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Abstract 

In this study we developed an efficient Bayesian inversion framework for interpreting marine 

seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir 

characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is 

a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The 

inversion framework is tested by estimating reservoir-fluid saturations and porosity based on 

marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain 

Monte Carlo is scalable in terms of the number of chains, and is useful for computationally 

demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, 

the approach is used to efficiently and accurately estimate the porosity and saturations in a 
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representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus 

Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of 

reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the 

parameters in deep layers. The performance of the inversion approach for various levels of noise 

in observational data was evaluated – reasonable estimates can be obtained with noise levels up to 

25%. Sampling efficiency due to the use of multiple chains was also checked and was found to 

have almost linear scalability.  

 

Keywords: Seismic Amplitude Versus Angle; Controlled-Source Electromagnetic; joint inversion; 

Bayesian; Multi-chain Markov-chain Monte Carlo 

 

1 Introduction 

Successful marine gas reservoir characterization requires accurate estimation of reservoir 

properties such as porosity and fluid/gas saturations, and the quantification of errors/uncertainties 

in these estimates. Controlled-Source Electromagnetic (CSEM) data are known to be sensitive to 

the presence of hydrocarbons – as shown in Archie’s law (Archie, 1942), the electrical resistivity 

of reservoir rocks is highly sensitive to gas saturation through the link to water saturation. Such a 

dependence of bulk resistivity on gas saturation makes it possible to discriminate between 

economic and non-economic gas saturations. However, the CSEM data are insensitive to 

geological structural details, which makes standalone CSEM inversion challenging to interpret. 

Seismic data, on the other hand, provide detailed structural information and can help resolve rock 

properties such as porosity, but cannot distinguish fluid properties given the inadequate contrast 

in density and seismic velocities. Since seismic velocity and density have low sensitivity to 
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variations in gas saturation (Castagna and Backus, 1993; D e¸ bski and Tarantola, 1995; Plessix 

and Bork, 2000), both fluid and pressure changes have approximately the same degree of impact 

on the seismic Amplitude Versus Angle (AVA) data according to Gassmann’s 

equations(Gassmann, 1951). The two types of data (seismic AVA and CSEM) can therefore be 

used as supplementary information to each other to provide adequate constraints on reservoir 

properties. There have been successful applications of joint inversion of seismic AVA and CSEM 

data for characterizing marine reservoirs e.g.,(	(Aki and Richards, 1980)	(Chen et al., 2007)	(Du 

and MacGregor, 2010)	(Fliedner et al., 2011)	(Hou et al., 2006)	(Lang and Grana, 2015)). 

 

Although joint inversion of seismic AVA and CSEM data can provide better estimates of gas 

saturation and porosity than inversion of individual data sets (Chen et al., 2004; Chen et al., 2007; 

Hou et al., 2006), the integration of two types of data can be challenging due to the high 

dimensionality of the unknown parameter space. Consequently, parameter estimates and their 

uncertainties may vary significantly given the choice of inversion approaches (e.g., deterministic 

versus stochastic), designs of objective and likelihood functions and the transformation and 

weighting of observational data.  

 

In typical geophysical characterization, the existence of noise and the inadequacy (e.g., spatial and 

temporal coverage and resolution) of the data imply that the problem is ill constrained and 

therefore, geophysical characterization is a good target for statistical inference. Since there is 

usually an infinite number of models that can fit the data, it is useful to employ stochastic 

approaches (e.g., Bayesian), where unknowns are inferred in the form of a posterior probability 

density function (PDF), thus automatically quantifying the uncertainty in the estimates of the 
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unknowns. The estimation problem is posed as a statistical inverse problem, which provides an 

expression for the posterior density (alternatively, the joint PDF of the unknowns of interest). The 

PDF is realized by drawing samples using a method such as Markov chain Monte Carlo (MCMC). 

MCMC (Liang et al., 2011) methods describe a random walk in the parameter space. Each step in 

the walk is evaluated by running a forward model to gauge the quality of a new parameter proposal 

(alternatively, a proposed step in the random walk). Most proposed steps are rejected, making 

MCMC very expensive, since a sufficient number of samples need to be taken to recover the PDF. 

To reduce computational time, multi-chain (i.e., parallel) MCMC methods have been developed. 

Our MCMC procedure starts with 4 chains running DREAM (DiffeRential Evolution Adaptive 

Metropolis;	 (Vrugt et al., 2009))When a sufficient number of samples have been collected by 

DREAM to make a useful proposal distribution, the MCMC method transitions to a parallel (4 

chains) AM (Adaptive Metropolis;(Haario et al., 2006)), implemented in a manner identical to 

Solonen’s method (Solonen et al., 2012). 

