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Abstract

Open-source indicators have been proposed as a way of tracking and forecasting disease outbreaks. Some,
such are meteorological data, are readily available as reanalysis products. Others, such as those derived from
our online behavior (web searches, media article etc.) are gathered easily and are more timely than public
health reporting. In this study we investigate how these datastreams may be combined to provide useful
epidemiological information. The investigation is performed by building data assimilation systems to track
influenza in California and dengue in India. The first does not suffer from incomplete data and was chosen
to explore disease modeling needs. The second explores the case when observational data is sparse and
disease modeling complexities are beside the point. The two test cases are for opposite ends of the disease
tracking spectrum.

We find that data assimilation systems that produce disease activity maps can be constructed. Further, being
able to combine multiple open-source datastreams is a necessity as any one individually is not very infor-
mative. The data assimilation systems have very little in common except that they contain disease models,
calibration algorithms and some ability to impute missing data. Thus while the data assimilation systems
share the goal for accurate forecasting, they are practically designed to compensate for the shortcomings of
the datastreams. Thus we expect them to be disease and location-specific.
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2.4 Left: Error between Y (o) and Ȳ , the modeled forecast value of ILI+, normalized by 3ς. Here
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Chapter 1

Motivation, hypothesis and tests

Fast, dependable forecasting of disease activity can revolutionize medical planning and response. Collection
of public health (PH) data, traditionally used for this purpose, is slow and thus not useful for effective
response. Due to its voluntary nature, epidemiological reporting typically has irregular and incomplete
spatial coverage. Thus, real- time mapping and forecasting of epidemiological activity is still not feasible.

Online, open-source indicators (OSI) of disease activity e.g., disease-related searches, media reports etc. and
meteorology can serve as strong covariates and leading indicators of outbreaks. They are readily available,
timely, and have far superior spatiotemporal resolution than PH data, especially in developing countries.
Currently there are few data assimilation (DA) methods that can fuse disparate datastreams to compensate
for delayed/unavailable PH data, nor meteorology-driven disease models for accurate spatiotemporal fore-
casting. We propose to develop the methods and models and integrate them into a DA framework. Such a
framework would be invaluable for disease tracking in the US and globally.

The key hypothesis behind this study is that OSI are sufficiently rich to calibrate a high-resolution spatial
representation of disease activity, modeled on weather patterns. Within the DA framework, the spatial
model will interpolate sparse disease data. OSI are noisy datastreams, and the spatial model will allow
noise suppression by pooling of information across monitored sites (generally large cities). The spatial
model, along with the meteorology-driven disease model, will allow OSI-calibrated forecasts in regions
outside OSI coverage. Scalable ensemble Kalman filters will provide the mathematical underpinnings of
data fusion so that the framework can be applied to country-sized problems. The game-changing potential
of data assimilation has not been applied to disease forecasting, because it has relied on sparse PH data.
OSI, and our data assimilation framework, would be a novel development with impact in data- poor regions.

We will demonstrate this via a three step process. First, we will develop a data assimilation system to
perform spatiotemporal forecasting of influenza in California, where data is plentiful. Next we will develop
a system for tracking the evolution of the annual dengue outbreak in India using OSI data from HealthMap
(https://www.healthmap.org). This second effort is expected to raise data issues (e.g., missing data)
which are not expected in case of Californian influenza. We conclude with a test of generality. We show
how the algorithms and capabilities developed during the construction of the data assimilation systems can
be leveraged in other problems, especially where the data worth of open-source data streams (or the models
that ingest them) have to be assessed.

9
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Chapter 2

Data assimilation for influenza

2.1 Introduction

Seasonal influenza results in between a quarter to half a million deaths worldwide every year, with 3-5 mil-
lion cases of severe illness [1]. Many countries have influenza surveillance networks of sentinel physicians
who track cases of influenza-like illness (ILI, defined as a fever over 37.8oC plus cough and/or sore throat;
patients for whom the etiology is known not to be influenza are not classified as ILI) ; for example, United
States’ Center for Disease Control (CDC) Outpatient Influenza-like Illness Surveillance Network (ILINet)
consists of a group of 2900 outpatient healthcare professionals who voluntarily provide information on total
and ILI-related visits that they receive. The data is compiled, processed and publicly reported on a weekly
basis [2], with a 1-2 week delay [3]. Note that since ILI symptoms can be caused by a number of diseases
other than influenza e.g., rhinovirus and respiratory syncytial virus, CDC also reports data on laboratory
samples testing positive for influenza at the national and regional levels [4]. Note also that many coun-
tries and indeed, many counties in the United States itself, do not have such a comprehensive influenza
surveillance infrastructure.

Epidemiological outbreaks leave an imprint on our online lives as we search for information on the disease.
Consequently, there have been attempts to track disease activity using web search query logs [3, 5], Twitter
posts [6, 7], Wikipedia article views [8, 9] and clinician and medical databases [10]. In most cases, the
underlying hypothesis in these digital disease detection (DDD) techniques is that the intensity of disease
activity is correlated with the intensity of the activity in diverse digital datastreams. Statistical models have
been devised to relate ILINet data (taken as the ground truth of ILI activity) to the easily observed digital
proxies. Since these digital proxies are timely, they are used to “nowcast” the current influenza/ILI activity
level, 1-2 weeks ahead of the release of ILINet data.

Google Flu Trends (GFT; [3]) is one of the oldest and better known DDD efforts to track ILI. Originally,
it used a set of 45 keywords to determine if a Google search was related to ILI and gathered a time-series
of the volume of ILI-related searches. This time-series was found to be correlated to ILINet data. A model
was built by regressing ILINet data to a normalized version of the web search time-series. The method was
dependent on the choice of keywords whose usage could evolve with time; consequently, GFT has often
been wrong in its nowcasts [11, 12]. It has been revised a few times [13, 14] and was discontinued in mid-
2015. The revisions were mainly about changing/extending the set of keywords used to pick ILI-related web
searches. There have been attempts to improve on this basic method - in [15, 16] the authors hypothesized
that the picking power of diverse keywords was variable (and also changed over time) and determined
weights for various keywords by regressing ILINet data to time-series of web search queries picked by each
of the keywords. They used shrinkage regression to eliminate keywords with negligible predictive power
and performed this calibration for different time periods. They also released the set of keywords. Other
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studies have hypothesized that DDD datastreams (GFT, medical databases, microblog posts etc.) are weak
predictors of ILI activity but could be combined, in a weighted manner, to increase their predictive power;
studies that do so in a variety of ways can be found in [17, 18, 19].

