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Introduction

§ Aim:	Develop	a	predictive	RANS	model	for	transonic	jet-in-
crossflow	(JinC)	simulations

§ Drawback:	RANS	simulations	are	simply	not	predictive
§ They	have	“model-form”	error	i.e.,	missing	physics	
§ The	numerical	constants/parameters	in	the	k-emodel	are	usually	

derived	from	canonical	flows	

§ Hypothesis
§ One	can	calibrate	RANS	to	jet-in-crossflow	experiments;	thereafter	

the	residual	error	is	mostly	model-form	error
§ Due	to	model-form	error	and	limited	experimental	measurements,	

the	parameter	estimates	will	be	approximate
§ We	will	estimate	parameters	as	probability	density	functions	(PDF)

§ We	hypothesize	that	most	of	the	error	in	JinC	simulations	is	
parametric,	not	model-form
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The	problem
§ The	model

§ Devising	a	method	to	calibrate	3	k-e parameters	C =	{Cµ,	C2,	C1}	from	expt.	
data

§ Calibration	parameters
§ C =	{Cµ, C1,		C2} ; Cµ:	affects	turbulent	viscosity;	C1 &	C2:	affects	dissipation	of	

TKE
§ Calibration	questions

§ Calibrate	to	3	different	datasets
§ Are	the	values	of	{Cµ, C1,		C2} similar?	Are	some	parameters	more	sensitive	to	

others?	Which	ones? 3
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Target	problem	- jet-in-crossflow

§ A	canonical	problem	for	spin-
rocket	maneuvering,	fuel-air	
mixing	etc.

§ We	have	experimental	data	(PIV	
measurements)	on	the	mid-plane;	
also	crossplane	for	M	=	0.8

§ Will	calibrate	to	velocity	on	the	
midplane	and	test	against	cross-
plane
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RANS	(k-w)	simulations	- crossplane results

§ Crossplane	results	for	streamwise	velocity	deficit
§ Computational	results	(SST)	are	too	round;	Kw98	doesn’t	have	

the	mushroom	shape;	non-symmetric!
§ Less	intense	regions;	boundary	layer	too	weak
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Details	of	the	study

§ Aims	of	the	calibration
§ Calibrate	to	velocity	measurements	on	the	midplane

§ Check	against	measurements	on	crossplane	(when	possible)
§ Calibrate	to	a	M	=	{0.6,	0.7,	0.8},	J	=	10.2	interactions

§ Check	if	they	yield	similar	estimates
§ Perform	calibration	by	posing	&	solving	a	Bayesian	inverse	problem

§ Estimate	C as	a	joint	PDF,	using	a	Markov	chain	Monte	Carlo	(MCMC)	
method

§ Technical	challenges
§ MCMC	requires	O(104)	calls	to	the	RANS	simulator

§ 3D	JinC	RANS	simulation	expensive;	replace	with	an	emulator	v =	f(;	C)
§ Arbitrary	combinations	of	(Cµ,	C2,	C1)	may	be	nonphysical

§ How	to	build	surrogates	when	(Cµ,	C2,	C1)	are	nonsensical?
§ What	functional	form	to	use	for	f(:;	C)?



The	Bayesian	calibration	problem
• Model experimental values at probe j as u(j)ex = u(j)(C) + e(j), e(j) ~ N(0, 
s2)

Λ vex 𝑪 ∝ ' exp −
𝑢 + − 𝑢 + C
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• Given prior beliefs p on C, the posterior density (‘the PDF’) is

𝑃 𝐶 v45 ∝ Λ v45 𝐂 𝜋8 𝐶8 𝜋- 𝐶- 𝜋9 𝐶9 𝜋: 𝜎

• P(C|uex) is a complicated distribution that has to be described by 
drawing samples from it

• This is done by MCMC
– MCMC describes a random walk in the parameter space to identify good 

parameter combination
– Each step of the walk requires a model run to check the new parameter