 

In our paper, we considered a five-layer reservoir model, similar to the synthetic model setup in 

(Hou et al., 2006), to demonstrate the accuracy and efficiency of the newly developed multi-chain 

MCMC-Bayesian approach. The unknowns include gas saturation and porosity in each layer in the 

reservoir. We also investigated the performance of the proposed approach under different levels 

of noise in both seismic AVA and CSEM observational data, and evaluated the efficiency and 

scalability of the multi-chain MCMC.  

 

The paper is organized as follows. Section 2 introduces the methodology, followed by the results 

and discussions in Section 3. Concluding remarks are presented in Section 4. 
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2 Methodology 

2.1 Seismic AVA and CSEM Modeling 

In seismic modeling, the reservoir variables of interest are porosity (φ), water (Sw) and gas 

saturation (Sg) within the reservoir. The Zoeppritz equation (Aki and Richards, 1980)was used to 

model the angle-dependent reflectivity, which is convolved with the compressional wave 

reflection coefficient to form the calculated seismic AVA responses (Shuey, 1985). ρ, Vp and Vs 

(density, compressional and shear wave velocities) of the reservoir are calculated from water and 

gas saturation and porosity using a rock-physics model as described by (Dvorkin and Nur, 1996) 

and (Hoversten et al., 2003)The model parameters are adopted from(Chen et al., 2007) . The bulk 

and shear moduli and density are assumed known, and in practice can be obtained from nearby 

well logs or can be included in the unknown parameters to be inverted.  

 

CSEM data are the amplitude and phases of the recorded electrical field as a function of frequency 

and transmitter-receiver offsets. This data is gathered at 21 receivers located on the seafloor. 

CSEM data are the responses to the electrical conductivity of the entire half-space, which includes 

the seawater (σs), the overburden (σo) above the reservoir, the reservoir and the bedrock beneath 

the reservoir. For the EM forward model, we applied an integral-equation solution for the electric 

field from an electric-dipole source within a layered medium (Ward and Hohmann, 1988). The 

sensitivity of electrical resistivity of reservoir rocks linked to water saturation can be modeled by 

Archie’s law (Archie, 1942). 
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We assumed that the rock-physics models and Archie’s law (which relate seismic velocity density 

and electrical conductivity) are given and exact. The pore pressure was also assumed to be constant. 

We also assume the effects of multiple reflections and waveform spreading can be neglected in 

seismic AVA data. The rock-physics model and Archie’s law parameters used in our inversion are 

listed in Table1.  

 

2.2 Bayesian Framework   

We first explain the basic formulation of a Bayesian inverse problem and then adapt it for our 

problem. Consider a model	Y	=	M(q),	which is driven by parameters	q.	Consider, too, that we 

have observations	Y(obs)	=	{yj(obs)},	j	=	1	…	M,	of	Y.	So	Y(obs)	is a vector of M observations.	We seek 

to infer	q	from	Y(obs).	We relate the model predictions to the observations using an error model, in 

our case, a Gaussian with zero mean 

Y(obs) =M 𝜃 + 	𝜺, 𝜺 = 	 𝜀( , 𝜀(	~	N(0, 𝜎-).	 (1) 

Here 𝜀( are the “errors” or the model-data mismatch. It is a composite of the measurement error 

and, in	 real-data inversion, the structural error. The structural error is the mismatch between 

observations and model predictions due to “missing physics” i.e., model approximations. Under 

this formulation, the likelihood of observing a single observation	𝑦0
123 , for a given value of 	𝜃, is 

𝑓 𝑦0
123 𝜃) = 	

1
2𝜋 8/-𝜎 exp −

𝜀0-

2𝜎- =
1

2𝜋 8/-𝜎 exp −
𝑦0
(123) −M0 𝜃

-

2𝜎- 		
(2) 

where Mj(q)	 is the	 jth	 component of the model prediction. Consequently, the likelihood 

𝑓 Y 123 𝜃)	of	observing the data	Y(obs)	for any given value of	q, is given by 
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𝑓(Y obs 	 	𝜃 = 𝑓 𝑦0
(123)|𝜃

?