One need not depend on digital proxies for forecasting influenza activity - Tamerius et al [20] showed
that relative humidity and temperature were good predictors of influenza activity, though their effect was
muted in the tropics. Soebiyanto et al [21] modeled influenza activity in Hong Kong, using precipitation,
temperature and relative humidity as the predictors. In [22, 23], the authors used a SIRS (susceptible-
infected-recovered-susceptible) model of influenza, with an absolute humidity-based basic reproduction
number, to forecast influenza (not ILI) activity in approximately 100 US municipalities using GFT data.
They used an ensemble adjustment Kalman filter to calibrate the humidity-dependent SIRS model to GFT
data, modified (using ILINet’s data on laboratory samples testing positive for influenza) to reflect influenza,
not ILI activity (see [24] for a description). They produced 1-4 week-ahead forecasts. Cities on the US
East Coast were predicted better than West Coast municipalities. The Bayesian nature of the assimilation
allowed them to also estimate various disease characteristics e.g., incubation period, and produce forecasts
as Gaussian distributions, thus capturing the estimation/prediction uncertainties. Particle filters have also
been used for this purpose [25, 23].

Epidemics also display spatial patterns i.e., epidemiological activity at nearby locations tend to be similar.
This may be due to population mixing or similarity in latent epidemiological factors such as demograph-
ics, socioeconomic conditions etc. Disease data is usually areal in nature i.e., it is collected at the munici-
pal/provincial/national scale and correlation in disease activity in neighboring areal units are used to develop
disease maps or fill-in missing data. A review of disease mapping techniques is in [26]. Typically, a measure
of disease activity e.g., death rate, in an areal unit is modeled using a deterministic and a random term. The
deterministic term is generally modeled as a regression to underlying latent factors. The random term can
be a multivariate normal distribution [27] or a conditional autoregressive model [28, 29, 30]. The model
can also include a temporal autoregressive term to capture the time evolution of an outbreak [31], though
there have been recent efforts to model the entire spatio-temporal dataset as a Gaussian process [32]. The
same concepts have been used to capture the spatiotemporal patterns on ILI behavior. In [33] a SIRS model
for influenza was applied to all 50 states of the US, which included a parameterized model of inter- and
intra-state population mixing and a disease spread rate that depended on population density and summer
and winter temperatures. These parameters were estimated by fitting their model to GFT data, which was
available for each state. In [34] the authors noticed that non-contiguous areas in US (which are well-linked
via air travel) showed correlated ILI activity, as captured using GFT. Using historical GFT data, they devel-
oped a correlation matrix whose structure was modeled using airline network data in the US. The covariance
matrix so obtained was used to constrain/modulate current GFT predictions. The model performed better
than GFT data when compared against laboratory-confirmed influenza case.

To summarize, GFT and other digital proxies of disease activity are approximate predictors of ILI and in-
fluenza activity. They can be combined into stronger predictors and have been jointly assimilated with
meteorological data to provide good temporal predictions of disease evolution. There seems to be little
work on using the known dependence of influenza incidence on specific humidity and temperature to per-
form spatial prediction despite the availability of reanalysis products at fine spatiotemporal resolutions e.g.,
National Land Data Assimilation System [35, 36]. Coupled with temporal forecasts at locations where GFT
data is available, such disease mapping techniques applied to DDD datastreams hold the potential to pro-
vide forecasts of disease activity in regions where such data is not collected. In this chapter we present a
spatio-temporal prediction technique to do so, and test it in the San Francisco Bay Area.
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2.2 Materials and Methods

In this section we formulate the spatial and temporal prediction problems. We also describe the observational
data that we used in this work.

2.2.1 Data

The work employed meteorological data and open-source indicators of influenza activity downloaded from
the Web. We used 2-meter-above-ground estimates of air temperature and specific humidity, as extracted
from the National Land Data Assimilation System (NLDAS) Project-2 [35]. It provides reanalysis products
at an hourly resolution on a 0.125 degree grid. Data is available since 1979 for the continental US. The data
was time-averaged over each day, before constructing a daily climatology over 1990-2010. Data for each
municipality was then extracted and used in Sec. 2.2.3.

We used Google Flu Trends (GFT) as an estimate for ILI activity. The data provides a measure of the number
of cases with ILI symptoms in every 100,000 physician visits for the cities of San Francisco, Oakland,
Berkeley, San Jose and Sunnyvale (henceforth, the SFBA cities). We will refer to this set of municipalities
as N. We omit Santa Clara (available in the dataset), as it seems to have an anomalously low level of ILI
activity. The data spans September 2003 to August 2015. The model used to generate GFT was developed
in 2008 [3], and updated in 2009, 2013, and 2014. The data used contains 2009-model estimates up until
July 2013; 2013-model estimates from Aug. 2013 to July 2014; and 2014-model estimates from Aug.
2014 onward; it was downloaded from [37]. We convert the ILI cases into influenza cases in the manner
described in [23], by multiplying the GFT values by the fraction of laboratory samples (from patients with
ILI symptoms) that test positive for influenza. Borrowing the terminology from [23], we will refer to this
estimate as “ILI+”. This data on laboratory samples testing positive for influenza is distributed, in the form
of a time-series of weekly resolution, by the US Center for Disease Control (CDC) [38]. It has a two-week
reporting lag. We used the values for CDC’s Pacific census division which contains California.

2.2.2 Temporal Prediction

Our data assimilation scheme is similar to the one in [23] and many methodological details are shared. We
provide a summary of our method below.

The model : The assimilation of ILI+ data is performed separately for each influenza season and each
municipality. We assume a perfectly mixed population and uses an SIR (susceptible-infectious-removed)
model.

