Exceptional service in the national interest

Using LASSO to infer a high-order eddy viscosity model for k- ϵ RANS simulation of transonic flows

S. Lefantzi, J. Ray, S. Arunajatesan and L. Dechant

(jairay@sandia.gov)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-2429C

The problem

- Aim: Develop a predictive k-ε RANS model for transonic jetin-crossflow (JinC) simulations
- Drawback: RANS simulations are simply not predictive
 - They have "model-form" error i.e., missing physics
 - The numerical constants/parameters in the k-ε model are usually derived from canonical flows

Hypothesis

- One can calibrate RANS to jet-in-crossflow experiments; thereafter the residual error is mostly model-form error
- Due to model-form error and limited experimental measurements, the parameter estimates will be approximate
 - We will estimate parameters as probability density functions (PDF)
- We then address the model-form error with an enriched eddy viscosity model for the missing physics

The equations

The model

Devising a method to calibrate k-ε parameters from expt. data

$$\frac{\partial \rho k}{\partial t} + \frac{\partial}{\partial x_i} \left[\rho u_i k - \left(\mu + \frac{\mu_T}{\sigma_k} \right) \frac{\partial k}{\partial x_i} \right] = P_k - \rho \varepsilon + S_k$$
$$\frac{\partial \rho \varepsilon}{\partial t} + \frac{\partial}{\partial x_i} \left[\rho u_i \varepsilon - \left(\mu + \frac{\mu_T}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_i} \right] = \frac{\varepsilon}{k} \left(C_1 f_1 P_k - C_2 f_2 \rho \varepsilon \right) + S_\varepsilon$$
$$\mu_T = C_\mu f_\mu \rho \frac{k^2}{\varepsilon}$$

Sources of errors

- Parameters $\{C_2, C_1\}$ are obtained from canonical flows
- C_u is deemed constant throughout the flowfield
- Linear stress-strain rate relationship $\tau_{ij} = -2/3k \delta_{ij} + \mu_T S_{ij}$
 - Called a linear eddy viscosity model (LEVM)

Target problem - jet-in-crossflow

- A canonical problem for spinrocket maneuvering, fuel-air mixing etc.
- We have experimental data (PIV measurements) on the cross- and mid-plane
- Will calibrate to vorticity on the crossplane and test against midplane

Sandia

National Laboratories

RANS (k-ω) simulations - crossplane results

- Crossplane results for stream
- Computational results (SST) are too round; Kw98 doesn't have the mushroom shape; non-symmetric!
- Less intense regions; boundary layer too weak

Reducing errors

Model-form errors

- The linear turbulent stress strain rate relationship (LEVM) can be enriched with quadratic and cubic terms (QEVM / CEVM)
 - Includes terms with vorticity and cross terms with vorticity and strain rate
- However the high-order models have parameters in them
 - What are the appropriate values for those parameters?

Parametric uncertainty

- (C₂, C₁) can be estimated (somewhat) from experimental data
 - But because of model-form errors and limited experimental data, these cannot be estimated with much certainty
- We'll use Bayesian inversion and estimate them as PDFs
 - Quantifies uncertainty in the estimate of the parameters

Calibration process

- Identify which of the CEVM parameters can actually be estimated from experimental data
- Then calibrate those along with (C₂, C₁); call the full set C = (:, C₂, C₁)

Calibration details

Aims of the calibration

- Calibrate to a M = 0.8, J = 10.2 interaction
- Learn the form of the high-order eddy viscosity model by fitting to turbulent stresses measurements on the mid-plane
- Calibrate to crossplane data; check by matching the midplane velocity profiles

Technical challenges

- Computational cost of 3D JinC RANS simulation
 - Replace 3D RANS with a surrogate model i.e., model crossplane streamwise vorticity ω^(RANS)_x(y) = f(y; C), f(:; C) is a curve-fit
 - Surrogate model = emulators
- Arbitrary combinations of C may be nonphysical
 - How to build emulators when C are nonsensical?
- What functional form to use for f(:; C)?

