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Abstract 
Traditional multiple imputation approaches may perform poorly for datasets with high 
rates of missingness unless many m imputations are used. This paper implements an 
alternative machine learning-based approach to imputing data that are missing at high 
rates. We use boosting to create a strong learner from a weak learner fitted to a dataset 
missing many observations. This approach may be applied to a variety of types of 
learners (models). The approach is demonstrated by application to a spatiotemporal 
dataset for predicting dengue outbreaks in India from meteorological covariates. A 
Bayesian spatiotemporal CAR model is boosted to produce imputations, and the overall 
RMSE from a k-fold cross-validation is used to assess imputation accuracy.  
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1. Introduction 

 
Missing data are common in disease surveillance studies, particularly in regions where 
public health infrastructure is limited, such as rural areas1. When data are missing at high 
rates, the challenge of imputing missing data accurately is amplified2. Machine learning 
approaches, such as boosting, may be advantageous in imputing data that are missing at 
high rates by leveraging the information gained by many weak learners to form one 
strong learner. We consider that one manifestation of a “weak” learner could be that it is 
trained on a dataset with many missing observations. An analogous approach has been 
shown to be effective for discrete data, so here we consider the continuous case3. The 
question we seek to answer is, does boosting improve imputation accuracy, and how does 
its efficacy change over rates of missingness? 
 

1.1 Boosting 
We chose to use Friedman’s gradient boosting machine because it is one of the simplest 
implementations of boosting4-7. Assume we have a response, y, and we have a vector of 
predictors, 𝒙. The goal is to estimate 𝒙

𝑓
→ y with 𝑓(𝒙) such that the expectation of the loss 

function  𝛹(𝑦, 𝑓) is minimized: 

𝑓(𝒙) = (𝐸𝑦,𝒙𝛹 (𝑦, 𝑓(𝒙)))
𝑓(𝒙)

𝑎𝑟𝑔𝑚𝑖𝑛

. 
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The procedure is as follows. Initialize 𝑓(𝑥) to be constant. For 𝑡 in 1,  … ,  𝑇 do the 
following. 

1. Compute the negative gradient  

𝑧𝑖 = −
𝜕

𝜕𝑓(𝒙𝒊)
𝛹(𝑦𝑖 , 𝑓(𝒙𝒊))|

𝑓(𝒙𝒊)=�̂�(𝒙𝒊)

 

2. Fit model 𝑔(𝒙) that predicts 𝑧𝑖 from 𝒙𝒊 
3. Choose a gradient descent step size as  

𝜌 =𝜌
arg 𝑚𝑖𝑛

∑ 𝛹(𝑦𝑖 , 𝑓(𝒙𝒊) + 𝜌𝑔(𝒙𝒊))

𝑁

𝑖=1

 

4. Update the estimate of 𝑓(𝑥) as 

𝑓(𝒙) ← 𝑓(𝒙) + 𝜌𝑔(𝐱) 
In this study, gradient boosting is equivalent to iteratively re-fitting the residuals of the 
model. We implemented this boosting procedure both in a simulation study and in an 
application to spatio-temporal data on dengue cases in India.  
 

2. Methods 

 
2.1 Simulation Study 

 

2.1.1 Procedure 
The goal of the simulation study was to determine if boosting resulted in more accurate 
imputations compared to a traditional, non-boosted approach. To do so we followed the 
procedure below. 

1. Simulate data to have the following features: 
𝑥1𝑖 = 0.05,  0.10,  0.15,  … ,  5.00 

𝑥2𝑖 = exp(0.25 ∗ 𝑦𝑖) + 𝜀1 
𝑦𝑖 = sin(𝑥) + 2 sin(𝑥) + 6 sin(7𝑥) +  𝜀2 

𝜀1 ~ 𝑁(0,  0.5) 
𝜀2 ~ 𝑁(0,  0.5) 
𝑖 = 1, … ,  100. 

2. Set the rate of missingness to be either 5, 10, 20, 30, 40, 50, 60, or 70%.  
3. Remove values of 𝑦𝑖 according to a missing completely at random (MCAR) 

missingness mechanism. This means that each data point is equally likely to be 
missing, so there is no relationship between whether a data point is missing and 
any missing or observed values in the dataset. 