0

= 	
1

2𝜋
?
-	𝜎?

exp −
Y(obs)	-	M(𝜃)

-
-

2𝜎- 	
(3) 

	

where	 ⋯ -	is the	L2	norm. If one has two types of observations		Y1(obs)	and	Y2(obs),	of lengths	M1	

and	M2,	corresponding to two models driven by two different sets of parameters	M(q1)	and	M(q2),	

the likelihood expression is written as 

𝑓(Y1 obs ,	Y2 obs 		 	𝜃8, 𝜃- = 	 8

-A
BCDBE

E	 FC
BCFE

BE	
exp −

GC Y1(obs)-	MC HC E
E

-FCE?C
−

	
GE Y2(obs)-ME HE E

E

-FEE?E
		

(4) 

Here, we have adjusted for the unequal number of observations of two types, as well as the fact 

that their error models may have different	s.	We have also accommodated the fact that the two 

data streams	Y1(obs)	and	Y2(obs)	could be differentially weighted with weights	w1	and	w2.	Given 

probability distributions that express our prior belief in the distributions of the parameter i.e.,	p(q), 

we can use Bayes’ formula to write out an expression for the posterior distribution 

𝑓 𝜃	 	Y obs ∝ 𝑓(Y(obs) 𝜃)	𝜋(𝜃).	 (5) 

Extending this formula for the posterior distribution when we have two observational datasets	

Y1(obs) 	and	Y2(obs) 	is straightforward. Note that in general	𝑓 𝜃 Y 123 	is a general probability 

density (and not an analytical one like log-normal or Gamma), and does not have a closed form 

expression. One has to draw samples from it, using a method such as Markov chain Monte Carlo, 

and histogram the samples to visualize it. We now adapt this formulation to our inverse problem 

that uses both seismic and EM data. 
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The estimation problem is posed with the assistance of two forward models for seismic (elastic 

wave) transport and electromagnetic wave propagation. The unknowns being estimated are gas 

saturations 𝑺K = 	 𝑆K,(  and porosities	𝝋 = 	 𝜑( , 𝑖 = 1⋯5, in the 5 layers of the target zone (see 

Fig. 1). The first model, 𝑴RSR , uses wave speeds (𝑉U, 𝑉3)	and density (𝜌) in the overburden, 

bedrock and target zone (see Fig. 1) to predict the seismic AVA data. The wave speeds and density 

in the bedrock and overburden are assumed known, and computed using 𝑺Kand 𝝋 in the target 

zone, with rock physics models. Note that 𝑆G,( = 1 −	𝑆K,(  and we will use this relationship 

repeatedly to remove 𝑆G,( as an unknown to be estimated. We define a matrix AVA={𝐴𝑉𝐴(0} to 

represent the seismic AVA data (observations), where 𝑖 = 1,2…	𝑛Z  and 	𝑗 = 1,2…	𝑛\ . 𝑛Z  and 

𝑛\	are the numbers of time samples and incident angles respectively. The AVA observations and 

model predictions are related as follows 

𝐴𝑉𝐴(0 = 𝑀(0
RSR 𝑺𝒈, 𝝋 +	𝜀(03  (6) 

where 𝑀(0
RSR is the ijth component of the model and 𝜀(03  is corresponding measurement error.  

 

We model the electromagnetic (Miotti and Giraud, 2015) observations in a similar manner. The 

second model, 𝑴_?, uses electrical conductivity s in the overburden, target zone and bedrock to 

compute EM phase angles and amplitudes. The conductivity is assumed known in the overburden 

and bedrock and computed from 𝑺Kand 𝝋 in the target zone using Archie’s law. We use 𝑆G,( =

1 −	𝑆K,(  to obtain the water saturation values required by Archie’s law. We define the matrix 

𝐄𝐌 =	 𝐸𝑀(0  to represent the CSEM data matrix, with 𝑖 = 1,2… . 𝑛1 indexing receivers’ offsets 

and 𝑗 = 1,2	. .. 𝑛d	indexing CSEM frequencies. Since the amplitudes of the recorded electrical field 

span several orders of magnitude, we added a relative ratio εfgh  to the measurement error to adjust 
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its magnitude in the model. The relative ratio ε(0h 	is the normalization of each receiver offset to the 

furthest one.  

𝐸𝑀(0 = 𝑀(0
_? 𝑺𝒈, 𝝋 +	𝜀(0_?	εfgh  (7) 

 

Thus, for any given 𝑺𝒈,𝝋 , the likelihood of observing AVA and EM are given by  

f (RSR) 𝐀𝐕𝐀 𝐒𝐠, 𝛗 	∝ 	exp[−
1

Nqrq
wqrq(

εfgqrq

2σ
)-

uv

gw8

ux

fw8

] 
(8) 

 

f (_?) 𝐄𝐌 𝐒𝐠,𝛗 	

∝ 	exp −
1

Nqz{
w|z(

εfg|zεfgh

2σ
)-

u}

gw8

u~

fw8

−
1

Nq��
w|z(

εfg|zεfgh

2σ
)-

u}

gw8

u~

fw8

 

(9) 

where 			wqrq is the weight of seismic AVA incident angles, and w|zis the weight of CSEM data 

which contains both EM amplitudes and phase angles. wqrq	and	w|z	are used to reduce the 

impact of small observational values. During joint inversion using both seismic and CSEM data, 

the weights wqrq  and w|z  are set to be 0.2 and 1.2, respectively, in order to balance the 

contributions of seismic (with 80*5 data points) and CSEM (with 21*3 combinations of frequency 

and receiver locations) data to the likelihood functions. Nqrq, Nqz{ and Nq�� are the numbers of 

observations (seismic AVA, EM amplitude and phase angle) respectively. 	