Ṡ =−β(t)SI
N −α; İ =

β(t)SI
N
− I

τ
+α

Ṙ = 1
τ
; V̇ =

β(t)SI
N

. (2.1)

Here S, I and R are the susceptible, Infectious and Recovered cohorts. α is the number of infections imported
into the municipality per week and is set to 1 infection every 10 days (as in [23]). Unlike [23], we ignore loss
of immunity and re-introduction into the susceptible cohort, as the timescale of loss of immunity is difficult
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to estimate over a season and does not affect results much [23]. The set Z = {S(t), I(t),β(t),τ} is deemed
unknown and estimated from ILI+ observational data. The variable V (t) tracks the number of people turning
sick over a week, a fraction of whom seek medical care and are thus captured in ILI+ data. An observed
value of V , V (o), is derived from ILI+ data and is used to calibrate the SIR model. Note that unlike [22, 23],
we do not impute a dependence of β on humidity. This decision arises from two results documented in [23].
First, the rather mild climate in SFBA does not experience the large humidity variations observed in the
MidWest or US East Coast, where the data assimilation system (DAS) described in [23] did well. Secondly,
the same forecasting system was seen to be less accurate on the West Coast. Consequently, we simplified
the model and in the process removed two parameters that the DAS in [23] also estimates.

Observational data : ILI+ is measure of the number of influenza cases (per 100,000 physician visits per
week) and is not analogous to I, the number of infectious (and symptomatic) cohort at any time t. This led
us to define V which captures the new weekly cases of influenza. As in [23], we relate V (o) to ILI+ data as
V (o) = γY (o), where Y (o) denotes the ILI+ data. We tested γ ∈ [2,10] in data assimilation tests and 2≤ γ≤ 4
provided the best results. Following [23], we use γ = 2.5 for the results here. The observational error is
modeled as a zero mean Gaussian whose variance for week k is modeled as in [22]:

σ(k)2 =

1.0×105 +

(
1
3 ∑

k−1
j=k−3Y (o)( j)

)2

5

 I2

where I is the number of infected people per 100,000 population.

The Bayesian filter : We use an ensemble transform Kalman filter (ETKF, [39]) to assimilate V (o)(t) and
update Z(t). Since V (o)(t) is a time-series, Z is updated sequentially, as data becomes available. The process
is called filtering. Sequential filtering computes the probability density over state Z(te), at time te, using
V (o)(t),0≤ t ≤ te. By Bayes theorem,

f (Z(te)|V (o)(te),V (o)(te−1), · · ·) ∝ f (V (o)(te)|Z(te))︸ ︷︷ ︸
Likelihood

f (Z(te)|V (o)(te−1),V (o)(te−2), · · ·)︸ ︷︷ ︸
Prior at te

. (2.2)

The left-hand term is the posterior density for Z(te) that includes information observed up to V (o)(te) while
the last term is our prior belief of Z(te) based on previously observed data and a model prediction for t = te.
Kalman filters model f (: | :) as Gaussian distributions, reducing the problem to the estimation and evolution
of the mean and covariance of the distributions. Ensemble filtering does not construct the covariance matrix
explicitly, but rather preserve and evolve an ensemble of samples drawn from the prior distribution. The
precise manner in which the samples are evolved/updated with the information in V (o) sets the various
ensemble filtering methods apart.

As the ensemble of Z is updated over time, the correlated behavior of the elements of Z becomes apparent.
This information is present in the entire ensemble which consists of possible realizations of model states,
conditional on the V (o) assimilated. Rigorous methods for assimilating V (o)(t) and modifying all elements
of Z depend on knowledge of this co-varying behavior of Z’s elements; observations for every element of Z
are not required.

Kalman filters update the ensemble in a manner such that only the mean and covariance are correctly
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evolved. Kalman filters are optimal only for linear problems, but are quite efficient for weakly nonlin-
ear models like Eq. 2.1. Further, ETKF can be implemented independent of the SIR model; in addition, the
SIR model does not have to supply information on the co-variability of the elements of Z e.g., gradients, to
the ETKF. We used the public-domain implementation of ETKF in [40].

Running the filter : The filter’s ensemble consists of 250 members, each driving an SIR model. We start
with a population N = 100,000. The influenza season starts every year on week 40, but influenza activity in
California does not reach significant levels before mid-December. We start our data assimilation process on
week 35, using the most conservative starting point from [23]. Since the initial condition i.e., Z(t = 0) is not
known, we populate the ensemble from samples drawn from our prior belief regarding Z(t = 0). We initialize
the number of infected cases as I(t = 0) ∼ N (100,252), where N (µ,σ2) denotes a Gaussian distribution
with mean µ and standard deviation σ. The initialization for other variables in Z are: τ ∼ N (1.6,0.322),
β(t = 0) ∼ N (0.2,0.022) and S(t = 0) = N− I(t = 0). This prior distribution, as represented by the 250
members, is integrated for a week, after which V (o) is assimilated to update the vector Z. This provides
the posterior distribution for Z at the end of the week. The filter can sometimes collapse i.e., the variability
of the members in the ensemble can become spuriously low, at which point the influence of V (o) on the
update of Z become weak and the filter can diverge from the true epidemic trajectory. We correct this by
inflating the variance of I by a factor of 1.05. The inflated ensemble then becomes the prior ensemble for
the following week. An n-week-ahead forecast at the end of week k is made by simply running the posterior
ensemble forward for n weeks without any filter updates.

2.2.3 Spatial Prediction

We assume that influenza activity in a given municipality is a function of certain meteorological variables
which govern virus survival and transmission [20, 41, 42] and a discrepancy δ that accounts for epidemi-
ological processes not completely governed by meteorology. Thus for any week k, the ILI+ data for a
municipality x, Y (o)(t,x) is given by:

Y (o)(k,x) = M(T,Q;W )+δ(k,x) = w0 +w(T )
0 T (k,x)+w(T )

1 T (k−1,x)+

w(Q)
0 Q(k,x)+w(Q)

1 Q(k−1,x)+
δ(k,x), (2.3)

where T (k,x) and Q(k,x) are weekly averaged temperatures and specific humidity at 2 meters above ground
level. The weekly averages are computed using the daily climatologies described in Sec. 2.2.1. w( j)

l , j ∈
{T,Q}, l ∈ {0,1} are weights. This linear model is fitted via step-wise regression, and simplified using
bidirectional elimination and Akaike Information Criterion. Y (o)(t,x) data spans 2006 to 2011, starting
mid-year. The process is repeated for all municipalities. The regression minimizes the norm of δ(k,x), over
the learning period, for each municipality. The step-wise regression removes the lagged variables, yielding
a weight vector W = {w0,w

(T )
0 ,w(Q)

0 }. Further, these weights are different for each municipality i.e., the
weights W (x) are a function of location.