4. Fit a model to the data without using boosting, make predictions (i.e. 
imputations) based on said model, and calculate the measure of performance. 

5. Fit a model to the data using boosting, make predictions (i.e. imputations) based 
on said model, and calculate the measure of performance. 

6. Repeat steps 3-5 k times to utilize a Monte Carlo procedure. 
7. Calculate median performance across Monte Carlo samples 
8. Repeat steps 2-7 for each rate of missingness. 

Plots of the response versus each of the predictors are given in Figures 1 and 2. The 
response is periodically related to 𝑥1 with some random error and logarithmically related 
to 𝑥2 with independent random error as well.  
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Figure 1. Plot of the simulated periodic relationship between the response and x1. 
 

 

Figure 2. Plot of the simulated logarithmic relationship between the response and x2. 
 

2.1.2 Boosting and performance assessment 
The boosting algorithm will be specified to use a least-squares loss function where the 
learner was a first order autoregressive model with a p-spline for 𝑥2. We used 100 
boosting iterations and a learning rate of 0.05. The boosting was done using the mboost 
package in R.8 We used k = 10,000 Monte Carlo samples, and performance was evaluated 
using the median relative root mean square error (rRMSE) over Monte Carlo samples, as 
specified below. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̂�𝑖 )2𝑚

𝑖=1

𝑚
 

𝑟𝑅𝑀𝑆𝐸 = 100 ∗
𝑅𝑀𝑆𝐸

�̅�
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where 𝑦𝑖 is the observed value of y, �̂�𝑖 is the predicted value of y, �̅� is the mean 
observed value of y, and 𝑚 represents the number of missing values. 
 

2.2 Application 

 

2.2.1 Data 
The observed data consisted of two predictor variables, temperature and precipitation, 
and one response variable, dengue case count proxy. In India, the monsoon season 
sweeps from the southwest to the northeast, and shortly after its arrival mosquitoes breed 
and they spread dengue fever. As such, there is variation in dengue outbreak onset times 
across India, and meteorological covariates are known to be predictive of dengue counts9-

23. Temperature and precipitation measurements were obtained from MERRA (Modern 
Era Retrospective-analysis for Research and Applications) datasets.24 The dengue case 
count proxy was obtained from HealthMap, an automated web-scraping tool for 
worldwide disease surveillance. We assume that the density of news reports regarding 
dengue in a given region, and uses this as a proxy for dengue cases.25  
 
The dataset was comprised of monthly observations from August of 2011 – December of 
2013 for each of 15 sub-selected Indian states, for a total of 435 observations that were 
spatially and temporally correlated. We constructed a neighborhood matrix of the states, 
where neighborhood was defined as sharing a border with one another. Across the entire 
dataset, 60.23% of the observations were missing, and we considered them to be missing 
at random (MAR). To assess the efficacy of using a boosting approach to imputing the 
missing data, we compared single imputations based on a spatio-temporal conditional 
autoregressive (STCAR) model to a boosted, single imputations based on the same 
model. We fitted the STCAR model using a Bayesian approach in the CARBayesST 
package in R.26 

 

2.2.2 Bayesian STCAR model 
The study region is a set of 𝑘 = 1, … , 15 states 𝑆 = {𝑆1, … , 𝑆15}, with data recorded for 
each state for 𝑡 = 1, … , 29 months. The dengue case count proxy is denoted by 𝐘 =
(𝐘1, … , 𝐘29)15𝑥29 where 𝐘𝑡 = (𝑌1𝑡 , … , 𝑌15𝑡) is the 15 𝑥 1 column vector of observations 
for all 15 states for time period 𝑡. A vector of two known covariates, temperature and 
precipitation, for state 𝑘 at time 𝑡 is denoted by x𝑘𝑡 = (𝑥𝑘𝑡1, 𝑥𝑘𝑡2). The generalized linear 
mixed model that we fit is of the form 

𝑌𝑘𝑡|𝜇𝑘𝑡 ~ 𝑓(𝑦𝑘𝑡|𝜇𝑘𝑡, 𝑣2) for 𝑘 = 1, … , 𝐾,    𝑡 = 1, … , 𝑁, 
𝜇𝑘𝑡 = x𝑘𝑡

𝑇 𝜷 + 𝛹𝑘𝑡, 
𝜷 ~ 𝑁(𝝁𝛽 , 𝛴𝛽). 