High-order eddy-viscosity model

- Craft 95 describes a cubic eddy viscosity (CEVM) model
 - $\tau_{ij} = -2/3k \, \delta_{ij} + C_{\mu}F(S_{ij}, \varepsilon) + c_1f_1(S_{ij}, \Omega_{ij}, \varepsilon) + c_2f_2(S_{ij}, \Omega_{ij}, \varepsilon) \dots c_7f_7(S_{ij}, \Omega_{ij}, \varepsilon)$
 - $F(S_{ij})$ is linear in S_{ij} , $f_1(:, :, :) f_3(:, :, :)$ are quadratic in $S_{ij} \& \Omega_{ij}$
 - $f_4(:, :, :) f_7(:, :, :)$ are cubic in $S_{ij} \& \Omega_{ij}$
- Our experimental data, on the midplane, consists of:
 - $S_{ii} \& \Omega_{ii}$ obtained from the measured velocity field
 - τ_{ij} and k, also measured
 - ε (dissipation rate of turbulent KE) cannot be measured
 - It is approximated by assuming equilibrium of production and dissipation of turbulent KE.
- Craft's model prescribes {c₁ ... c₇}
 - Parameter value obtained from a simple, incompressible turning flow
 - May not be valid for transonic JinC interaction

Estimation of CEVM parameters

- The 180 measurements that we have may not have info that informs c₁ ... c₇
- Cast the estimation problem as

$$\min_{x} \|Y - Ac\|_{2}^{2} + \lambda \|c\|_{1}$$

- The first half estimates x = {c_i} that provide CEVM predictions near Y
- The second half the λ penalty tries to set as many c_i to zero
- Called Shrinkage Regression
- The penalty λ is the lynchpin
 - If it is too small, we get over-fitting (too many c_i survive)
 - The best way to get λ is via k-fold cross-validation
- The method for solving the optimization problem is LASSO

k-fold cross-validation

- Divide the 180 measurements into 8 "folds" (equal subsets)
- Pick a value of λ'
 - Pick fold # 1 as the testing set, folds 2-8 as the learning set
 - Solve the optimization problem (solve for c) using Y constructed from the learning set
 - Predict the data in the testing set
 - Repeat with folds #2, #3 ... as the testing sets
 - Obtain the mean error and error bars for λ^\prime
- Ultimately you get error as a function of λ
 - Pick the λ with min error
- For higher values of λ , expect to see lots of c_i becoming zero
 - And predictive errors becoming large
- Nomenclature: The norm of difference (Y^(obs) Ac) is called the 'deviance'

LASSO results

- Craft explains around 28% of deviance
- As $log(\lambda)$ increases and # of terms retained decreases, CEVM worsens
- One gets λ_{min} and λ_{1se}

Tabulate coefficients and MSE

Method	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆	С ₇	MSE
Craft	-0.1	0.1	0.26	-10	0	-5	5	0.662
λ_{min}	-0.065	-0.103	1.68	-4.02	5.7	5.4	-3.64	0.386
λ_{1se}	0.0	0.0	0.455	0.0	0	0	0	0.483
LM	-0.0789	-0.149	2.02	-5.88	0	6.68	-11.87	0.382

- $\ln(\lambda_{\min}) = -5.11$, $\ln(\lambda_{1se}) = -1.75$
- Craft's default parameters are changed when we regress it to data
 - Results called 'LM'
- When we LASSO the model using λ_{1se} , we're left with just 1 quadratic term
 - But the model loses much accuracy
- Let's choose λ_{1se} .
 - Provides a simple model, and keeps the Ω^2 term