In order to predict ILI+ at any arbitrary location x∗, the coefficients W (x∗) and discrepancy δ(t,x∗) have to
be spatially predicted using the computed values W (xi) and δ(t,xi), i ∈N. We perform this prediction using
a Nadaraya-Watson smoother [43], with a Gaussian kernel. For any spatial quantity φ(x∗), an approximation
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Figure 2.1: Data assimilation for San Francisco for 2014-2015 influenza season, starting September 21,
2014. At the very top, we plot V (o) (symbols) and V ; the data is available every week. In the second plot,
we illustrate the inferred evolution of I(t). The third plot shows the estimate of β(t) and the plot at the very
bottom shows the convergence of the value of τ over time measured in days.

φ̂(x∗) is computed as

φ̂(x∗) = ∑
i∈N

K
(
‖x∗−xi‖

λ

)
φ(xi), (2.4)

where ‖x∗− xi‖ is the great-circle distance between two locations x∗ and xi, and K(:;λ) is the smoothing
kernel, with λ as its length-scale. We compute an optimal λ from data via leave-one-out cross-validation.
Eq. 2.4 is used to obtain a spatially predicted Ŵ (x∗) and δ̂(t,x∗) as approximations to W (x) and δ(t,x) in

Eq. 2.3, and thus obtain a prediction ̂Y (o)(t,x∗).
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Figure 2.2: One week ahead forecasts of GFT data for San Francisco during the 2014-2015 influenza season.
The line is the mean forecast and the error bars the ±3ς predictive uncertainty bounds. The symbols are the
GFT data used in the joint state and parameter estimation problem.

2.3 Results

We first illustrate the solution of Eq. 2.1 using an ETKF with σ(k)2 acting as the variance of the Gaussian
observational error for time indexed by k days. Fig. 2.1 plots the data assimilation for San Francisco for
the 2014-2015 influenza season. The assimilation is started on September 21, 2014, which corresponds
to k = 1 on the time (horizontal) axis. In the top plot we observe V (o), the number of influenza cases per
100,000 physician visits (as symbols) and the modeled value in Eq. 2.1. The infectious (and infected) cohort
is plotted in the second figure and follows the same basic profile. In the last subplot in Fig. 2.1, we see that
the value of τ, the infectious period for influenza, is inferred to be about 4 days. Note that these values are
the means over 250 members of the ensemble. In Fig. 2.2 we plot GFT (not ILI+) and its (modeled and)
one-week-ahead forecast value using the ETKF. The line denotes the mean prediction, and the error bars the
±3ς bounds (ς is the standard deviation of the forecasts produced by the 250 members of the ensemble).
We see the mean agrees well with the GFT data from which ILI+ and V (o) is derived. However, there is
considerable scatter/uncertainty in the ensemble as ς is quite significant.

Next we perform a check for forecasting accuracy for all the 11 CA cities tracked by GFT. In Fig. 2.3 we
plot ξ = (Ȳ −Y (o))/Y (o) as a function of time for the 2014-2015 influenza season. The data assimilation
starts on September 21, 2014. Here Ȳ is the mean of the 250 forecasts produced by the ensemble. Each city
is denoted by a symbol. The horizontal lines denote the ±10% error bounds. We see that early in the season
when there is not much of an influenza outbreak signal in the ILI+ data, the SIR model neither calibrates
nor forecasts well for all Californian cities. However, after late December and till March, the mean forecasts
are quite accurate, with less than 10% forecasting error (for one-week-ahead forecasts, Fig. 2.3 (left)). If
one increases the forecasting horizon to two weeks, the accuracy degrades but is within 20% error (green
horizontal dashed lines).
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Figure 2.3: Left: Error between Y (o) and Ȳ , the modeled forecast value of ILI+, normalized by Y (o) i.e.,
η = (Ȳ −Y (o))/Y (o). Here Ȳ is the week-ahead mean forecast. The horizontal solid green lines are the
±10% error bounds. Each symbol denotes one of the 11 Californian cities tracked by GFT. Right: The
same test of forecasting accuracy, but Ȳ is the two-week-ahead predictions. Results are for the 2014-2015
influenza season. The start and end of the influenza season in California is denoted by the dashed blue line,
and spans January to March.

In Fig. 2.4 we plot η = (Ȳ −Y (o))/3ς, where ς is the standard deviation of the 250 forecasts produced by the
ensemble. We see that the deviation between mean forecast and observations lie between the ±3ς bounds
between January and March when the outbreak signal is strong in the GFT data. Two-week-ahead forecasts
are more accurate than one-week-ahead forecasts. Figs. 2.3 and 2.4 show that the mean forecasts are quite
accurate and the predictive uncertainty bounds (ς) correctly bounds the prediction error.

Next we address spatial interpolation as described in Sec. 2.2.3. We apply the spatial prediction method to
the ILI+ data from the last week of March, 2013 and plot the results in Fig. 2.5. The six SFBA municipalities
that constitute N are plotted with red crosses. An ILI+ intensity is predicted for every grid cell and plotted,
producing a map. The figure uses current ILI+ data (not forecasts) and consequently the figure contains a
nowcast map. Note that the color map shows the number of cases per 100,000 physician visits; the actual
number of case counts will be proportional to physician visits, which in turn should be proportional to
population density.

Next, we check the accuracy of the spatial prediction. In Fig. 2.6 we plot estimates of ILI+ for San Mateo
County (which is not tracked by GFT). Redwood City, San Mateo city and Daly City are the primary pop-
ulation centers of San Mateo County, with San Mateo city lying approximately in the center; consequently,
its location (latitude/longitude) was used for x∗ in Eq. 2.4. In Fig. 2.6, we plot the inferred ILI+ behavior
for San Mateo County (thick black line) using ILI+ data from N; these are plotted with dashed lines. The
symbols are data (samples testing positive for influenza) reported by the San Mateo County public health
department for the influenza year of 2013-2014. The figure on the left is a nowcast (no forecasting errors),
whereas the figure on the right is computed using one-week-ahead forecasts (obtained using the ETKF-based
forecasting described in Sec. 2.2.2). We see that the predictions capture the trend seen in the public health
data, though the results are better for nowcasts. The difference between the two figures captures the impact
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Figure 2.4: Left: Error between Y (o) and Ȳ , the modeled forecast value of ILI+, normalized by 3ς. Here Ȳ
is the week ahead forecast. The horizontal solid green lines are show whether the observed data fall within
the 99% credibility interval. Each symbol denotes one of the 11 Californian cities tracked by GFT. Right:
The same test of forecasting accuracy, but performed for two-week-ahead predictions. Results are for the
2014-2015 influenza season. The start and end of the influenza season in California is denoted by the dashed
blue line, and spans January to March.

of forecasting error.