Making	emulators	- 1
§ Training	data

§ Parameter	space	C:	0.06	<	Cµ <	0.12;	1.7	<	C2 <	2.1;	1.2	<	C1 <	1.7
§ Cnom =	{0.09,	1.93,	1.43}	
§ Take	2744	samples	in	C using	a	space-filling	quasi	Monte	Carlo	pattern

§ Save	the	streamwise vorticity	field	wx(y;	C)

§ Choosing	the	“probes”
§ Will	try	to	create	emulators	for	each	grid	cell	on	the	crossplane
§ Most	grid	cells	have	lots	of	numerical	noise
§ For	a	given	run,	choose	the	grid	cells	with	vorticity	the	top	25%	

percentile	(56	grid	cells)
§ Take	the	union	of	such	grid	cells,	union	over	the	2744	members	of	the	

training	set	(comes	to	108	grid	cells)
§ We	will	try	to	make	emulators	for	these	108	grid	cells	with	large	vorticity
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Making	emulators	- 2
§ Model v in	grid	cell	j as	a	function	of	C i.e.	v(j) =	f(j)(C)

§ Approximate	this	dependence	with	a	polynomial
§ 𝐯(+) = 	𝑎A + 𝑎9𝐶8 + 𝑎-𝐶- + 𝑎C𝐶9 + 𝑎D𝐶8𝐶- + 𝑎E𝐶8𝐶- + 𝑎F𝐶-𝐶9 + ⋯

§ But	how	to	get	(a0,	a1,	….)	for	each	of	the	probe	locations	to	
complete	the	surrogate	model	for	each	probe?
§ Divide	training	data	in	a	Learning	Set	and	Testing	Set
§ Fit	a	full	cubic	model	for	 to	the	Learning	Set	via	least-squares	

regression;	sparsify using	AIC
§ Estimate	prediction	RMSE	for	Learning	&	Testing	sets;	should	be	equal

§ Final	model	tested	using	100 rounds	of	cross-validation
§ 10%	error	threshold	was	used	to	select	models	for	the	probes
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Making	emulators	- 3

§ Choosing	R
§ emulators	failed	– we	could	not	

model	any	surrogates	to	within	
10%	accuracy

§ This	is	because	many	C =	{Cµ,	C2,	
C1}	combination	are	nonphysical

§ We	compute	the	RMSE	vorticity	
difference	between	the	training	
set	RANS	runs	and	experimental	
observations
§ We	retain	only	the	top	25	
percentile	of	the	runs	(using	
RMSE)	as	training	data	(R)
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Making	the	informative	prior	

§ Our	emulators	are	valid	only	inside	R in	the	parameter	space
C

§ During	the	optimization	(MCMC)	we	have	to	reject	parameter	
combinations	outside	R (this	is	our	prior	belief	pprior(C))
§ We	define	z(C)	=	1,	for	C in	R	and	z(C)	=	-1	for	C outside	R
§ Then	the	level	set	z(C)	=	0	is	the	boundary	of	R

§ The	training	set	of	RANS	runs	is	used	to	populate	z(C)
§ We	have	to	“learn”	the	discriminating	function	z(C)	=	0	

§ We’ll	do	that	using	support	vector	machine	(SVM)	classifiers
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What	is	a	SVM	classifier?
§ Given	a	binary	function	y	=	f(x)	as	a	

set	of	points	(yi,	xi),	yi =	(0,	1)
§ Find	the	hyperplane	y	+	Ax	=	0	that	

separates	the	x-space	into	y	=	0	and	y	=	
1	parts

§ Posed	as	an	optimization	problem	
that	maximizes	the	margin
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§ In	case	of	a	curved	
discriminator,	need	a	
transformation	first
§ Achieved	using	kernels
§ We	use	a	cubic	kernel