Given these likelihoods, we use Bayes’ formula to construct an expression for the posterior density 

𝑓 𝑺𝒈,𝝋	 	𝐀𝐕𝐀, 𝐄𝐌) as 

𝑓 𝑺𝒈,𝝋 𝐀𝐕𝐀, 𝐄𝐌 ∝ 	𝑓 RSR 𝐀𝐕𝐀 𝑺𝒈,𝝋 	𝑓 _? 𝐄𝐌 𝑺𝒈,𝝋 	𝜋 𝑺𝒈 	𝜋(𝝋). (10) 
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here, 𝜋 :  denotes our prior beliefs regarding 𝑺Kand 𝝋. We assume that they are independent and 

can be modeled as uniform distributions: 𝑆K,(~	𝑈 0, 1  and 𝜑(~	𝑈(0, 0.3) . The posterior 

distribution is too complex to be derived analytically and consequently, we will approximate 

𝑓 𝑺𝒈,𝝋	 	𝐀𝐕𝐀, 𝐄𝐌) by drawing samples from it using MCMC and constructing kernel density 

estimates of the distribution from them. 

 

2.3 Multi-Chain MCMC Framework 

A multi-chain MCMC framework is used to generate posterior densities of model parameters, 

given observational data and a prior density on model parameters. A single-chain MCMC method 

describes a random walk through the parameter space 𝜃 = 	 𝑺𝒈, 𝝋 . In our case, the steps in the 

random walk are generated using a Metropolis-Hastings (MH) sampler. It requires a proposal 

distribution (most commonly a multivariate normal distribution q(µ, G), where µ and G are its 

mean and covariance matrix respectively. Assume that the MCMC method has taken i steps in its 

random walk, and its current position in the parameter space is 𝜃(. The MH sampler first samples 

a candidate 𝑌  from the proposal density function 𝑞 𝑌|𝜃(, Γ . It runs the forward model and 

computes the right hand side of Eq. 5, which is equal to the posterior density 𝑓 𝐀𝐕𝐀, 𝐄𝐌	 𝑌) 

modulo a scaling constant. It then calculates the acceptance ratio as 

𝛼(𝜃(, 𝑌) = min	 1,
𝑓(𝐀𝐕𝐀, 𝐄𝐌|𝑌)	𝑞(𝑌|𝜃(, Γ)
𝑓(𝐀𝐕𝐀, 𝐄𝐌|𝜃()	𝑞(𝜃(|𝑌, Γ)

 
(11) 

 

If 𝛼 𝜃(, 𝑌 > 𝑈, then the new sample is 𝜃(�8 = 𝑌, else the new sample is 𝜃(�8 = 𝜃(. U is a random 

number drawn from a uniform U[0, 1] distribution. MCMC usually requires more than 10,000 

evaluations of the forward simulation model, which can be very expensive. This cost is reduced in 
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two ways. First, we adapt (recomputed) G using existing samples so that q(:, :) resembles an 

inflated version of the posterior distribution; this adaptation is performed in the manner described 

by the DRAM algorithm (Haario et al., 2006) . Note that we do not use Delayed Rejection 

component of the DRAM method in our MCMC approach; strictly speaking, our sampler only 

performs Adaptive Metropolis (AM) sampling. Secondly, we amortize the sampling cost over 

multiple chains, as described in (Solonen et al., 2012) . While AM might periodically update its 

proposal covariance G one needs to start it with an initial proposal covariance. This presents a 

challenge – if it is too conservative (too narrow), the MCMC method will only explore in the 

neighborhood of the initial starting point and take a large number of steps to explore the parameter 

space fully. If G is too wide, most of the proposals will be far from the region with most of the 

probability mass, and the proposals will mostly be rejected, leading to chains that do not mix.  In 

order to circumvent this problem, we start the sampling procedure using DREAM (Vrugt et al., 

2009) , which does not require a proposal distribution. Once a number of samples, sufficient to 

produce a crude approximation of the posterior density, have been collected, we switch to a 4-

chain AM sampler. 