Calibration of {c₃, C₂, C₁}

- We will calibrate $\mathbf{C} = (c_3, C_2, C_1)$
 - Our model really has a quadratic eddy viscosity model (QEVM)
- Approach:
 - Data: Use vorticity measurements on crossplane to estimate C
 - Useful measurements available at 225 locations ("probes")
 - Estimation procedure: Bayesian calibration using MCMC
 - Model: Use surrogate models (emulators) of the RANS simulator
 - Set of 1275 runs in the parameter space *C* to make the training data
 - Identify a physically realistic space *R*, use SVMs to model *R*
 - Make emulators $\omega(\mathbf{C}) = f(c_3, C_2, C_1)$ with polynomials; valid in \mathcal{R}
 - Use MCMC to create the posterior PDF of C
 - Checking results
 - Draw 100 samples from the posterior PDF
 - Develop an ensemble of predictions of vorticity and velocity; compare against measurements

The Bayesian calibration problem

• Model experimental values at probe j as $\omega^{(j)}_{ex} = \omega^{(j)}(\mathbf{C}) + \varepsilon^{(j)}, \varepsilon^{(j)} \sim N(0, \sigma^2)$

$$\Lambda\left(\omega_{\mathrm{ex}}^{(j)} \mid C\right) \propto \prod_{j \in \mathcal{P}} \exp\left(-\frac{\left(\omega_{ex}^{(j)} - \omega^{(j)}(C)\right)^2}{2\sigma^2}\right)$$

• Given prior beliefs π on **C**, the posterior density ('the PDF') is

$$P(C,\sigma \mid \omega_{ex}^{(j)}) \propto \Lambda(\omega_{ex}^{(j)} \mid C,\sigma) \pi(c_3,C_2,C_1) \pi_{\sigma}(\sigma)$$

- $P(\mathbf{C}|\omega_{ex})$ is a complicated distribution that has to be described/ visualized by drawing samples from it
- This is done by MCMC
 - MCMC describes a random walk in the parameter space to identify good parameter combination
 - Each step of the walk requires a model run to check out the new parameter combination

Making emulators - 1

Training data

- Sample the parameter space C = {c₃, C₂, C₁}; bounds are known
- Run RANS models at 1275 samples; save vorticity on cross-plane
- Select the top 25% of the training runs
 - Call this subspace of $\mathcal R$
 - Keeps us out of non-physical parts of the parameter space C
- Making emulators in $\mathcal R$
 - Model vorticity at probe $j \omega^{(j)}$ as a polynomial in **C**

 $\omega^{(j)} \cong a_0 + a_1c_3 + a_2C_2 + a_3C_1 + a_4c_3C_2 + a_5c_3C_1 + a_6C_2C_1 + \dots$

- Simplify using AIC; cross validated using repeated random subsampling (100 rounds)
 - RMSE in Learning & Testing sets should be equal
- Accept all surrogate models that have < 10% error</p>

Making emulators - 2

- Emulators with 10% accuracy could only be made for 55 / 224 probes
 - 90 with large vorticity (circles)
 - 55 with emulators (+)
- Also, the emulators are only applicable in the $\mathcal R$ section of the parameter space C

Making the informative prior

- Our emulators are valid only inside *R* in the parameter space *C*
- During the optimization (MCMC) we have to reject parameter combinations outside *R* (this is our prior belief π_{prior}(C))
 - We define ζ(C) = 1, for C in R and ζ(C)
 = -1 for C outside R
 - Then the level set ζ(C) = 0 is the boundary of *R*
- The training set of RANS runs is used to populate ζ(C)
- We have to "learn" the discriminating function ζ(C) = 0
 - We do that using support vector machine (SVM) classifiers

PDFs from the calibration

Sandia National Laboratories

- About 60,000 MCMC steps to convergence
- Calibrated values of C quite different from the ones from literature
 - Vertical lines are the "canonical" values of the parameters
- Next step
 - Draw 100 samples from the posterior distribution and perform RANS simulations
 - Compare with experimental measurements