GFT tracks 11 Californian municipalities, which form three clusters - the SFBA (municipalities constituting
N), the Los Angeles - San Diego corridor (including Irvine) and the Central Valley (Sacramento and Fresno).
The spatiotemporal prediction described above for SFBA can be performed for the other two clusters, though
they will certainly be less accurate due to the paucity of data. Fig. 2.7 shows such maps developed for the
last week of March 2015. We do not have public health data from any municipality or county in these
clusters and are unable to validate the predictions, unlike for SFBA.

Finally, the data assimilation system - temporal forecasting and spatial prediction - was implemented and
run weekly (and automatically) every week between August 2014 and August 2015, when GFT ceased to
provide data publicly. The prototypical implementation - a combination of Matlab, R and shell scripts -
downloaded GFT data, processed and assimilated them to produce nowcasts and one-week-ahead forecasts
for SFBA. These predictions were displayed on an internal Sandia web page as zoom-able maps (imple-
mented using JavaScript), and provided a quantitative measure of influenza activity around Sandia National
Laboratories, Livermore, CA. A screen-shot of a map is in Fig 2.8.

2.4 Conclusions

In this chapter we have investigated whether open-source indicators (OSI) can be used to track and forecast
influenza activity in a small, well mixed population such as the San Francisco Bay Area (SFBA). This was
motivated by the fact that OSI of disease activity that are based on our online behavior (or, in fact, any
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Figure 2.5: Nowcast ILI+ intensity map, computed using the spatial prediction method described in
Sec. 2.2.3.
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Figure 2.6: Test of accuracy of the spatial prediction described in Sec. 2.2.3. On the left, we nowcast ILI+
activity in San Mateo County in the San Francisco Bay Area (solid black line) using ILI+ data from nearby
municipalities (dashed lines). On the right, we perform a spatiotemporal forecast, using one-week-ahead
forecasts of ILI+ activity of nearby municipalities. Vertical green lines show the approximate start and end
of the intense influenza activity in 2013-2014.

Figure 2.7: ILI+ intensity maps developed for the last week of March 2015. Left: A nowcast. Right: A
one-week-ahead forecast.

digital interaction/media) can be collected very quickly and could provide a far better measure of disease
activity than data collected by health surveillance networks. Unfortunately, these OSI are proxies of disease
activity and may be inaccurate. Consequently, this is a drawback of the study presented here. However, the
OSI (Google Flu Trends in this study) can be replaced by public health data (which are usually delayed by
a couple of weeks) and two-weeks-ahead forecasts could provide a nowcast of influenza activity. Such a
system would not be affected by the approximate nature of GFT.
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Figure 2.8: A snapshot of the output of the data assimilation system, displayed as a web page on an internal
Sandia server.
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We also investigated whether the well-known dependence of influenza activity on meteorological vari-
ables [20] could be used to spatially predict said activity from municipalities with data and produce influenza
activity maps. It required a new spatial prediction scheme using climatologically averaged temperature and
specific humidity, as well as kernel smoothing. We tested this hypothesis in SFBA and our preliminary
results have been encouraging when compared to public health data from San Mateo County. The method
was extended to target 3 population centers in California (SFBA being one) and produce influenza activity
maps, but we do not have independent public health data to test the accuracy of the spatial prediction method
in the other two clusters.

The data assimilation system was implemented as a prototype and run weekly on a Sandia server for a year. It
produced influenza activity maps for a year (2014-2015) and was stopped when GFT stopped publishing its
data. It required little manual intervention and demonstrates that as long as OSI are available, such localized
data assimilation systems can be constructed and deployed in the cloud. This could be very helpful in
countries/areas with poor public health reporting. Collecting digital proxies of disease activity (web search
logs, media articles pertaining to an outbreak etc.) is a well-established activity and global meteorological
reanalysis products are easily available (e.g., Goddard Earth Sciences Data and Information Sciences Center,
http://disc.sci.gsfc.nasa.gov/mdisc/data-holdings). Our method provides a way of combining
these datastreams, along with disease models, to provide information of epidemiological and public health
relevance.
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Chapter 3

Data assimilation for dengue

3.1 Introduction

Dengue is a tropical disease spread by mosquitoes, typically Aedes aegypti [44]. In India, the dengue season
follows the rainy monsoon season in the middle of the year. The monsoons sweep in from the Arabian Sea,
in a Southwest-to-Northeast direction, leading to rains after the Indian summer. Mosquitoes and dengue
soon follow [45, 46, 47, 48].

There have been attempts to track dengue activity using open source indicators (OSI). Web search logs
have been used to track dengue in southeast Asia [49], using a model that linearly related the frequency
of search to dengue incidence, as obtained from public health reports. The same study found that data
obtained at a weekly resolution was preferable. Google Dengue Trends (GDT) provided a service (which
lasted till August 2015) that tracked dengue in a number of countries [50]. Data was provided aggregated
at the national scale, though for certain countries e.g., Mexico, provincial data was also available. In [51],
the authors used provincial GDT data from Mexico to (1) compare against public health data and (2) elicit
the effect of climate on dengue incidence. GDT data was found to be in good agreement with public health
data, and a dependence on climatic factors was identified, with a lag of 8 weeks i.e., meteorological variables
were a leading indicator. In a follow-on publication [52], they showed that the agreement between GDT and
public health data was better in regions with intense dengue activity; including climatic factors in the model
played a small part in improving predictive skill. In [53], the authors used alerts from HealthMap (https;
//www.healthmap.org; HM), caused by an excessive number of media articles, open-source documents
etc. on dengue, to track dengue in Latin America. They used kernel smoothing to create proxies of dengue
incidence maps, but did not exploit dengue’s dependence on climatic factors in the spatial prediction models.