 

3 Results 

3.1 Synthetic studies 

As shown in Fig. 1, a realistic layered reservoir model (Chen et al., 2004)	(Hou et al., 2006) is 

considered in our study. The synthetic reservoir model includes five layers with a thickness of 50 

m and zero oil saturation. Thus Sw  + Sg  = 1 in any layer. The target horizon is 1050m below the 

seafloor that includes 500m of seawater and a 550 m thick overburden under the seawater. From 

the upper to the bottom layers, the true gas saturation values are 0.05, 0.95, 0.4, 0.9 and 0.1, 
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respectively. The corresponding true porosity values are 0.15, 0.25, 0.15, 0.1 and 0.05, respectively. 

Seismic AVA data used for this study are normal move out (NMO) corrected angle gathers 

generated by convolving a 50 Hz Ricker wavelet with the angle-dependent reflectivity for each 

layer interface. The data is sampled at 2ms resolution for five incident angles (0°, 10°, 20°, 30°, 

and 40°) and calculated using the Zoeppritz equation. The marine CSEM system consists of a ship-

towed electric dipole source and a number of seafloor-deployed recording instruments capable of 

recording orthogonal electric fields.  The electric dipole transmitter is 200m in length and 50m off 

the seafloor to avoid collision with stationary receiver systems. The CSEM data includes the 

amplitude and phase as recorded by 21 receivers at 0.5, 1, and 2 Hz, respectively. The receivers’ 

offsets are set up to 5000m. The prior distributions of porosity and gas saturation at each layer are 

assumed to be uniform within [0, 0.3] and [0, 1], respectively. 

 

3.2  Seismic-Only Inversion 

A seismic-only inversion is first performed using four MCMC chains. The chains are run for 

10,000 generations i.e., each chain runs for 10,000 steps, and a total of 40,000 samples are 

collected. The covariance matrix is updated every 20 steps. The posterior bounds (2.5th and 97.5th 

percentiles) for porosity are listed in Table 2, and they are quite tight.  This is not surprising since 

the AVA data is quite sensitive to porosity.  

 

Adjusting the bounds to the narrower ones in Table 2 can significantly increase the convergence 

when inverting for all 10 variables i.e., porosity and gas saturation in the 5 layers of the target zone. 

Therefore, these updated bounds for porosity are later used for joint inversion using both seismic 

and CSEM data.   
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The marginalized posterior PDFs of gas saturation and porosity using seismic-only inversion are 

shown in Fig. 2. The PDFs indicate accurate estimation of porosity with relatively low uncertainty 

(i.e., narrow bounds) in each layer. For gas saturation estimation, seismic-only inversion infers the 

upper layers (e.g., layer 1) accurately, with relatively small uncertainty. The predicted modes of 

the PDFs are close to the actual values for the rest of the layers, but the uncertainty level of layer 

3, 4 and 5 are large. This is expected because seismic AVA responses are less sensitive to gas 

saturation changes. 

 

Next, we evaluate the effect of noise levels in the observations on reservoir parameter estimation. 

We generated identical and independently distributed standard normal (𝒩(𝜇 = 0, 𝜎- = 1) ) 

random deviates and added them to the observations. In order to investigate the effect of a steadily 

worsening signal-to-noise ratio, the random deviates were multiplied by a factor. In the tests below, 

we varied the magnitude of the factor from 10% to 30% of the standard deviation of observations 

at each of the receivers/sensors. The marginalized posterior PDFs of porosity using observations 

with various levels of noise are shown in Fig. 3. The porosity estimation is acceptable when the 

noise level is less than 25%; further, the uncertainty levels are comparable. When the noise level 

exceeds 25%, the multi-chain MCMC does not converge to the true parameter value and the chains 

cannot mix well.  

 

3.3 Joint Inversion 

This section demonstrates the benefits adding CSEM data to AVA data when estimating 𝑺𝒈, and 

indirectly 𝑺𝒘. Although Archie’s law states that CSEM data can be sensitive to reservoir water/gas 
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saturations, such sensitivity should vary with offset distance and operating frequency. Therefore, 

a sensitivity analysis was performed to discover the most sensitive ranges and frequencies in the 

CSEM data given our model setup. Quasi Monte Carlo (QMC) sampling is an efficient sampling 

technique to explore the multi-dimensional parameter space and has been widely used in the 

sensitivity analysis (Niederreiter, 1978),(Hou et al., 2012),(Ren et al., 2016).	2000 QMC sample 

sets were generated for water saturation (alternatively, gas saturation) for the 5 layers, and the 

resulting ensemble of CSEM responses (amplitude and phases) are shown as boxplots at each 

location in Fig. 4. The CSEM signals seem to be the most sensitive to reservoir saturation when 

the receiver is located between distances of 500m to 5,000m. Furthermore, since the amplitude of 

the CSEM data decreases rapidly with the increasing offsets, receivers deployed at near offsets 

receive more stable and informative signals. This is similar to seismic AVA data, where signals 

with smaller incidence angle data are stronger.  

