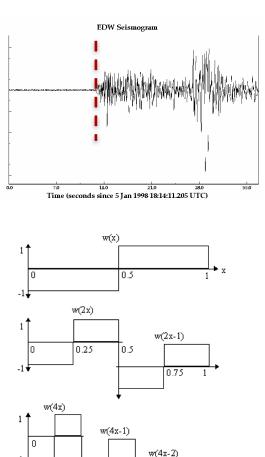
db2



db3



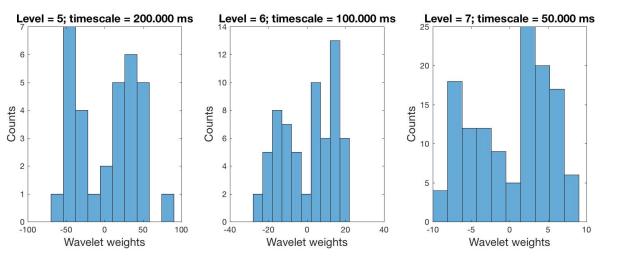
coif2



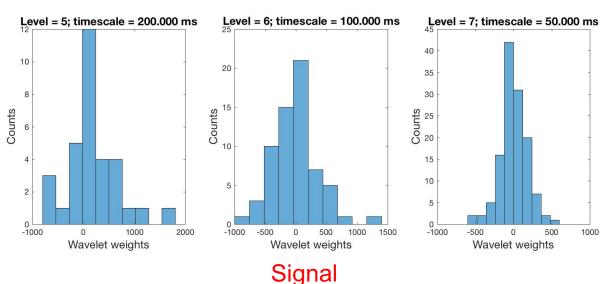
w(4x-3)

Illustration – MR decomposition

- We perform a wavelet decomposition of a waveform, 6.4 seconds (256 samples, 40 Hz sampling rate) window, pre- and post-pick time
- Histograms of wavelet weights w_{lj} are different, pre- and post-pick
 - How to turn this into a feature?



Noise



Designing discriminating features

Feature # 1: A boolean summary of wavelet distribution g(W)

- At each level *I*, do a two-sided Kolmogorov-Smirnov test to check, at α significance level, if the 2 histograms are different
- This will provide you with 3 true/false results (from the 3 components)
- Assumption: It's unlikely that an arriving wave is registered only on 1 axis/component
- So, at least 2 'trues' (score > 2) are required to indicate the arrival of a wave. But does this feature work (discriminate) for all levels I?
- Feature #2: A ratio of pre- and post-pick wavelet energies
 - For each level compute $E_l^{(k)} = \sum_j w_{lj}^2$, $k \in \{\text{noise, signal}\}$
 - Compute energy ratio $\kappa_{l} = E^{(\text{signal})}/E^{(\text{noise})}$
 - A ratio > 1 indicates arrival of a signal, but what is that threshold κ^* ?
 - Also, which levels I does this work for?
- Basically, we are interrogating the waveforms at a range of timescales ("multiresolution") for discriminating features

Tests using $g(\mathfrak{W})$

- Data obtained from Coronel Fontana, Argentina (CFAA); 74 x 3 waveforms
 - Manually labelled data, with 74 arrivals and picks
- Check how well $g(\mathfrak{W})$ discriminates noise & signal. Errors: false negatives
- Use $g(\mathfrak{W})$ on waveforms *without* an arrival. Errors: false positives
- Opt. parameters: α (KS2 significance); for now , α = 5%

	Level 5 (τ = 200 ms)	Level 6 (τ = 100 ms)	Level 7 (τ = 50 ms)	Summary (from 50 & 100 ms levels)	STA/LTA algorithm
Data with a signal	66.2%	83%	92%	False negative rate: 12.5%	77% FN: 23%
Data without a signal	100%	100%	84%	False positive rate: 8%	51% FP: 49%

Percentage of correct discrimination & false negative/positive rates

Tests using wavelet energy ratio κ

- Use the same CFAA data.
- Opt. parameters: κ * (threshold ratio); for now , κ * = 2

	Level 5 (τ = 200 ms)	Level 6 (τ = 100 ms)	Level 7 (τ = 50 ms)	Summary (from 50 & 100 ms levels)	STA/LTA algorithm
Data with a signal	92%	94%	94%	False negative rate: 6%	77% FN: 23%
Data without a signal	72.5%	75.5%	76.5%	False positive rate: 24%	51% FP: 49%

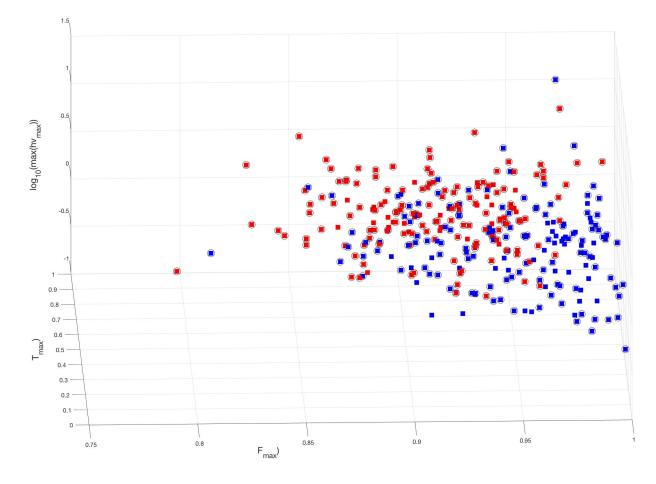
Percentage of correct discrimination & false negative/positive rates