The vector of covariate regression parameters are given by 𝜷 = (𝛽1, 𝛽2) with a 
multivariate Gaussian prior with mean 𝝁𝛽 and diagonal variance matrix 𝛴𝛽. A latent 
component for state 𝑘 and time 𝑡 is represented by 𝛹𝑘𝑡, and it includes a set of spatio-
temporally autocorrelated random effects. Since we assume a Gaussian distribution of the 
dengue case counts, we specify 𝑌𝑘𝑡 ~ N(𝜇𝑘𝑡, 𝑣2) and 𝜇𝑘𝑡 = 𝐱𝑘𝑡

⊤ 𝜷 + 𝛹𝑘𝑡, where 𝑣2 is the 
observation variance with an Inverse − Gamma(1, 0.01) prior.  
We chose to model the spatio-temporal structure with a multivariate first order 
autoregressive process with a spatially correlated precision matrix. This formulation was 
selected because it models a spatial response surface that is allowed to vary over time, as 
specified below. 
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𝛹𝑘𝑡 =  𝜙𝑘𝑡, 
𝝓𝑡|𝝓𝑡−1 ~ N(𝜌𝑇𝜙𝑡−1, 𝜏2𝐐(𝐖, 𝜌𝑆)−1)          𝑡 = 2, … , 29, 

𝝓1 ~ N(𝟎, 𝜏2𝐐(𝐖, 𝜌𝑆)−1), 
𝜏2 ~ Inverse − Gamma(1, 0.01), 

𝜌𝑆𝜌𝑇 ~ Uniform(0,1). 

Here, 𝝓𝑡 = (𝜙1𝑡, … , 𝜙15𝑡) is the vector of random effects for time 𝑡, and they are 
allowed to evolve over time according to a multivariate first order autoregressive process 
that has a temporal autoregressive parameter 𝜌𝑇. This means that the temporal 
autocorrelation is implemented by the mean 𝜌𝑇𝜙𝑡−1, and the spatial autocorrelation is 
implemented by the variance 𝜏2𝑸(𝑾, 𝜌𝑆)−1. The precision matrix 𝑸(𝑾, 𝜌𝑆)is specified 
as  

𝐐(𝐖, 𝜌𝑆) = 𝜌𝑆[diag(𝐖𝟏) − 𝐖] + (1 −  𝜌𝑆)𝐈,  

where 𝐈 is the 15x15 identity matrix. The random effects have mean zero, the temporal 
and spatial autocorrelation parameters have uninformative priors, and 𝜏2 has a conjugate 
prior. 
 
2.2.3 Boosting and performance assessment 
Since the mboost package is not flexible enough to accommodate a STCAR model for a 
base learner we wrote our own boosting algorithm. The boosting algorithm specified was 
identical to that used in the simulation study except for the base learner, which was 
specified as described above. Performance was evaluated using the root mean square 
error according to the following non-exhaustive, leave-3-out cross-validation procedure. 

1. For each of states k = 1, … , 14 
a) Hold out Oct 2013 (t= 1), Nov 2013 (t = 2), and Dec 2013 (t = 3) 
b) Get imputations by given method 
c) Find RMSE  

𝑅𝑀𝑆𝐸𝑘 =  √
∑ (𝑦𝑡𝑘 − 𝑦𝑡�̂�)23

𝑡=1

𝑁𝑘
 

where 𝑦𝑡𝑘 is the observed dengue incidence for month t and state k, 𝑦𝑡�̂� is the 
imputed dengue incidence for month t and state k, and 𝑁𝑘 is the number of hold-
out observations 𝑦𝑖𝑘 that are not missing for state k. 