 

Comparing the seismic inversion and joint inversion results, we find insignificant differences in 

the porosity estimates, but the improvement in gas saturation estimation is significant, especially 

for the bottom layers. In addition, the joint inversion greatly reduces the uncertainty in gas 

saturation estimates, as can be seen for layers 2, 4, and 5 in Fig. 5. The joint inversion clearly 

identified the two high-gas concentration layers (layer 2 and 4).  

 

We also investigated the impact of observational noise on the gas saturation estimation, with noise 

levels of 10, 15, 20, 25, and 30 percent, in both the amplitude and phase components. The 

corresponding PDFs of gas saturation are shown in Fig. 6. The marginalized posterior PDFs are 
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reliable with noise levels up to 15%. Although gas saturation seems to have been estimated 

accurately in the top and bottom layers when the noise level is high (e.g., 30%), the corresponding 

uncertainty can be very high. Moreover, the inversion accuracy might not increase monotonically 

with the noise level because it is also affected by the way noises were generated and added.  

 

3.4 Validation  

Comparing the modes or maximum a posteriori estimates of PDFs to the true values of gas 

saturation and porosity is one of the ways of checking for the accuracy of an inversion. Being able 

to reproduce the observed AVA and EM data provides a second and independent validation of the 

inversion results. We draw 1,000 samples of 𝑺𝒈,𝝋  from the posterior distribution with no noise, 

10% noised and 30% noise and proceed to perform forward simulations with them. The predictions 

of this ensemble of runs are summarized in Fig. 7 and 8, for the seismic and CSEM observations 

respectively. For the cases of no noise and 10% noise, the dotted line (median of the 1000 

predictions) is close to the observations for seismic data (Fig. 7), and the amplitudes and phase in 

CSEM data (Fig. 8). The inter-quartile range brackets most of the observations, note that the 

horizontal axis in Fig. 8 is log-transformed and the amplitudes with disagreement between 

predictions and observations are at offsets where the amplitudes are two orders of magnitude 

smaller than the near offsets. And the degree of agreement of the CSEM amplitude to observational 

data is about the same as that of the phase angle. When the noise level increases to 30%, most of 

the observations are outside of the inter-quartile predictions range, especially for the amplitudes 

and phases in CSEM data. The conclusions are consistent with our posterior PDFs. Finally, we 

summarize the goodness-of-fit between the observations and ensemble of predictions using the 

Continuous Rank Probability Score (CRPS), Mean Absolute Error (MAE) and the optimal 
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fingerprint distance 𝑑��. The first two metrics have dimensions of the variable being quantified 

while the latter is non-dimensional. Below we provide a summary of the metrics; details can be 

found in (Thorarinsdottir et al., 2013)	and (Gneiting and Raftery, 2007) 

 

Let 𝑦(
(123)be an observation e.g., it could be one of the dots in Fig. 7. Corresponding to 𝑦(

(123) are 

the N = 1,000 predictions	𝑦(,0, 𝑗 = 1	⋯𝑁. In such a case, one can construct 𝐹( 𝑦 , the cumulative 

distribution function (CDF) for 𝑦(,0 . The Heaviside function 𝐻 𝑦 −	𝑦(
(123)  is the CDF of the 

observation 𝑦(
(123). The CRPS for any observation 𝑦(

(123)is given by 

𝑐𝑟𝑝𝑠 𝑦(
(123) = 	 𝐹( 𝑦 − 𝐻 𝑦 −	𝑦(

(123)
-
𝑑𝑦

�

��
	 

(12) 

 

The CRPS for all the observations is simply a mean of the CRPSs’ of the individual ones. Similarly, 

we define the MAE for a given observation 

 

𝑚𝑎𝑒 𝑦(
(123) = 	 𝑦(

(123) −	𝑦(,0¡
0w8 . (13) 

 

Finally, let 𝒚(123) = 	 𝑦(
(123)  and 𝒚 be the mean prediction of the ensemble of 1,000 runs. We 

model the N predictions as draws from a multivariate Gaussian distribution 𝑁 𝒚, 𝛾 , where the 

exact form of the covariance matrix g is left to the modeler. We model g as a diagonal matrix. The 

optimal finger print distance 𝑑��is defined as 

 