- The 50 ms & 100 ms timescales contain the best discriminating features
- Combining $g(\mathfrak{W})$ and κ could give a better classification accuracy

Discriminating P/S waves

- P and S waves have different polarization
 - However, this information could be hiding at certain timescales; don't know which
- So, borrow an old idea from Anant & Dowla, BSSA 1997
 - Create multi-resolution versions of the (Z, N E) waveforms by
 - doing a wavelet transform (Daubechies-20 worked best)
 - zeroing out all wavelets except level l
 - Inverse wavelet transform, to get signal at level I
- Compute rectilinearity (F), transverse-to-radial ratios (T) and horizontal-to-vertical ratio (hv) in a moving window (1 sec) at each multi-resolution level *I (these are time-series g_I(t))*
 - Composite across scales (25 ms 400 ms) as $G(t) = \prod_{i} g_{i}(t)$
 - For each P / S arrival compute G_{max} = max(G(t)) in a 1 second window after pick time
 - The idea is that G_{max} are predictors of P versus S waves, G = {rectilinearity, transverse-to-radial ratio, horizontal-to-vertical ratio}

Tests with CFAA data



- Classifier trained with 259 samples each of P & S phases
 - SVM with Gaussian kernels
 - Misclassification rate: 12% (7-fold CV)

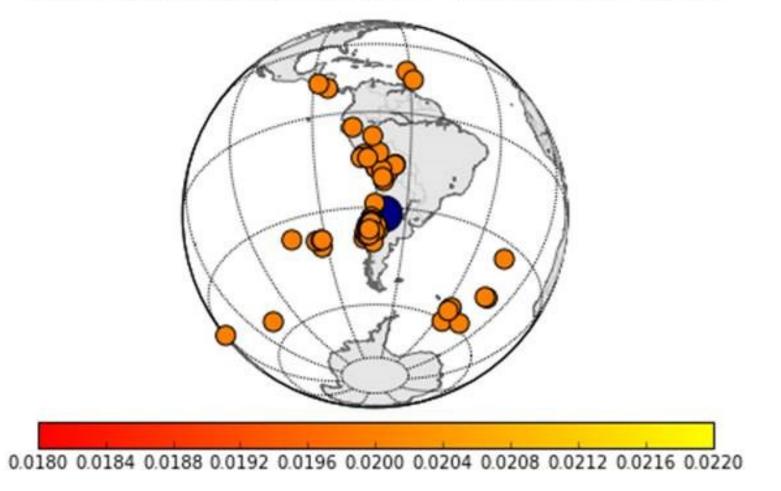
Conclusions

- We have been investigating MR features to include in a classifier to discriminate noise/P/S waves in 3-component seismograms
- We find that
 - Distribution of wavelet coefficients and the ratio of pre- and post-pick wavelet energies are good discriminators for noise/P
 - The relevant features lie at the 50 ms and 100 ms timescales
- For P/S classification we need a wavelet-enhanced version of 3 polarization metrics
 - Wavelets are used to zero-in on information in the (25, 400) ms timescales
 - Daubechies-20 worked across all 2 x 259 signals from CFAA
 - Composited rectilinearity, transverse-to-radial and horizontal-tovertical ratios are the discriminators
 - SVM classifier gives 12% misclassification (7-fold CV)

BACKGROUND

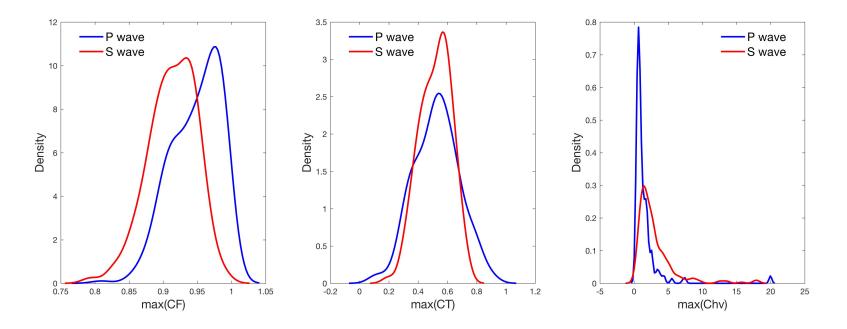
Station & events

106 events (2010-05-01 to 2010-05-30) - Color codes depth, size the magnitude



Regional events mostly

Tests with composite's max values



- If F_{max}, T_{max}, and hv_{max} are predictors, their distributions for P and S waves must be very different
 - And unlike Anant & Dowla, did not have to select a different wavelet for each event
 - So, if {F_{max}, T_{max}, hv_{max}} are predictors, can we make a P/S classifier?