Solution	of	the	inverse	problem
§ We	solve	the	calibration	

problem	with	MCMC	(DRAM)
§ The	treed	classifier	imposes	

the	prior	pprior(C)
§ About	25,000	MCMC	steps	

need	to	reach	converged	4-
dimemsional	(Cµ,	C2,	C1,	s2)	
PDFs

§ We	test	the	4-D	PDF	by:
§ Taking	100	(Cµ,	C2,	C1)	

samples	from	the	PDF
§ Running	the	RANS	simulator
§ Checking	the	flowfield

§ This	manner	of	prediction	is	
called	a	‘pushed	forward	
posterior’

13
Results for the M = 0.8, J = 10.2 case



Check	#	1	– mid-plane	comparisons

§ Good	match;	but	this	was	what	we	calibrated	to
14
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Check	#	2	– the	vorticity	field

§ The	improvement	is	significant.	And	this	was	NOT	the	
calibration	variable
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Check	#	3	– point	vortex	summary

§ Use	the	crossplane	vorticity	
fields	from	the	100	RANS	
runs	(‘pushed	forward	
posterior’)	to	compute
§ Total	circulation
§ Centroid	of	vorticity	field
§ Radius	of	gyration	of	

vorticity	field
§ Normalize	each	by	their	

experimental	counterpart
§ We	expect	to	get	an	

ensemble	of	values	for	each	
metric	around	1

16Results for the M = 0.8, J = 10.2 case



Comparison	of	all	runs
§ Repeated	the	

calibration	for	M	=	
0.6	and	M	=	0.7

§ Takeaways
§ C2 seems	to	be	

consistently	high
§ Cµ seems	to	be	

clustered	around	the	
higher	end

§ C1	seems	to	be	either	
near	nominal	or	at	the	
lower	bound
§ M	=	0.6	run	has	the	
work	model-data	
mismatch
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Velocities	for	M	=	0.7

§ Improvement	in	fit	over	the	nominal	case
18
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An	analytical	model
§ Jet	modeled	as	evolution	of	a	counter-

rotating	vortex	pair
§ The	velocity	deficit	in	the	core	modeled	as	a	

wake
§ RANS	simplified	and	cast	in	a	self-similar	form

§ Us ~	xn-1 ,	yjet ~	xn

§ 2	solutions:	near-field	(n	=	½)	and	far-field	
(n=1/3)
§ Near-field	solution	leads	to	estimates	of	(Cµ,	

C2,	C1)	=	(0.1,	2.1,	1.34)
§ Far-field	solution	provides	the	trajectory	of	

the	jet
§ Details:	DeChant et	al,	“K-ε Turbulence	Model	

Parameter	Estimates	Using	an	Approximate	Self-
Similar	Jet-in-Crossflow	Solution”,	submitted	AIAA	
Journal.	
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Comparison	– analytical	v/s	PDFs

§ Analytical	values	
show	a	shift	in	the	
right	direction

§ The	calibration	
was	not sweeping	
model-form	
errors	“under	the	
carpet”

20



Validate	model	v/s	experiment

21
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Comparing	vorticity

§ The	analytical	coefficients	are	quite	predictive
22
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Conclusions

§ We	performed	a	Bayesian	calibration	for	jet-in-crossflow	for	3	
different	Mach	numbers
§ Calibration	changed	the	predictive	skill	immensely
§ The	PDFs	for	the	3	cases	were	NOT	identical,	but	…
§ All	indicated	that	the	2/3	calibrated	parameters	should	be	changed,	

and	in	the	same	direction
§ We	worried	that	the	calibration	was	simply	compensating	for	model-

form	errors,	
§ and	not	indicating	that	the	nominal	values	of	the	parameters	(Cnom)were	
inappropriate

§ So,	we	developed	an	analytical	model	– no	fitting	to	data	was	
performed	– and	obtained	estimates	of	C
§ Which	agreed	with	our	calibrated	values	
§ And	also	had	better	predictive	skill	than	Cnom 23