Dengue’s dependence on the presence of its vector limits it to regions where the Aedes aegypti mosquito
is present. The mosquito does not have much of a flight range and consequently dengue cases tend to
cluster. A temporal variation is imposed by weather which controls the breeding of mosquitoes. Dengue
incidence data (time and location of individual cases) have been subjected to clustering analysis in space-
time [54, 55], using Knox-like tests to detect clusters [56]. The analysis is used to compute dengue risk
to the population by convolving it with population density maps [57]. Incidence data collated over areal
units have been used to make risk maps via kernel smoothing [58, 59]. Socioeconomic, environmental and
land-use patterns are also factors in dengue prediction, and serve as exogenous variables in dengue risk
mapping. The continuous variables (socioeconomic and environmental factors) are generally included via
linear regression [60], while land-use categories are assimilated using logistic regression [61]. Conditionally
auto-regressive (CAR) models with Poisson noise (to model dengue incidence counts) have been used for
the spatial mapping of dengue risks [62], as have Gaussian processes in space-time [63]. However, there do
not seem to be any studies that use statistical methods on provincial GDT or HM data to compute dengue
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risk maps (using climatic factors as exogenous variables), to impute missing data or to forecast a risk/dengue
incidence map.

In this study we investigate a method to create maps (nowcasts and forecasts) of dengue activity in India.
The OSI of relevance is obtained from HM. HM scrapes the Web for documents - media articles, Ministry of
Health publications, ProMed Mail articles - that concern dengue and makes the data available dis-aggregated
by date and state. Only articles in English are collected and thus we obtain a small sampling of the total
dengue-related media activity. Many of the media articles are duplicates, reprints from the same article
obtained from news agencies such as Reuters (https://www.reuters.com). These duplicates are retained.
We also use re-analysis products, temperature and precipitation fields obtained from[64].

Our mapping method is based on the hypothesis, similar to the one behind GFT and GDT, that dengue-
related media activity is correlated to people’s interest in the topic, which in turn could be caused by a
dengue outbreak. Further, dengue activity would be correlated with temperature and rainfall, perhaps with
a time lag required by mosquitoes to breed and spread dengue. Collating the data on a state-by-state basis
could allow one to provide forecasts using time-series methods, with precipitation and temperature acting
as exogenous factors/predictors.

3.2 Materials and methods

In this section we describe the data, its shortcomings and the modeling requirements for constructing dengue
activity maps.

3.2.1 Data

MERRA (Modern Era Retrospective-analysis for Research and Applications) meteorological reanalysis data
used in this study - temperature at 2m above ground and precipitation - are obtained from [64]. These
reanalysis gridded datasets (0.5× 0.67 degree resolution) are available for every hour and are averaged to
their monthly values. Data from HM was purchased and provided us with dengue data for 2011 - 2013. The
data was disaggregated by state and we computed monthly figures for the counts of media articles etc. The
data was sparse and few states, over a month, exceeded 50 media mentions. Further, no data was available
before August 2011, providing us with 29 months of data, in all.

The HM data was gappy i.e., there were months in the dengue season where a state ostensibly recorded
no media article on the topic. Further there was no pattern in the “missingness” of the data. Fig. 3.1 plots
the number of HM articles for India for October 2011, 2012 and 2013. The north Indian states (left blank)
recorded no media articles. For the rest, we binned the HM counts and shaded the states accordingly. Only
15 states had any data at all, and we will focus our forecasting efforts on this subset. It is clear that the HM
data is missing at random (MAR). However, meteorological data is available everywhere and is correlated
with HM data. Filling the missing HM data is a pre-requisite for performing time-series predictions on a
state-by-state level for the subset of 15 Indian states. Of the 15×29 = 435 possible data points, about 60%
were missing.
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Figure 3.1: Plots of the binned counts of HM articles on dengue for India for October 2011 (left), 2012
(middle) and 2013 (right). The blank states recorded no data. States with data are shaded with a color
corresponding to the lower bound of their bin. We see missing data occurs at random.

3.2.2 Conditionally auto-regressive models

The HM dataset contained “holes” - missing data points which were surrounded in time by observed data
points. We constructed a neighborhood matrix for each state - any state that shared a border was deemed a
neighbor. This 15× 15 matrix W has an “1” entry if two states abut each other, else the matrix element is
zero. This revealed that a missing data point often had observed data in a few of its neighbors. In order to
impute a value for a missing data point, it was necessary to impose a spatio-temporal model. We performed
this using conditionally auto-regressive models [29, 30, 31]. We provide a summary of the space-time
conditionally auto-regressive model (STCAR) below.

Let Ykt be the count for state k and time t. We model it as a draw from a normal distribution N (:, :)

Ykt |µµµkt ∼N (µµµkt ,ν
2), where µµµkt = Xktβββ+φkt , βββ∼N (µβββ,Σβββ), k = 1 . . .K, and t = 1 . . .T. (3.1)

Here Xkt is a 1×2 vector containing temperature and precipitation for the state k and time t and βββ= {βT ,βP},
the regression weights for the meteorological variables. φkt models the correlation in space-time and ν2 is
the observation error variance, modeled with an Inverse-Gamma (InvGamma(1.0, 0.01)) prior.

Let φφφt = {φkt}, k = 1 . . .K, K = 15. The model for φφφ is

φφφt |φφφt−1 ∼ N (ρ1φφφt−1,τ
2Q(W,ρ2)

−1)

φφφ1 ∼ N (0,τ2Q(W,ρ2)
−1)

τ
2 ∼ InvGamma(1,0.01)

ρ1,ρ2 ∼ U(0,1) (3.2)

Thus temporal correlation is modeled by the mean ρ1φφφt−1 and spatial autocorrelation by the variance
τ2Q(W,ρ2). The precision matrix Q(W,ρ2) is given by

Q(W,ρ2) = ρ2 (diag(W1)−W)+(1−ρ2)I

where I is a 15×15 identity matrix.

This model is fitted i.e., βββ,ρ1,ρ2,τ
2 are estimated from the available data using an Markov chain Monte

Carlo approach. The R [65] package CARBayesST [66] was used for the purpose.

