

A parallel Markov chain Monte Carlo method for calibrating computationally expensive models

J. Ray, L. Swiler, M. Huang and Z. Hou

Contact: jairay@sandia.gov

Sandia National Laboratories, CA & NM and Pacific Northwest National Laboratory.

SAND2016-4662C

Acknowledgments: Funded by DoE/SC/ASCR

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Overview

- Aim
 - Construct a multi-chain Markov chain Monte Carlo (MCMC) method
 - Speed up the solution of statistical inverse problems which involve an expensive engineering or scientific model
- Motivation
 - Statistical inverse problems can be used to estimate model parameters from experimental data
 - Parameters estimated as PDFs; quantifies uncertainty in the estimate
- Technical challenges
 - MCMC requires O(10⁴) model invocations serially difficult
 - Multi-chain might spread the sampling burden on *m* chains
 - Multi-chain MCMC is rare little previous literature
 - Lots of theory & implementation on *single* chain MCMC

Outline

- Statistical inverse problem, specifically Bayesian
- How to solve them using MCMC
- What is adaptive MCMC why needed and issues
- How to go parallel with MCMC
- Empirical data on correctness and savings on wall-clock time
- Results with calibration of the Community Land Model
 - Land component of the Community Earth System Model

Statistical inverse problems - 1

- Consider a model that produces $\mathbf{y} = \mathcal{M}(\mathbf{x}; \mathbf{p})$
 - **p** are model parameters, **x** is input such as time, location etc.
 - They are unknown but we may have a prior belief $\pi(\mathbf{p})$ e.g., bounds on their values
- Consider observational data (y^(obs), x)
 - The simplest way to estimate **p** is via least-squares fitting
 - $\mathbf{y}^{(\text{obs})} = \mathcal{M}(\mathbf{x}, \mathbf{p}) + \varepsilon, \varepsilon = \{\varepsilon_i\}, i = 1 \dots N_{\text{obs}}$
 - Minimize || $\boldsymbol{\varepsilon}$ ||₂² w.r.t. **p** i.e. minimize || $\mathbf{y}^{(obs)}$ $\mathcal{M}(\mathbf{x}, \mathbf{p})$ ||₂²
- Estimates of **p** so obtained provide no estimate of the uncertainty
 - In case there are multiple minima, you could get a wrong ${\bf p}$

Statistical inverse problems - 2

- Consider a model for ε , e.g., $\varepsilon \sim N(0, \Gamma)$
 - i.e. there is a belief that for good values of **p**, the data model mismatch will be near 0
- Then, for any p, one can compute and error and the likelihood
 L(: | :) of p, given observations y^(obs)

$$L(\mathbf{y}^{(obs)} | \mathbf{p}) \propto \exp\left(-\left(\mathbf{y}^{(obs)} - \mathcal{M}(\mathbf{x}; \mathbf{p})\right)^T \Gamma^{-1}\left(\mathbf{y}^{(obs)} - \mathcal{M}(\mathbf{x}; \mathbf{p})\right)\right)$$

• Bayes rule:

$$f(\mathbf{p} | \mathbf{y}^{(obs)}) \propto L(\mathbf{y}^{(obs)} | \mathbf{p}) \pi(\mathbf{p})$$

- The posterior density f(: | :) is arbitrary
 - Take samples from it and histogram samples
 - Done using MCMC

What is MCMC?

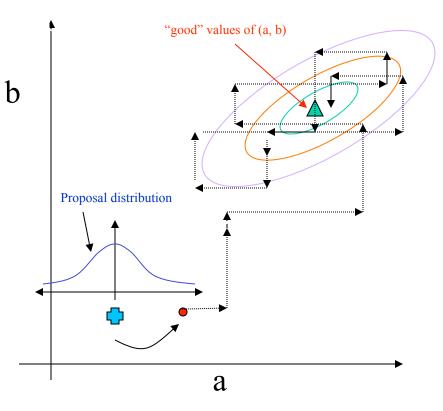
- A way of sampling from an arbitrary distribution
 - The samples recover the distribution (typically plot marginals via histograms)
- Efficient and adaptive
 - Given a starting point (1 sample), the MCMC chain will sequentially find the peaks and valleys in the distribution and sample proportionally
- Ergodic
 - Guaranteed that samples will be taken from the entire range of the distribution
- Drawback
 - Generating each sample requires one to evaluate the expression for the likelihood L(: | :)
 - Not a good idea if L(: | :) involves evaluating a computationally expensive model