2. Find overall RMSE. This is the accuracy metric.  

𝑅𝑀𝑆𝐸𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  √
𝑅𝑀𝑆𝐸1

2 +  𝑅𝑀𝑆𝐸2
2 + ⋯ +  𝑅𝑀𝑆𝐸15

2

14
 

Note that only 14 states were used in the validation procedure, since the state of Bengal 
was missing data on all three hold-out months. 
 

 
3. Results 

 
3.1 Simulation Study 
For the simulation study we compared the imputation accuracy of a traditional, non-
boosted approach and a boosted approach across varying rates of missingness, using a 
first order autoregressive model with a p-spline for the second covariate. We repeated this 
procedure for 10,000 Monte Carlo samples and calculated the performance metric, 

JSM 2016 - Section on Statistics in Epidemiology

1247



median rRMSE over the samples. Figure 3 shows the observed and imputed values of the 
non-boosted and boosted settings for one sample at a 5% rate of missingness. Figure 4 
shows a similar graph for a 70% rate of missingness. For this sample, the imputed values 
follow the periodic pattern in the data better in the boosted setting compared to the non-
boosted setting for both the 5% and 70% missing cases.  
 

 
Figure 3. Observed and imputed values for 5% missing data in the non-boosted and 

boosted settings. 
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Figure 4. Observed and imputed values for 70% missing data in the non-boosted and 

boosted settings. 
 

The same pattern holds across all Monte Carlo samples (Figure 5). The boosted 
imputations result in errors that are smaller compared to the non-boosted imputations, 
even at very high rates of missingness.  
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Figure 5. Results of the simulation study. Median rRMSE for the boosted and non-

boosted settings across rates of missingness. 
 

3.2 Application 
For the dengue application, imputation accuracy was compared between a traditional, 
non-boosted approach and a boosted approach, where the base learner was an STCAR 
model. The resultant RMSEs from the cross-validation procedure are given in Figure 6. 
Overall, the boosted setting performs better than the non-boosted setting by a factor of 
nearly two. We observe variability in the relative performance of the non-boosted and 
boosted settings across states, but we were unable to identify the pattern responsible for 
this variability. It does not appear that these differences in relative performance are 
related to amount of missingness or to extremity of the values we were trying to predict. 
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Figure 6. Results of the dengue application. RMSE for the boosted and non-boosted 

settings across states and overall. 
 
A comparison between the observed data set with missing values and the resultant fully-
imputed data set using boosting are shown in Figures 7 and 8. The seasonal trends are 
expected given the seasonal nature of dengue outbreaks over the course of the year. 
Likewise, the time series for the states are not fully aligned with one another due to the 
geographically-varying monsoon onset times across India.   
 
 

 
Figure 7. Observed dengue case counts by state. 
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Figure 8. Observed and imputed dengue case counts by state. 

 

4. Conclusions 

 
We sought to determine if a boosting approach to imputing missing data could out-
perform the traditional, single imputation method. To do so, we implemented a 
simulation study that compared boosted and non-boosted settings across varying rates of 
missingness for periodic data. We also tested the boosted imputation methodology in an 
application for geospatio-temporal dengue fever data in India. Boosted models result in 
improved imputation compared to non-boosted models, both in the simulation study and 
the application. The performance metrics were about 50% better in the boosted setting. 
These findings held even when the rate of missingness was very high.  
 
The boosted imputation methodology is a promising one for future applications. It could 
be applied to a dataset with virtually any structure, and it does not necessarily require 
parametric assumptions, depending upon the learner chosen. Additionally, this 
methodology can use information from all cases, not just those that are complete.  
 
One limitation of the boosting imputation methodology is that the time required to obtain 
boosted imputations is linearly related to the number of boosting iterations specified. If a 
base learner model takes a substantial amount of time to fit, then boosting it could 
potentially be memory and time consuming. More work is required to ascertain the 
robustness of these methods under various data conditions such as missingness 
mechanism, data structure, distribution, and missingness in multiple variables. Future 
efforts should focus on assessment of the robustness of the method and potential 
improvements that might be made by using adaptive boosting algorithms. 
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