𝑑�� = 	 𝒚(123) −	𝒚
¤𝛾�8 𝒚(123) −	𝒚  (14) 
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In Table 3 we summarize the comparison between AVA observations and 1,000 ensemble 

predictions of the same, as plotted in Fig. 7. We see clearly that predictions at Receiver 1 (0o) are 

the best, resulting in the smallest values for all 3 metrics.  In Table 4, we tabulate the same metrics 

for the CSEM phase observations and predictions, as plotted in Fig. 8 (top). We see that the 0.5 

Hz measurement channel shows best agreement between observations and predictions, as captured 

by the dimensional metrics (CRPS and MAE) as well as the non-dimensional dOF. In Table 5, we 

summarize the agreement between CSEM amplitude observations and posterior predictions as 

plotted in Fig. 8 (bottom). The 1 Hz channel has the smallest dimensional metrics, primarily due 

to the smaller measured amplitudes; the non-dimensional metric, which is insensitive to the 

magnitude of the measurements, shows that the 0.5 Hz channel’s observations are reproduced best 

by the ensemble predictions. This is likely because the absolute magnitudes of the lower frequency 

signals are larger, and the misfits between simulated and observed magnitudes are relatively bigger 

and therefore dominates the higher frequency ones in the likelihood functions.  

 

3.5 Multi-Chain MCMC Inversion  

The inversion results with different numbers of chains are compared in Fig. 9. The posterior PDFs 

are plotted using the same number of sample sets, i.e., 40,000 iterations for the single chain, 10,000 

iterations for the 4-chain inversion, and 2,500 iterations for the 16-chain inversion, and so on. 

Figure 9 shows that the PDFs are comparable, prove that multi-chain MCMC can achieve 

convergence earlier (in terms of wall-clock time) than the single-chain version, and the scalability 

is almost linear.   
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The scalability of the multi-chain MCMC method, as the number of chains is increased, is difficult 

to assess empirically. This is due to two reasons. First, the number of steps required to reach a 

converged PDF depends partially on the starting points of the chains, which change as we vary the 

number of chains. The second difficulty arises from the fact that the ratio of communication to 

computational costs depend immensely on the forward problem.  

 

Consider an inversion with P chains, solving for M parameters.  The chains sample independently 

for q steps, after which they update their proposal covariance. This requires an all-to-all 

communication between all processors, with each processor exchanging qM numbers. This 

broadcast, theoretically, can be accomplished in P log2 P steps, incurring a total communication 

cost of K1 q M P log2 P. Since both q and M for most inverse problems will be small, the 

communication costs do not scale badly. On the other the computational cost of the forward 

problem, in our inversion, scales as K2 q M. Therefore, the ratio of communication to computation 

cost scales as K1  P log2 P / K2. Depending upon the values assumed by K1 and K2, the ratio can be 

quite small and the inverse problem will scale reasonably well in practice. In our case, each 

invocation of the forward model takes 0.41 seconds while the communication costs of doing a 

broadcast of 20 x 10 = 200 numbers, over 4 processors is minuscule and difficult to measure.  

 

4 Conclusion 

In this study, we propose a multi-chain MCMC-Bayesian framework to estimate marine reservoir 

gas saturation and porosity using seismic AVA and marine CSEM data. We demonstrate the ability 

of our approach to solve nonlinear statistical inverse problems by constructing a 10-dimensional 

posterior density for gas saturations and porosities of a layered underwater gas reservoir. The 
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posterior density is complex and is approximated by samples drawn by a multi-chain MCMC 

technique that is a hybrid of DREAM and AM samplers. The probability density functions of gas 

saturations and porosities capture the true values and provide a measure of the uncertainty in the 

estimated quantities. We also find that multi-chain inversion converges to the final posterior 

density faster than the single-chain, and the scalability is almost linear.  

 

For a layered synthetic model, our approach can identify and confirm the locations of gas-rich 

layers regardless of whether they are shallow or deep. Seismic-only inversion can identify the 

porosity correctly but has difficulties when estimating gas saturations. With the information 

provided by seismic-only inversion in hand, incorporation of CSEM data decreases the uncertainty 

in gas saturation estimates and increases the ability to distinguish high or low gas concentrations 

in deep layers.  

 

The investigation of the impact of observational noise shows that our approach can capture the 

true values of porosity using data with a noise level of up to 25% in the observed seismic AVA 

data. It can correctly estimate gas saturation with up to 15% noise in CSEM data. Beyond these 

noise levels, the multi-chain MCMC has difficulty in mixing and the sampler does not converge 

to a distribution. We also find that the very top and bottom layers are better characterized in the 

current setup.  
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Figure 

Figure 1. Schematic map of the inversion domain. The target zone is parameterized by 𝑆G, 𝑆K and 

𝜑. The reservoir is located below a 550-thick overburden and a 500m-thick seawater layer. 