An example, using MCMC

- Given: (Yobs, X), a bunch of n observations
- Believed: y = ax + b
- Model: $y_i^{obs} = ax_i + b_i + \varepsilon_i$, $\varepsilon \sim \mathcal{N}(0, \sigma)$
- We also know a range where a, b and σ might lie
 - i.e. we will use uniform distributions as prior beliefs for a, b, σ
- For a given value of (a, b, σ), compute "error" $\epsilon_i = y_i^{obs} (ax_i + b_i)$
 - Probability of the set (a, b, σ) = $\Pi \exp(-\epsilon_i^2/\sigma^2)$
- Solution: π (a, b, σ | Y^{obs}, X) = Π exp(ϵ_i^2/σ^2) * (bunch of uniform priors)
- Solution method:
 - Sample from π (a, b, σ | Y^{\text{obs}}, X) using MCMC; save them
 - Generate a "3D histogram" from the samples to determine which region in the (a, b, σ) space gives best fit
 - Histogram values of a, b and σ , to get individual PDFs for them
 - Estimation of model parameters, with confidence intervals!

MCMC, pictorially

- Choose a starting point, p₀ = (a_{curr}, b_{curr})
- Propose a new a, $a_{prop} \sim \mathcal{N}(a_{curr}, \sigma_a)$
- Evaluate π (a_{prop}, b_{curr} | ...) / π
 (a_{curr}, b_{curr} | ...) = m
- Accept a_{prop} (i.e. a_{curr} <- a_{prop}) with probability min(1, m)
- Repeat with b
- Loop over till you have enough samples
- Two issues
 - Where do you start?
 - How do you choose a proposal distribution?

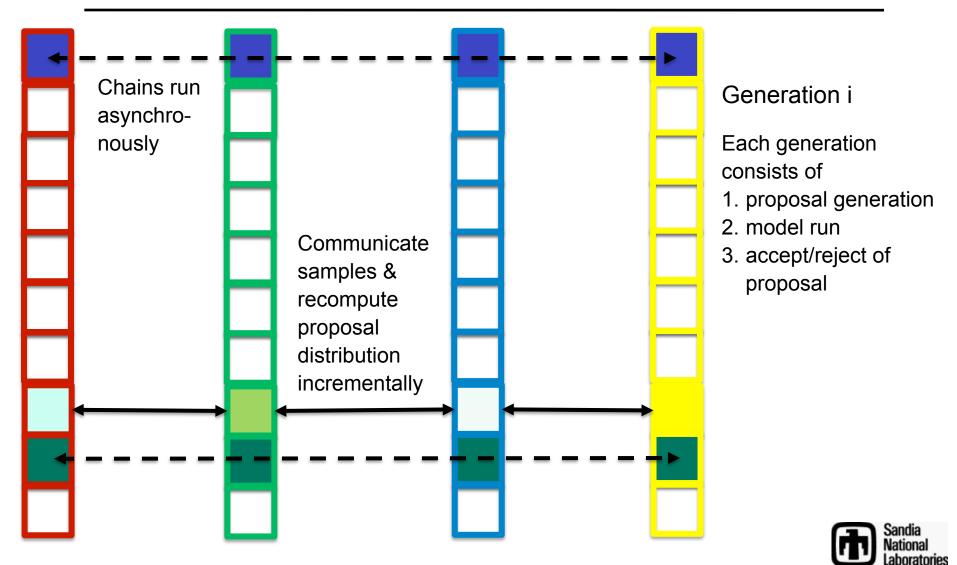


Multi-chain, adaptive MCMC

Problems with MCMC

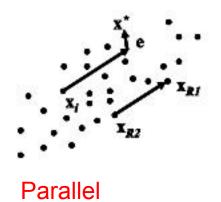
- Sampling cost: Many samples needed; each sample leads to 1 model evaluation
- Poor proposals: If proposal distribution is sub-optimal, most proposals will be rejected
- Bad start: What's a good place to start
- Solutions
 - Sampling cost: Distribute sampling over m chains
 - Poor proposals: adaptive Metropolis-Hasting sampling
 - Periodically, use samples collected to compute a multivariate Gaussian approximation to f(: | :)
 - Inflate its variance and use it as a proposal
 - · Only works if you have some samples to work with
 - Bad start: Have m chains start from an over-dispersed set of \mathbf{p}_0