QEVM point vortex metrics

- Compare measured and simulated vorticity fields using the circulation, the centroid and radius of gyration of the vorticity distribution
 - Called the "point vortex metrics"
- Comparable results using existing LEVM models have 20%-70% errors

QEVM PPT predictions on midplane

- Use the 100 RANS simulations to obtain velocity field on the midplane
- Compare experimental and simulated predictions

Conclusions

• We are beginning to "fix-up" engineering models with observational data

- Includes both estimating model parameters and enriching closure models (inferring missing physics in models)
- Methods are Bayesian; fully probabilistic inference (of parameters, at least)
 - Accommodates uncertainty in estimates due to limited data and shortcomings of the RANS model (model-form error)
- We can tackle rather complicated problems using Bayesian inference
 - Computational costs are immense, but only for generating training data
 - Brittle we depend on emulators, which can't always be made
 - Can tackle peculiarities of non-physical parameter spaces using informative priors (classifiers)
- Tools and theories: A mixture of statistics and machine learning
 - Bayesian inference, emulators, shrinkage are conventionally statistical
 - Classifiers etc. are purely ML
 - As we scale up and confront large data (simulated flowfields etc.) to infer model-form error, expect MapReduce implementations of these tools

BONEYARD

RANS (k-ω) simulations – midplane ^{In Sandia} results

- Experimental results in black
- All models are pretty inaccurate (blue and red lines are the nonsymmetric results)

What is MCMC?

- A way of sampling from an arbitrary distribution
 - The samples, if histogrammed, recover the distribution
- Efficient and adaptive
 - Given a starting point (1 sample), the MCMC chain will sequentially find the peaks and valleys in the distribution and sample proportionally
- Ergodic
 - Guaranteed that samples will be taken from the entire range of the distribution
- Drawback
 - Generating each sample requires one to evaluate the expression for the density $\boldsymbol{\pi}$
 - Not a good idea if π involves evaluating a computationally expensive model

An example, using MCMC

- Given: (Y^{obs}, X), a bunch of n observations
- Believed: y = ax + b
- Model: $y_i^{obs} = ax_i + b_i + \varepsilon_i, \varepsilon \sim \mathcal{N}(0, \sigma)$
- We also know a range where a, b and σ might lie
 - i.e. we will use uniform distributions as prior beliefs for a, b, σ
- For a given value of (a, b, σ), compute "error" $\varepsilon_i = y_i^{obs} (ax_i + b_i)$
 - Probability of the set (a, b, σ) = $\Pi \exp(-\varepsilon_i^2/\sigma^2)$
- Solution: π (a, b, σ | Y^{obs}, X) = Π exp(ε_i^2/σ^2) * (bunch of uniform priors)
- Solution method:
 - Sample from π (a, b, σ | Y^{obs}, X) using MCMC; save them
 - Generate a "3D histogram" from the samples to determine which region in the (a, b, σ) space gives best fit
 - Histogram values of a, b and σ , to get individual PDFs for them
 - Estimation of model parameters, with confidence intervals!

MCMC, pictorially

- Choose a starting point, Pⁿ = (a_{curr}, b_{curr})
- Propose a new a, $a_{prop} \sim \mathcal{N}(a_{curr}, \sigma_a)$
- Evaluate π (a_{prop} , $b_{curr} | ...) / <math>\pi$ (a_{curr} , $b_{curr} | ...) = m$
- Accept a_{prop} (i.e. a_{curr} <- a_{prop}) with probability min(1, m)
- Repeat with b
- Loop over till you have enough samples

What is a SVM classifier?

- Given a binary function y = f(x) as a set of points (y_i, x_i), y_i = (0, 1)
 - Find the hyperplane y + Ax = 0 that separates the x-space into y = 0 and y = 1 parts
- Posed as an optimization problem that maximizes the margin

- In case of a curved discriminator, need a transformation first
 - Achieved using kernels
 - We use a cubic kernel