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Overview 

• Aim 
–  Construct a multi-chain Markov chain Monte Carlo (MCMC) method 

–  Speed up the solution of statistical inverse problems which involve 
an expensive engineering or scientific model 

• Motivation 
–  Statistical inverse problems can be used to estimate model 

parameters from experimental data 
•  Parameters estimated as PDFs; quantifies uncertainty in the estimate 

• Technical challenges 
–  MCMC requires O(104) model invocations serially – difficult 

•  Multi-chain might spread the sampling burden on m chains 

–  Multi-chain MCMC is rare – little previous literature 
•  Lots of theory & implementation on single chain MCMC 



Outline 

• Statistical inverse problem, specifically Bayesian 
• How to solve them using MCMC 

• What is adaptive MCMC – why needed and issues 

• How to go parallel with MCMC 

• Empirical data on correctness and savings on wall-clock time 

• Results with calibration of the Community Land Model 
–  Land component of the Community Earth System Model 



Statistical inverse problems - 1 

• Consider a model that produces y = M(x; p) 
–  p are model parameters, x is input such as time, location etc. 

–  They are unknown but we may have a prior belief π(p) e.g., bounds 
on their values 

• Consider observational data (y(obs), x) 
–  The simplest way to estimate p is via least-squares fitting 

•  y(obs) = M(x, p) + ε, ε = {εi}, i = 1 … Nobs 

•  Minimize || ε ||22 w.r.t. p i.e. minimize || y(obs) - M(x, p) ||22  

• Estimates of p so obtained provide no estimate of the 
uncertainty  
–  In case there are multiple minima, you could get a wrong p 



Statistical inverse problems - 2 

• Consider a model for ε, e.g., ε ~ N(0, Γ) 
–  i.e. there is a belief that for good values of p, the data – model 

mismatch will be near 0 

• Then, for any p, one can compute and error and the likelihood 
L(: | :) of p, given observations y(obs) 

• Bayes rule: 

 

• The posterior density f(: | :) is arbitrary 
–  Take samples from it and histogram samples 

–  Done using MCMC 

L(y(obs) |p)∝ exp − y(obs) -M(x;p)( )
T
Γ−1 y(obs) -M(x;p)( )( )

f (p | y(obs) )∝L(y(obs) |p) π (p)



What is MCMC? 
• A way of sampling from an arbitrary distribution 

–  The samples recover  the distribution (typically plot marginals via 
histograms) 

• Efficient and adaptive 
–  Given a starting point (1 sample), the MCMC chain will sequentially find 

the peaks and valleys in the distribution and sample proportionally 

• Ergodic 
–  Guaranteed that samples will be taken from the entire range of the 

distribution 

• Drawback 
–  Generating each sample requires one to evaluate the expression for the 

likelihood L(: | :)
–  Not a good idea if  L(: | :) involves evaluating a computationally 

expensive model 



An example, using MCMC 

•  Given: (Yobs, X), a bunch of n observations 
•  Believed: y = ax + b 
•  Model: yi

obs = axi + bi + εi, ε ~ N(0, σ) 
•  We also know a range where a, b and σ might lie 

–  i.e. we will use uniform distributions as prior beliefs for a, b, σ
•  For a given value of (a, b, σ), compute “error” εi = yi

obs – (axi + bi) 
–  Probability of the set (a, b, σ) =  Π exp( - εi

2/σ2 ) 
•  Solution: π ( a, b, σ | Yobs, X ) = Π exp( - εi

2/σ2 ) * (bunch of uniform priors) 
•  Solution method: 

–  Sample from π ( a, b, σ | Yobs, X ) using MCMC; save them 
–  Generate a “3D histogram” from the samples to determine which region 

in the (a, b, σ) space gives best fit  
–  Histogram values of a, b and σ, to get individual PDFs for them 
–  Estimation of model parameters, with confidence intervals! 



MCMC, pictorially 

• Choose a starting point, p0 = 
(acurr, bcurr) 

• Propose a new a, aprop ~ N(acurr, 
σa) 

• Evaluate π ( aprop, bcurr | ...) / π 
( acurr, bcurr | … ) = m  

• Accept aprop (i.e. acurr <- aprop) 
with probability min(1, m) 

• Repeat with b 
•  Loop over till you have enough 

samples 
• Two issues 

–  Where do you start? 
–  How do you choose a proposal 

distribution? 

a 

a 
b

b

a

Proposal distribution 

“good” values of (a, b) 



Multi-chain, adaptive MCMC 
• Problems with MCMC 

–  Sampling cost: Many samples needed; each sample leads to 1 
model evaluation 

–  Poor proposals: If proposal distribution is sub-optimal, most 
proposals will be rejected 