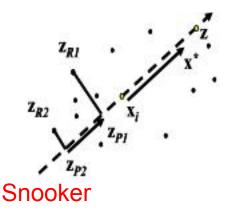
Addressing sampling cost



Addressing bad starts

- When there aren't enough samples, how to make a good proposal distribution?
 - Use genetic algorithm (Differential Evolution) to collect a few good samples
 - Use parallel and snooker updates to construct proposals



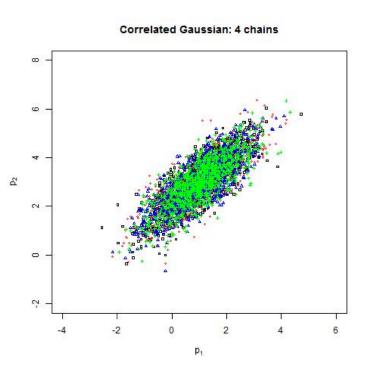


Switch to adaptive Metropolis-Hastings when we have a few good samples

Pictures taken from: C. J. F. ter Braack and J. Vrugt, "Differential Evolution Markov Chain with snooker update and fewer chains", Statistical Computing, 2008

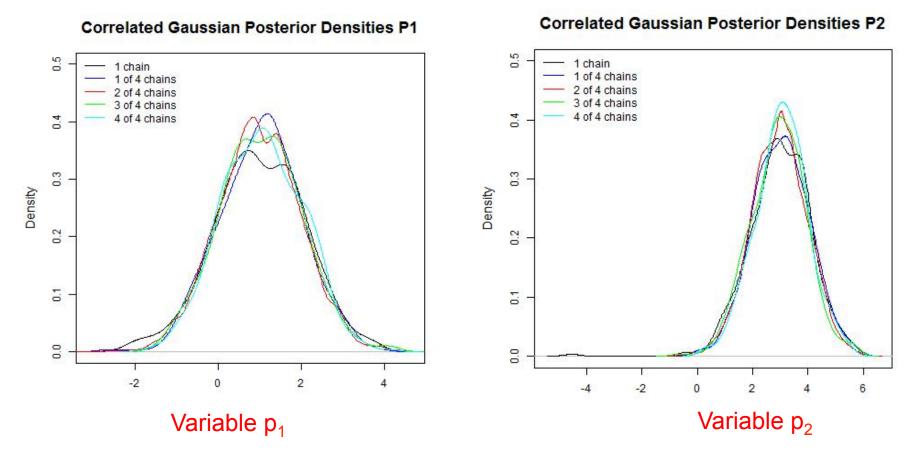
Performance

- Do multichain MCMC get us accurate PDFs with smaller wall-clock time than a 1 chain MCMC?
- Test
 - Pick a bivariate Gaussian with mean (1, 3) and correlation of 0.8
 - Run a 1-chain and 4-chain MCMC sampler on it
 - Explore region [-5, 8] x [-5, 8]
- Questions
 - Are the marginal distributions correct?
 - Are estimates of 5th, median and 95th percentiles correct?
 - We have analytical solutions