Seismic velocity, density, bulk moduli, and electrical conductivity above and below the reservoir 

are assumed to be known. 

Figure 2. Seismic-only inversion for estimating gas saturation and porosity. The left panels are 

the estimates of gas saturation from top to bottom layers; the right panels are the porosities of the 

same layers. The red vertical lines are the true values for each variable.   

Figure 3. Porosity estimates from seismic-only inversion using data with different levels of 

Gaussian noise. 

Figure 4. Boxplot for the sensitivity study of receivers’ range for CSEM model 

Figure 5. Marginalized posterior PDFs of gas saturation and porosity from joint seismic and 

CSEM inversion. The solid black lines are PDFs from the seismic-only inversion and the dashed 

green lines are from the joint inversion. The vertical red lines are the true values for each 

variable.   

Figure 6. Gas saturation estimation using joint seismic and CSEM inversion with added Gaussian 

noise. The vertical red lines are the true values for each variable.   

Figure 7. Posterior predictive simulations of seismic AVA responses using 1,000 samples of gas 

saturation and porosity drawn from the posterior density with (a) no noise, (b) 10% noise added 

and (c) 30% noise added. The symbols are the observations and the dotted line the median 

prediction. The error bars denote the inter-quartile range and the dashed lines are the outliers.  

Each subplot corresponds to one receiver. 
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Figure 8. Posterior predictive simulations of CSEM amplitude and phase angle responses for (a) 

no noise, (b) 10% noise added and (c) 30% noise added. The symbols are the observations and 

the dotted line the median prediction. The error bars denote the inter-quartile range and the 

dashed lines are the outliers. Each subplot corresponds to one frequency. 

Figure 9. Posterior PDFs of gas saturations from the joint inversion with different numbers of 

chains.    
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Table 

 Table 1. The rock-physics model and Archie’s law parameters used in the inversion. 

Inversion domain 

(each layer) 

Inversion domain thickness 50 

Pore pressure (GPa) 19.03 

Effective pressure(GPa) 5.84 

Temperature(ºC) 55 

Reservoir(Rock-

physics model 

parameters) 

 

Grain shear pressure(GPa) 40.3278 

Grain Poisson ratio 0.05987 

Grain density(kg/m3) 2759.64 

critical porosity 0.37 

Number of grain contacts 11.7766 

Oil API gravity 59 

Gas gravity 0.03625 

Archie’s law 

coefficients 

Archie’s law constant 0.46426 

Water saturation exponent -1.8646 

Porosity exponent -1.3855 
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  Table 2. The updated bounds of porosity for five layers obtained in seismic-only inversion. 

 

 𝜑8 𝜑- 𝜑¥ 𝜑¦ 𝜑§ 

True value 0.15 0.25 0.15 0.1 0.05 

Narrow bounds [0.129, 0.150] [0.249, 0.289] [0.139, 0.164] [0.097, 0.117] [0.029, 0.071] 
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Table 3. CRPS, MAE and dOF summaries of the seismic AVA observations and posterior 

predictions at various receivers in Fig. 7 

Receiver R1 (0o) R2 (10o) R3 (20o) R4 (30o) R5 (40o) 

CRPS 9.05e-04 2.12e-01 2.45e-02 5.39e-03 4.25e-01 

MAE 2.60e-03 5.04e-01 6.20e-02 1.50e-02 1.13 

𝑑�� 1.60e+01 2.2e+01 3.64e+01 1.96e+01 1.83e+01 
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Table 4. CRPS, MAE and dOF summaries of the CSEM phase observations and posterior 

predictions in Fig. 8 (top) 

Frequency 0.5 Hz 1 Hz 2 Hz 

CRPS 2.01e+01 3.48e+01 6.18e+01 

MAE 2.55e+01 4.00e+01 7.33e+01 

𝒅𝑶𝑭 5.17e+02 8.60e+02 8.78e+02 
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Table 5. CRPS, MAE and dOF summaries of the CSEM amplitude observations and posterior 

predictions in Fig. 8 (bottom) 

Frequency 0.5 Hz 1 Hz 2 Hz 

CRPS 2.11e-12 2.04e-12 2.47e-12 

MAE 3.91e-12 3.38e-12 3.55e-12 

𝒅𝑶𝑭 1.04e+02 1.35e+02 1.58e+02 

 

	

 

 