–  Bad start: What’s a good place to start 

• Solutions 
–  Sampling cost: Distribute sampling over m chains 
–  Poor proposals: adaptive Metropolis-Hasting sampling 

•  Periodically, use samples collected to compute a multivariate Gaussian 
approximation to f(: | :) 

•  Inflate its variance and use it as a proposal 
•  Only works if you have some samples to work with 

–  Bad start: Have m chains start from an over-dispersed set of p0 



 
 
Addressing sampling cost 

Generation i 

Communicate 
samples &  
recompute 
proposal 
distribution 
incrementally 

Chains run 
asynchro- 
nously Each generation 

consists of 
1. proposal generation 
2. model run 
3. accept/reject of 

proposal 



Addressing bad starts  
• When there aren’t enough samples, how to make a good 

proposal distribution? 
–  Use genetic algorithm (Differential Evolution) to collect a few good 

samples 
–  Use parallel and snooker updates to construct proposals 

 
–  Switch to adaptive Metropolis-Hastings when we have a few good 

samples  

Parallel Snooker 

Pictures taken from: C. J. F. ter Braack and J. Vrugt, “Differential Evolution Markov Chain with snooker update 
and fewer chains”, Statistical Computing, 2008 



Performance 

•  Do multichain MCMC get us accurate 
PDFs with smaller wall-clock time than a 
1 chain MCMC? 

•  Test 
–  Pick a bivariate Gaussian with mean (1, 

3) and correlation of 0.8 
–  Run a 1-chain and 4-chain MCMC 

sampler on it 
–  Explore region [-5, 8] x [-5, 8]  

•  Questions 
–  Are the marginal distributions correct? 
–  Are estimates of 5th, median and 95th 

percentiles correct? 
–  We have analytical solutions 

Samples colored by chain 



Marginal distributions  

• Chains from the 4-chain MCMC produce the same PDFs as the 
conventional 1-chain MCMC 

Variable p1 Variable p2 



Convergence 

•  Percentiles are computed by pooling together g generations of samples 
collected by m chains (i.e., g x m samples) 

•  4-chain MCMC converges faster for tails of the PDF 



Practical use – calibrate CLM 

•  CLM – Community Land Model 
–  The land component of Community Earth 

System Model 
–  Used in climate change simulations 
–  Computationally expensive 
–  Simulating 4 years for each grid-cell takes 

about 1 hour 

•  Our aim – check for correctness 
–  Use multichain MCMC to calibrate CLM for 

1 site (1 grid-cell) 
•  ARM/Southern Great Plains site, 2003 

meteorology 
•  Use latent heat flux as  observable (y(obs)) 

–  Calibrate 1 CLM hydrological parameter  
(Fdrai); synthetic data using Fdrai = 1 

–  Problem as a complex likelihood 



8-chain MCMC 

• Chains have settled down to the same value of Fdrai 



PDF of Fdrai 

•  Samples of Fdrai peak at 1, the correct position 
•  Cleanly misses local minima at 1.25 (few samples) 



CLM calibration with real LH observation 

•  The likelihood is flat near the minimum 
error point 

•  The chains will wander 

• Calibrate: Fdrai, log(Qdm), b 
–  3 parameters, 12 observations – there will 

be uncertainty in the estimates 
•  The PDF is required 

• Use observations from ARM/SGS site for 
2003 
–  Observations are latent heat fluxes 
–  Averaged to their monthly value 



Evolution of the chains 

•  It’s still running … 
• The chain for b has converged 
• The other chains are still 

wandering 
• Far from convergence @ 600 

generations 



Predictions with samples 

•  Pick samples of (Fdrai, 
log(Qdm), b) from chains 

•  Run CLM and produce 
predictions of LH 

•  Compare with predictions 
produced by default 
(“nominal”) parameter values 

•  Compare with experimental 
data 

•  We’re better than the 
predictions obtained with 
default parameter values 



Conclusions 

• We have a parallel multichain MCMC method implemented 
–  It’s being used to solve statistical inverse problems 

•  Specifically, to calibrate computationally expensive models 

–  Parameters are estimated as PDFs; captures uncertainty 

• The multichain MCMC 
–  Converges to true value of the parameters 
–  Cuts down wall-clock time, especially when resolving tails of 

posterior distribution 

•  It is being used to calibrate the CLM 
–  Has already been used to reconstruct moisture levels using GPR 

measurements  
•  10 parameters to be estimated, 20 chains 

–  Can be applied to calibration of engineering models 