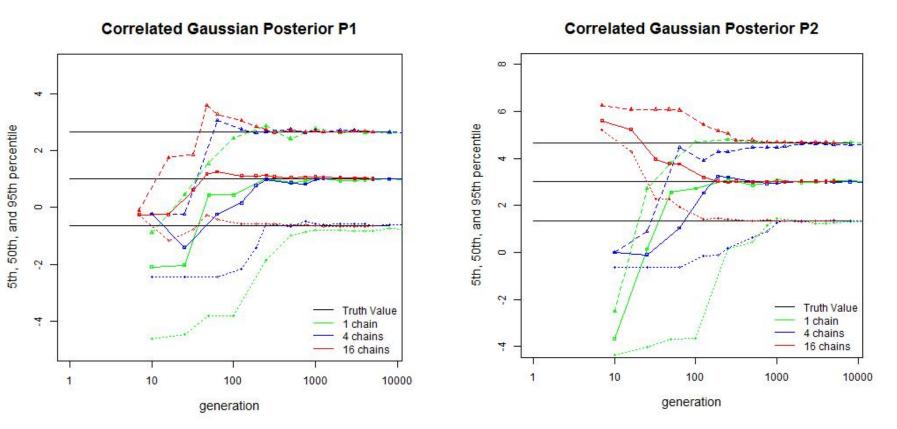
Samples colored by chain

Marginal distributions



 Chains from the 4-chain MCMC produce the same PDFs as the conventional 1-chain MCMC

Convergence

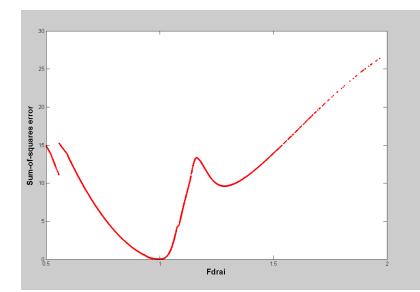


- Percentiles are computed by pooling together g generations of samples collected by m chains (i.e., g x m samples)
- 4-chain MCMC converges faster for tails of the PDF

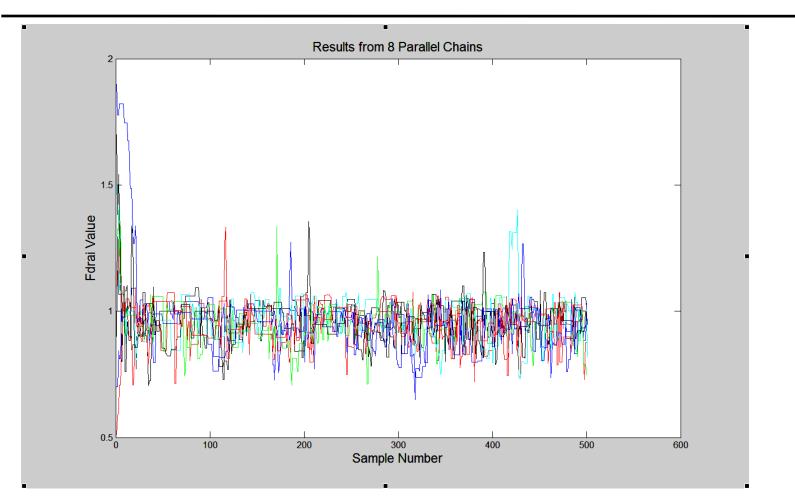
Practical use – calibrate CLM

CLM – Community Land Model

- The land component of Community Earth System Model
- Used in climate change simulations
- Computationally expensive
- Simulating 4 years for each grid-cell takes about 1 hour
- Our aim check for correctness
 - Use multichain MCMC to calibrate CLM for 1 site (1 grid-cell)
 - ARM/Southern Great Plains site, 2003 meteorology
 - Use latent heat flux as observable (**y**^(obs))
 - Calibrate 1 CLM hydrological parameter (F_{drai}); synthetic data using F_{drai} = 1
 - Problem as a complex likelihood