27



3.2.3 Boosting

The STCAR model did not provide very accurate estimates and we resorted to boosting using Friedman’s
gradient boosting [67]. Consider a response Y with a set of predictors X. Our aim to estimate a mapping
Y = f̂ (X) by minimizing the expectation of a loss function Ψ(Y, f )

f̂ (X) = argmin f (X) (Ey,xΨ(y, f ))

The procedure is as follows. We set f̂ (x) to a constant. Then for t = 1 . . .T , do the following

1. Compute the negative gradient

zi =−
∂

∂ f (X)
Ψ(y, f (X))

∣∣∣
f (Xi)

2. Fit a model g(X) that predicts zi from Xi

3. Choose a gradient descent step ∆

∆ = argmin∆

N

∑
i=1

Ψ(Y, f (Xi)+∆g(Xi))

4. Update the estimate of f (X)

f̂ (X) = f̂ (X)+∆g(X)

5. Repeat the steps above till the successive difference between f̂ (X) become smaller than a tolerance.

The boosted STCAR models provide a means of obtaining “filled-in” datasets for each of the states. There-
after, we fit a seasonal auto-regressive integrated moving average model with exogenous inputs (SARIMAX;
see Chapter 8 in [68]) to each state’s data and provide a forecast, along with a predictive error bound.

3.3 Results

Imputation accuracy was compared between a traditional, non-boosted STCAR approach and the boosted
approach, where the base learner was a STCAR model. The data from the last three months of 2013 were
held-out and used for testing the boosted STCAR models. Tests were performed for each state separately
and then averaged for an overall performance figure. The resultant RMSEs (root mean square errors) from
the cross-validation procedure are given in Fig. 3.2. Overall, the boosted setting performs better than the
non-boosted setting by a factor of nearly two. We observe variability in the relative performance of the
non-boosted and boosted settings across states, but we were unable to identify the phenomenon responsible
for this variability. It does not appear that these differences in relative performance are related to the amount
of missingness or the extremity of the values we were trying to predict.

A comparison between the observed data set with missing values and the resultant fully-imputed data set
using boosting are shown in Fig. 3.3. The seasonal trends are expected given the seasonal nature of dengue
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Figure 3.2: A comparison of the predictive error for the boosted (red) and non-boosted STCAR for filling in
missing data. Results are plotted for the 15 states where there is some HM data. Overall boosting improves
performance

outbreaks over the course of the year. Likewise, the time series for the states are not fully aligned with one
another due to the geographically-varying monsoon onset times across India.

The SARIMAX forecasting model was tested using the filled-in datasets. The last three months of 2013
were held back and used to check the predictive skill of the model. Fig. 3.4 shows results for 2 states. The
results are mixed - forecasting does not necessarily provide very good estimates. This arises mainly from
the short time-series data, which does not allow us to learn the time-series model well. Further, the coarse
time resolution does not reveal much smoothness in the evolution.

3.4 Conclusions

In this chapter, we investigated whether HM data could be used in forecasting dengue activity in Indian
states. HM data was gappy and available only for 15 states. Dengue evolution is dependent on meteorologi-
cal values and we investigated whether space-time conditionally auto-regressive model could be used to fill
in (impute) the missing. They proved disappointing because of the large (60%) degree of missingness.

Next we sought to determine if a boosting approach to imputing missing data could out-perform the tradi-
tional, single imputation method. Boosted models result in improved imputation compared to non-boosted
models. The performance metrics were about 50% better in the boosted setting. These findings held even
when the rate of missingness was very high.

The boosted imputation methodology is a promising one for future applications. It could be applied to a
dataset with virtually any structure, and it does not necessarily require parametric assumptions, depending
upon the learner chosen. Additionally, this methodology can use information from all cases, not just those
that are complete.
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Figure 3.3: Top: The raw HealthMap data with gaps in it. Bottom: Filled in version of the HealthMap
dataset.
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Figure 3.4: Left: Forecast of the HM data, for the state of Kerala. The blue dot is the mean prediction, with
the shaded error being the 90% and 99% credibility intervals. The red dot is the true (not filled in) value.
Right: The same, but for the state of Maharashtra.

One limitation of the boosting imputation methodology is that the time required to obtain boosted impu-
tations is linearly related to the number of boosting iterations specified. If a base learner model takes a
substantial amount of time to fit, then boosting it could potentially be memory and time consuming. More
work is required to ascertain the robustness of these methods under various data conditions such as missing-
ness mechanism, data structure, distribution, and missingness in multiple variables. Future efforts should
focus on assessment of the robustness of the method and potential improvements that might be made by
using adaptive boosting algorithms

The imputed datasets were then used in SARIMAX modeling. Results were not encouraging primarily
because the datasets were too short to learn a good SARIMAX model. If the HM articles were more
copious, allowing us to aggregate on a weekly rather than monthly basis, and if the dataset spanned a larger
duration, we believe forecasting results would have displayed smaller predictive errors.
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Chapter 4

Follow-on applications

In this chapter, we discuss some work that incorporated or built on the methods or approaches developed in
our study.

4.1 Data assimilation for wildfires

The data assimilation architecture described in Chp. 2 is sufficiently general that the models and data streams
can be replaced so that the same general philosophy can be used in a very different setting. One such setting
is crisis management where sparse data is usually available but not with sufficient accuracy or completeness
to allow good situational awareness. Models of many types of crises and their consequences to society do
exist (mostly for planning a response). It raises the question whether data, along with a model, could “fill
in” the missing information. This could lead to a situational awareness toolkit containing both nowcasting
and forecasting capabilities.

SUMMIT (Standard Unified Modeling and Mapping Integration Toolkit, [69]) is a Sandia framework for
integrating models used in crisis management. It is also designed to wrap third-party models and allow
communication and interactions between them, mainly to allow response planning. It also has the capability
to to collect live datastreams and contains numerous visualization tools to display the results of model
executions. To date, it has not had the capability to exploit data streams, perhaps with models, to infer
information about the crisis that is not readily apparent from the raw data.

To that end, we are incorporating a data assimilation capability (algorithmically similar to Chp. 2) to fill in
unobserved data (the aim for Chp. 3). As a first step, we enabled SUMMIT to provide access to the results
of the temporal data assimilation capability described in Chp. 2 (ETKF and SIR model of influenza). This
required extension of SUMMIT to accommodate the peculiar interaction between models and data that are a
hallmark of ETKF and visualization of probabilistic forecasts. It also allowed us to set out design enhance-
ments SUMMIT would require to evolve into a crisis management tool where uncertainty in situational
awareness (and the consequent impact on response planning) are fully and rigorously accommodated.