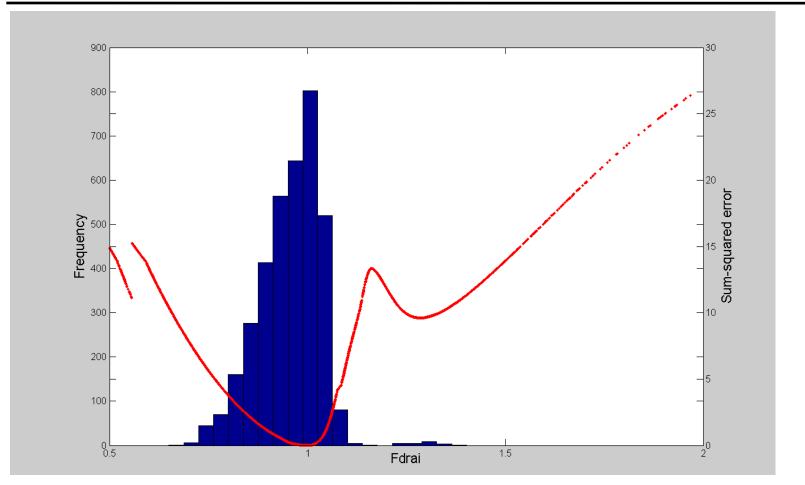


8-chain MCMC



- Chains have settled down to the same value of F_{drai}

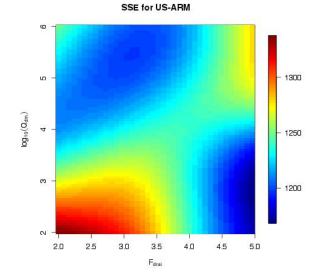
PDF of F_{drai}



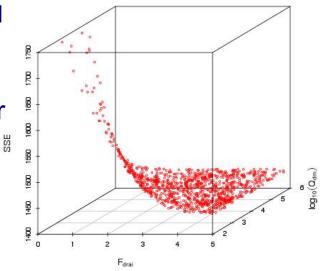
- Samples of Fdrai peak at 1, the correct position
- Cleanly misses local minima at 1.25 (few samples)

CLM calibration with real LH observation

- Calibrate: F_{drai}, log(Q_{dm}), b
 - 3 parameters, 12 observations there will be uncertainty in the estimates
 - The PDF is required
- Use observations from ARM/SGS site for 2003
 - Observations are latent heat fluxes
 - Averaged to their monthly value

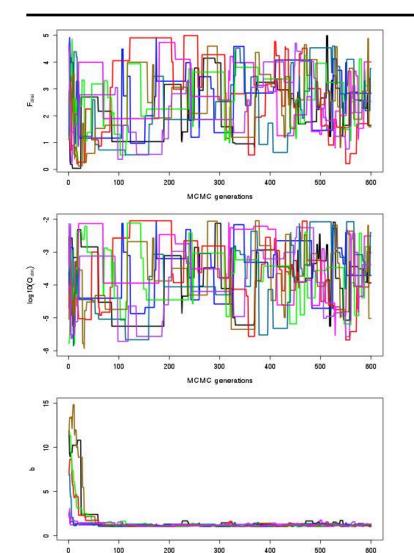


SSE for US-ARM, using real data from 2003



- The likelihood is flat near the minimum error point
 - The chains will wander

Evolution of the chains



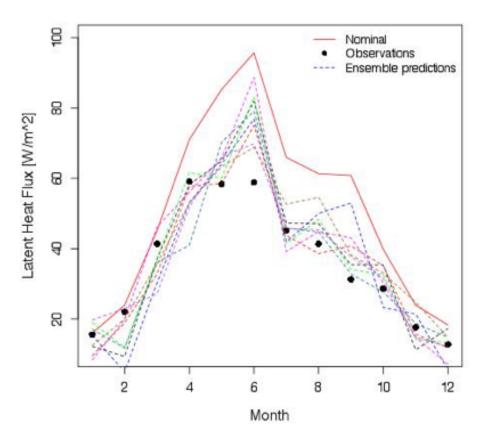
300

MCMC generations

- It's still running ...
- The chain for b has converged
- The other chains are still wandering
- Far from convergence @ 600 generations

Predictions with samples

- Pick samples of (F_{drai}, log(Q_{dm}), b) from chains
- Run CLM and produce predictions of LH
- Compare with predictions produced by default ("nominal") parameter values
- Compare with experimental data
- We're better than the predictions obtained with default parameter values



Conclusions

- We have a parallel multichain MCMC method implemented
 - It's being used to solve statistical inverse problems
 - Specifically, to calibrate computationally expensive models
 - Parameters are estimated as PDFs; captures uncertainty
- The multichain MCMC
 - Converges to true value of the parameters
 - Cuts down wall-clock time, especially when resolving tails of posterior distribution
- It is being used to calibrate the CLM
 - Has already been used to reconstruct moisture levels using GPR measurements
 - 10 parameters to be estimated, 20 chains
 - Can be applied to calibration of engineering models