The next step was a more difficult exercise where we performed data assimilation and probabilistic forecast-
ing for wildfires using a model that SUMMIT hosts. FARSITE [70] is a wildfire modeling tool developed
by the US Department of Agriculture. It uses meteorological inputs (wind, humidity etc.) and vegetation
(fuel) parameters to provide time-resolved evolution of a fire front, modeled as a set of perimeter points. The
model adaptively refines the fire front as it expands so that the spatial resolution does not suffer. FARSITE
is generally used to compute one-day-ahead forecasts of the fire front, using an infra-red image of the fire
(obtained using overflights by spotter airplanes) as the initial condition. The initial condition is assumed
deterministic i.e., neither ensemble simulations nor data assimilation are currently performed to obtain fore-
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Figure 4.1: The wildfire after two hours. No observational data have been assimilated. The spread in forecast
fire fronts (red contours) are due to our ignorance of wind and initial conditions. The blue contour is the
true fire front.

casts. We enabled data assimilation with FARSITE by encoding a particle filter [71] to drive FARSITE.
The data assimilation system ingests sparse observational data on the location of the fire front (i.e, data on
where the fire has been observed) and meteorological data (wind and humidity available at a few locations)
to provide updated (i.e., data informed) estimates of the full fire front and wind information. The ensemble
of approximately 100 FARSITE instances (that reflects our ignorance of initial conditions, meteorology and
fuel/vegetation parameters) is continuously updated to agree with sparse observational data and then used to
provide forecasts.

We tested the data assimilation system using synthetic data from a fire near Santa Monica, California.
Fig. 4.1 shows the fire front after two hours; both the true perimeter and the spread of 100 ensemble sim-
ulations are shown overlaid on a satellite image. Fig. 4.2 shows the true and forecasted fire front after
five hours. The importance of probabilistic forecasting is seen in Fig. 4.3 where the uncertainty spread in
forecasts includes residences.

SUMMIT’s development (which included the ability to wrap and orchestrate the interaction between mod-
els, access and incorporate data streams as well as visualization) was funded over a period of time (approxi-
mately five years) by US Department of Homeland Security, S&T Division. The data assimilation capability
is novel, but still prototypical. It has not been tested with real data, which will inevitably require new models
for observational errors. The sensitivity of the data assimilation system to sparseness of observational data
as well as the impact of outlier observations is not known. Further, it is unknown how large an ensemble
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Figure 4.2: The wildfire after five hours. Data assimilation has occurred and reduces the uncertainty spread.
The snapshot shows results displayed in SUMMIT’s web client. The red contours are the 5 hour forecasts
without data assimilation. A very narrow ensemble of purple fire fronts, very near the blue (true) fire front
(and difficult to see) is the forecast ensemble, after assimilating data available after two hours.

should be to deliver a given forecasting accuracy, as well as to be numerically stable. In order to develop
these capabilities, we will explore funding opportunities with California Department of Forestry and Fire
Protection (https://www.fire.ca.gov) in 2017.

4.2 Data assimilation and disease modeling

The description in Chapters 2 and 3 provide a glimpse of the various approaches being pursued to exploit
open-source indicators to track and forecast outbreaks. However, it has been noted that such models often
produce conflicting forecasts. Further, an ensemble of such models can provide even more confusion since
the disagreement between model predictions are not uniform i.e., subsets of models might agree. However,
it is unclear whether the agreement is due to a similarity/correlation between the data streams being as-
similated and the structure of the models (in which case, the agreement between models produces no new
information) or if the agreement reflects some underlying truth. Sandia has been funded to address this
problem. Our ability to calibrate disease models to open-source data-stream (as described in Chp. 2 and 3)
and thus construct an ensemble is a prerequisite for performing this work, and the ease with which we could
construct the ensemble played a role in the success of our proposal to the Defense Threat Reduction Agency.
The work starts in FY17.
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Figure 4.3: The wildfire after five hours, in detail. The uncertainty spreads show risk to human habita-
tion and reinforce the need for data assimilation and probabilistic forecasting using filtering methods. The
purple ensemble is easy to see and shows the enormous decrease in forecasting uncertainty effected by the
assimilation of data after two hours.
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Chapter 5

Conclusions

In this study we have investigated the use of open-source indicators to track and forecast epidemiological
activity. In particular, we have explored the types of data assimilation systems that might be required to infer
useful information about epidemiological dynamics. Our first foray, described in Chp. 2, may be considered
one end of the spectrum. Here completeness of the observational data is not an issue. Rather, one questions
whether the choice of data stream i.e., web search logs serving as proxies of disease activity is justified, and
how disease models may be pressed into inferring disease dynamics and forecasting. The emphasis lies on
sophisticated data science methods, disease models and forecasting accuracy.

Data assimilation for dengue, as described in Chp. 3, forms the other end of the spectrum where the ob-
servational data is spotty and emphasis lies in filling in the missing data. We have developed a technique
that uses two open-source indicators - data from HealthMap and meteorology, to complete observational
datasets. The actual forecasting is performed using simple time-series methods. Both the data assimilation
methods (Chp. 2 and 3) produce disease activity maps, but the two systems have nothing in common in
their need for methodological sophistication. This is because the data assimilation systems, practically, are
designed to compensate for the shortcomings of the data streams when inferring disease activity maps. They
will therefore be disease and location-specific. However, structurally, they will all contain disease models,
calibration methodologies and missing-data imputation technologies, but their particular implementations
(and algorithmic choices) will vary depending on the datastreams at hand.

The techniques developed in this study find many uses. The ETKF and thereafter particle filters have been
implemented in a software framework for crisis management. The ability to construct calibrated disease
models that ingest open-source information has led to a funded project to assess the worth of disease models
that “work off” different data streams (Chp. 4). Thus while the question of data assimilation for disease
forecasting is indeed an interesting one, the importance (and worth) of the project lies in the development
of methodological sophistication in Sandia’s data science’s capabilities. It is a fundamental strength and, as
shown in Chp. 4, is being leveraged in myriad unexpected ways.
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